
Statistica Sinica (2007): Preprint 1

INFERENCE FOR NORMAL MIXTURES

IN MEAN AND VARIANCE

Jiahua Chen, Xianming Tan, and Runchu Zhang

University of British Columbia and LMPC Nankai University

Abstract: A finite mixture of normal distributions in both mean and variance pa-

rameters is a typical finite mixture in the location and scale families. Because the

likelihood function is unbounded with any sample size, the ordinary maximum like-

lihood estimator is not consistent. Applying a penalty to the likelihood function

to control the estimated component variances is anticipated to restore the optimal

properties of the likelihood approach. Yet this proposal lacks practical guidelines,

has not been indisputably justified, and has not been investigated in the most gen-

eral setting. In this paper, we present a new and solid proof of consistency when

the putative number of components is equal to, and when it is larger than, the

true number of components. We also provide conditions on the required size of

the penalty and study the invariance properties. The finite sample properties of

the new estimator are also demonstrated through simulations and an example from

genetics.
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mal distributions, penalized maximum likelihood, strong consistency.

1. Introduction. Finite mixture models have wide applications in scientific

disciplines, especially in genetics (Schork, Allison, and Thiel, 1996). In particular,

the normal mixture in both mean and variance was first applied to crab data in

Pearson (1894), and is the most popular model for analysis of quantitative trait

loci, see Roeder (1994), Chen and Chen (2003), Chen and Kalbfleisch (2005),

and Tadesse, Sha, and Vannucci (2005). In general, let f(x, λ) be a parametric

density function with respect to some σ-finite measure and parameter space Λ

which is usually a subset of some Euclidean space. The density function of

a finite mixture model is given by f(x;G) =
∑p

j=1 πjf(x;λj) where p is the

number of components or the order of the model, λj ∈ Λ is the parameter of the

jth component density, πj is the proportion of the jth component density, and

G is the mixing distribution which can be written as G(λ) =
∑p

j=1 πjI(λj ≤ λ)
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with I(·) being the indicator function.

In this paper, we focus on inference problems related to the univariate nor-

mal mixture distribution with parameter λ representing the mean and variance

(θ, σ2). Let φ(x) = 1/(
√

2π) exp{−x2/2}. In normal mixture models, the com-

ponent density is given by f(x; θ, σ) = σ−1φ(σ−1(x − θ)).

The parameter space of G can be written as

Γ = {G = (π1, . . . , πp, θ1, . . . , θp, σ1, . . . , σp) :
p∑

j=1

πj = 1, πj ≥ 0, σj ≥ 0 for j = 1, . . . , p}.

For convenience, we use G to represent both the mixing distribution and its

relevant parameters. We understand that permuting the order of the components

does not change the model. Hence, without loss of generality, we assume σ1 ≤
σ2 ≤ · · · ≤ σp.

Let X1, . . . ,Xn be a random sample from a finite normal mixture distri-

bution f(x;G). A fundamental statistical problem is to estimate the mixing

distribution G. Pearson (1894) proposed the method of moments for estimating

the parameters in the univariate normal mixture. Many other approaches have

also been proposed, such as those discussed in McLachlan and Basford (1987)

and McLachlan and Peel (2000). The maximum likelihood estimator (MLE),

known for its asymptotic efficiency for regular statistical models, is one of the

most commonly used approaches (Lindsay, 1995). However, in the case of finite

normal mixture distributions in both mean and variance, the MLE is not well

defined. Note that the log-likelihood function is

ln(G) =
n∑

i=1

log f(Xi;G) =
n∑

i=1

log{
p∑

j=1

πj

σj
φ(

Xi − θj

σj
)}.

By letting θ1 = X1 and σ1 → 0 with the other parameters fixed, we have ln(G) →
∞. That is, the ordinary maximum-likelihood estimator of G is not well defined

(Day, 1969; Kiefer and Wolfowitz, 1956).

To avoid this difficulty, researchers often turn to estimators on constrained

parameter spaces. For example, Redner (1981) proved that the maximum like-

lihood estimator of G exists and is globally consistent in every compact sub-

parameter space containing the true parameter G0. When p is known, Hathaway
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(1985) proposed estimating G by maximizing the likelihood function within a

restricted parameter space. Despite the elegant results of Redner (1981) and

Hathaway (1985), these methods suffer, at least theoretically, from the risk that

the true mixing distribution G0 may not satisfy the constraint imposed.

We advocate the approach of adding a penalty term to the ordinary log-

likelihood function. We define the penalized log-likelihood as

pln(G) = ln(G) + pn(G) (1.1)

so that pn(G) → −∞ as min{σj : j = 1, . . . , p} → 0. We then estimate G with the

penalized maximum likelihood estimator (PMLE) G̃n = arg maxG pln(G). The

penalized-likelihood-based method is a promising approach for countering the

unboundedness of ln(G) while keeping the parameter space Γ unaltered. However,

to make the PMLE work, one has to consider what penalty functions pn(G) are

suitable. This task proves challenging. Ridolfi and Idier (1999, 2000) proposed

a class of penalty functions based on a Bayesian conjugate prior distribution,

but the asymptotic properties of the corresponding PMLE were not discussed.

Under some conditions on pn(G) and with p assumed known, Ciuperca, Ridolfi

and Idier (2003) provided an insightful proof of strong consistency of the PMLE

of G under the normal mixture model. Their proof was for the case where p = p0

is known, and contains a few loose steps that do not seem to have quick fixes,

see Tan (2005).

In this paper, we use a novel technique to establish the strong consistency

of the PMLE for a class of penalty functions, whether or not the true value of p

is known. In addition, the proper order of the penalty is established. The paper

is organized as follows. We first introduce two important technical lemmas in

Section 2, and then present a detailed proof of the strong consistency of the

PMLE in Section 3. In Section 4, we present some simulation results and a

real-data example. We finally summarize the paper in Section 5.

2. Technical Lemmas. To make the penalized likelihood approach work, we

use a penalty to counter the effect of observations close to the location param-

eters. For this purpose, we assess the number of observations falling in a small

neighborhood of the location parameters in G.

Let Ωn(σ) = supθ

∑
I(0 < Xi−θ < −σ log σ) be the number of observations
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on the positive side of a small neighborhood of θ. We are interested in Ωn(σ) only

when σ is very small. The number of observations on the negative side of θ can

be assessed in the same way. Let Fn(x) = n−1
∑n

i=1 I(Xi ≤ x) be the empirical

distribution function. We have Ωn(σ) = n supθ[Fn(θ−σ log σ)−Fn(θ)]. Let F =

E(Fn) be the true cumulative distribution function. We now define two quantities

M = max{supx f(x;G0), 8} and δn(σ) = −Mσ log(σ)+n−1 where G0 is the true

mixing distribution. The following lemma uses Bahadur’s representation to give

an order assessment of n−1Ωn(σ). With a slight abuse of the probability concept

yet for brevity, when an inequality involving random quantities holds as n → ∞
except for a zero probability event, we claim that the inequality is true almost

surely. Further, if there is no risk of confusion, we omit the phrase “almost

surely.”

Lemma 1. Under the finite normal mixture model assumption, as n → ∞ and

almost surely, we have:

1. for each given σ between exp(−2) and 8/(nM),

sup
θ

[Fn(θ − σ log σ) − Fn(θ)] ≤ 2δn(σ);

2. uniformly for σ between 0 and 8/(nM),

sup
θ

[Fn(θ − σ log σ) − Fn(θ)] ≤ 2(log n)2/n.

Proof. 1. Let η0, η1, . . . , ηn be such that η0 = −∞; F (ηi) = i/n, i = 1, . . . , n −
1; ηn = ∞. We have

sup
θ

[Fn(θ − σ log σ) − Fn(θ)] ≤ max
j

[Fn(ηj − σ log σ) − Fn(ηj−1)]

≤ max
j

[{Fn(ηj − σ log σ) − Fn(ηj−1)} − {F (ηj − σ log σ) − F (ηj−1)}]

+ max
j

[F (ηj − σ log σ) − F (ηj−1)].

By the mean value theorem and for some ηj ≤ ξj ≤ ηj − σ log σ, we have

F (ηj − σ log σ) − F (ηj−1) = F (ηj − σ log σ) − F (ηj) + n−1

= f(ξj;G0)|σ log σ| + n−1

≤ M |σ log σ| + n−1 = δn(σ).
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In summary, we have maxj[F (ηj − σ log σ) − F (ηj−1)] ≤ δn(σ). Further, for j =

1, . . . , n, define ∆nj = |{Fn(ηj−σ log σ)−Fn(ηj−1)}−{F (ηj−σ log σ)−F (ηj−1)}|.
By the Bernstein inequality (Serfling, 1980), for any t > 0 we have

P{∆nj ≥ t} ≤ 2 exp{− n2t2

2nδn(σ) + 2
3nt

}. (2.1)

Since |σ log σ| is monotonic in σ for exp(−2) > σ > 8/(nM),

|σ log σ| ≥ 8

nM
log

nM

8
≥ 8 log n

nM
.

By letting t = δn(σ) in (2.1), we obtain

P{∆nj ≥ δn(σ)} ≤ 2 exp{−3

8
nδn(σ)}

≤ 2 exp{−3

8
Mn|σ log σ|}

≤ 2n−3.

Thus for any σ in this range, P{maxj ∆nj ≥ δn(σ)} ≤ ∑
P{∆nj ≥ δn(σ)} ≤

2n−2. Linking this inequality back to supθ[Fn(θ − σ log(σ)) − Fn(θ)], we get

P{sup
θ

[Fn(θ − σ log σ) − Fn(θ)] ≥ 2δn(σ)} ≤ P{max
j

∆nj ≥ δn(σ)} ≤ 2n−2.

The conclusion then follows from the Borel-Cantelli lemma.

2. When 0 < σ < 8/(nM), we choose t = n−1(log n)2 in (2.1). For n large

enough, 2δn(σ) < 1
3 t. Hence, P{∆nj ≥ t} ≤ 2 exp{−nt} ≤ n−3. The conclusion

is then obvious.

The claims in Lemma 1 are made for each σ in the range of consideration.

The bounds can be violated by a zero-probability event for each σ and the union

of zero-probability events may have non-zero probability as there are uncountably

many σ in the range. Our next lemma strengthens the conclusion in Lemma 1.

Lemma 2. Except for a zero-probability event not depending on σ, and under

the same normal mixture assumption, we have for all large enough n,

1. for σ between exp(−2) and 8/(nM), supθ[Fn(θ−σ log(σ))−Fn(θ)] ≤ 4δn(σ);

2. for σ between 0 and 8/(nM), supθ[Fn(θ − σ log σ) − Fn(θ)] ≤ 2(log n)2/n.
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Proof. Let σ̃0 = 8/(nM), and choose σ̃j+1 by |σ̃j+1 log σ̃j+1| = 2|σ̃j log σ̃j| for

j = 0, 1, 2, . . ., and let s(n) be the largest integer such that σ̃s(n) ≤ exp(−2).

Simple algebra shows that s(n) ≤ 2 log n.

By Lemma 1, for j = 1, 2, . . . , s(n) we have

P{sup
θ

[Fn(θ − σ̃j log σ̃j) − Fn(θ)] ≥ 2δn(σ̃j)} ≤ 2n−2.

Define Dn = ∪s(n)
j=1{supθ[Fn(θ− σ̃j log σ̃j)−Fn(θ)] ≥ 2δn(σ̃j)}. It can be seen that

∞∑

n=1

P (Dn) ≤
∞∑

n=1

s(n)∑

j=1

P{sup
θ

[Fn(θ − σ̃j log σ̃j) − Fn(θ)] ≥ 2δn(σ̃j)}

≤
∞∑

n=1

4n−2 log n < ∞.

By the Borel-Cantelli lemma, P (Dn, i.o.) = 0 where i.o. means infinitely often.

The event Dn is defined for a countable number of σ values. Our next step is to

allow all σ in the range of consideration.

For each σ in the range of consideration, there exists a j such that |σ̃j log σ̃j| ≤
|σ log σ| ≤ |σ̃j+1 log σ̃j+1|. Hence, almost surely,

sup
θ

[Fn(θ − σ log σ) − Fn(θ)] ≤ sup
θ

[Fn(θ − σ̃j+1 log σ̃j+1) − Fn(θ)]

≤ 2δn(σ̃j+1) ≤ 4δn(σ).

This proves the first conclusion of the lemma.

With the same σ̃0 = 8/(nM), we have

P{sup
θ

[Fn(θ − σ̃0 log σ̃0) − Fn(θ)] ≤ 2n−1(log n)2} ≤ n−3.

That is, almost surely, supθ[Fn(θ − σ̃0 log σ̃0) − Fn(θ)] ≤ 2n−1(log n)2. For 0 <

σ < 8/(nM), we always have

sup
θ

[Fn(θ − σ log σ) − Fn(θ)] ≤ sup
θ

[Fn(θ − σ̃0 log σ̃0) − Fn(θ)]

and hence the second conclusion of the lemma.

In summary, we have shown that almost surely,

sup
θ

n∑

i=1

I(|Xi − θ| < |σ log σ|) ≤ 8nδn(σ), for σ ∈ [8/(nM), e−2], (2.2)
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and

sup
θ

n∑

i=1

I(|Xi − θ| < |σ log σ|) ≤ 4(log n)2, for σ ∈ (0, 8/(nM)]. (2.3)

It is worth observing that the normality assumption does not play a crucial role

in the proofs. Furthermore, the two factors 8 and 4 in (2.2) and (2.3) respectively

carry no specific meaning; they are chosen for simplicity and could be replaced

by any positive numbers.

3. Strong Consistency of the PMLE. We now proceed to prove the consis-

tency of the PMLE for a class of penalty functions. The penalty must be large

enough to counter the effect of the observations in a small neighborhood of the

location parameters, and small enough to retain the optimal properties of the

likelihood method. In addition, we prefer penalty functions that enable efficient

numerical computation.

3.1 Conditions on penalty functions. We require the penalty functions

to satisfy:

C1. pn(G) =
∑p

j=1 p̃n(σj);

C2. supσ>0 max{0, p̃n(σ)} = o(n) and p̃n(σ) = o(n) at any fixed σ > 0.

C3. For any σ ∈ (0, 8/(nM)], we have p̃n(σ) ≤ 4(log n)2 log σ for large enough

n.

When the penalty functions depend on the data, the above conditions are in the

sense of almost surely. These three conditions are flexible and functions satisfying

these conditions can be easily constructed. Some examples will be given in the

simulation section. More specifically, C2 rules out functions that substantially

elevate or depress the penalized likelihood at any parameter value. At the same

time, C2 allows the penalty to be very severe in a shrinking neighborhood of

σ = 0 which is C3.

We now present our results in several steps.

3.2 Consistency of the PMLE when p = p0 = 2. For clarity, we first

consider the case where p = p0 = 2. Let K0 = E0 log f(X;G0), where E0(·)
means expectation with respect to the true density f(x;G0). It can be seen that

|K0| < ∞. Let ǫ0 be a small positive constant such that
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1. 0 < ǫ0 < exp(−2);

2. 16Mǫ0(log ǫ0)
2 ≤ 1;

3. − log ǫ0 − (log ǫ0)
2/2 ≤ 2K0 − 4.

It can easily be seen that as ǫ0 ↓ 0, the inequalities are satisfied. Hence, the

existence of ǫ0 is assured. The value of ǫ0 carries no specific meaning. For some

small τ0 > 0, we define three regions as

Γ1 = {G : σ1 ≤ σ2 ≤ ǫ0},
Γ2 = {G : σ1 ≤ τ0, σ2 ≥ ǫ0},
Γ3 = Γ − (Γ1 ∪ Γ2).

See Figure 5.1.

Figure 5.1 about here.

The exact size of τ0 will be specified later. These three regions represent

three situations. One is when the mixing distribution has both scale parameters

close to zero. In this case, the number of observations near either one of the

location parameters is assessed in the last section. Their likelihood contributions

are large, but are countered by the penalty. Hence, the PMLE has a diminishing

probability of being in Γ1. In the second case, the likelihood has two major

sources: the observations near a location parameter with a small scale parameter,

and the remaining observations. The first source is countered by the penalty. The

likelihood from the second source is not large enough to exceed the likelihood at

the true mixing distribution. Hence, the PMLE also has a diminishing probability

of being in Γ2.

The following theorem shows that the penalized log-likelihood function on

Γ1 is bounded in some sense.

Theorem 1. Assume that the random sample is from the normal mixture model

with p = p0 = 2, and let pln(G) be defined as in (1.1) with the penalty function

pn(G) satisfying C1–C3. We have that supG∈Γ1
pln(G) − pln(G0) → −∞ almost

surely when n → ∞,

Proof. Let A1 = {i : |Xi−θ1| < |σ1 log σ1|} and A2 = {i : |Xi−θ2| < |σ2 log σ2|}.



INFERENCE FOR NORMAL MIXTURES 9

For any index set, say S, we define

ln(G;S) =
∑

i∈S

log

[
π

σ1
φ(

Xi − θ1

σ1
) +

(1 − π)

σ2
φ(

Xi − θ2

σ2
)

]
,

hence ln(G) = ln(G;A1) + ln(G;Ac
1A2) + ln(G;Ac

1A
c
2). We now investigate the

asymptotic order of these three terms. Let n(A) be the number of observations

in set A. From the fact that the mixture density is no larger than 1/σ1, we get

ln(G;A1) ≤ −n(A1) log σ1, and with a slight refinement we get ln(G;Ac
1A2) ≤

−n(Ac
1A2) log σ2 ≤ −n(A2) log σ2. By the bounds for n(A1) and n(Ac

1A2) given

in Lemma 2, almost surely, we have

ln(G;A1) ≤




−4(log n)2 log σ1, 0 < σ1 ≤ 8/(nM),

−8 log σ1 + 8Mnσ1(log σ1)
2, 8/(nM) < σ1 < ǫ0,

(3.1)

and

ln(G;Ac
1A2) ≤




−4(log n)2 log σ2, 0 < σ2 ≤ 8/(nM),

−8 log σ2 + 8Mnσ2(log σ2)
2, 8/(nM) < σ2 < ǫ0.

From (3.1) and condition (C3), we obtain that ln(G;A1) + p̃n(σ1) < 0 when

0 < σ1 ≤ 8/(nM). Furthermore, when 8/(nM) < σ1 < ǫ0, based on the choice

of ǫ0, almost surely, we have

ln(G;A1) + p̃n(σ1) ≤ 8Mnσ1(log σ1)
2 − 8 log σ1 ≤ 8Mnǫ0(log ǫ0)

2 + 9 log n.

The two bounds just obtained can be unified as

ln(G;A1) + p̃n(σ1) ≤ 8Mnǫ0(log ǫ0)
2 + 9 log n.

Similarly, we can show that

ln(G;Ac
1A2) + p̃n(σ2) ≤ 8Mnǫ0(log ǫ0)

2 + 9 log n.

For observations falling outside both A1 and A2, the log-likelihood contribu-

tions are bounded by

log{πσ−1
1 φ(− log σ1) + (1 − π)σ−1

2 φ(− log σ2)} ≤ − log ǫ0 − (log ǫ0)
2/2

which is negative. At the same time it is easy to show that, almost surely as

n → ∞, n(Ac
1A

c
2) ≥ n − {n(A1) + n(A2)} ≥ n/2. Hence we get the third bound

ln(G;Ac
1A

c
2) ≤ (n/2){− log ǫ0 − (log ǫ0)

2/2}.
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Combining the three bounds and recalling the choice of ǫ0, we conclude that

when G ∈ Γ1,

pln(G) = [ln(G;A1) + p̃n(σ1)] + [ln(G;Ac
1A2) + p̃n(σ2)] + ln(G;Ac

1A
c
2)

≤ 16Mnǫ0(log ǫ0)
2 + (n/2)[− log ǫ0 − (log ǫ0)

2/2] + 18 log n

≤ n + (n/2)(2K0 − 4) + 18 log n

= n(K0 − 1) + 18 log n.

At the same time, by the strong law of large numbers, n−1pln(G0) → K0 almost

surely. Hence, supG∈Γ1
pln(G) − pln(G0) ≤ −n + 18 log n → −∞ almost surely

as n → ∞. This completes the proof.

To establish a similar result on Γ2, we define

g(x;G) = a1
π√
2
φ(

x − θ1√
2σ1

) + a2
(1 − π)

σ2
φ(

x − θ2

σ2
)

with a1 = I(σ1 6= 0, θ1 6= ±∞) and a2 = I(θ2 6= ±∞) for all G in the compacted

Γ2. Note that the first part is not a normal density function as it lacks σ1 in

the denominator of the coefficient. Because of this, the function is well behaved

when σ1 is close to 0 and at 0. It is easy to show that the function g(x;G) has

the following properties:

1. g(x;G) is continuous in G almost surely w.r.t. f(x,G0);

2. E0 log{g(X;G)/f(X;G0)} < 0 ∀G ∈ Γ2 by the Jensen inequality;

3. sup{g(x;G) : G ∈ Γ2} ≤ ǫ−1
0 .

Without loss of generality, we can choose ǫ0 small enough so that G0 6∈ Γ2.

Consequently we can easily show, as in Wald (1949), that

sup
G∈Γ2

{
1

n

n∑

i=1

log

(
g(Xi;G)

f(Xi;G0)

)}
→ −δ(τ0) < 0, a.s., as n → ∞. (3.2)

Note also that δ(τ0) > 0 is a decreasing function of τ0. Hence, we can find

a τ0 such that (a): τ0 < ǫ0 and (b): 8Mτ0(log τ0)
2 ≤ 2δ(ǫ0)/5 < 2δ(τ0)/5. Let τ0

satisfy these two conditions. Then the PMLE cannot be in Γ2 either, as is stated

in the following theorem.
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Theorem 2. Assume the same conditions as in Theorem 1. As n → ∞, we have

almost surely that supG∈Γ2
pln(G) − pln(G0) → −∞.

Proof. It is easily seen that the log-likelihood contribution of observations in A1 is

no larger than − log σ1 + log g(Xi;G). For other observations the log-likelihood

contributions are less than log g(Xi;G). This is seen by the fact that when

|x − θ1| ≥ |σ1 log σ1| and σ1 is sufficiently small,

1

σ1
exp

{
−(x − θ1)

2

2σ2
1

}
≤ exp

{
−(x − θ1)

2

4σ2
1

}
.

Hence, combined with the properties of the penalty function and (3.2), we have

sup
Γ2

pln(G) − pln(G0)

≤ sup
σ1≤τ0

{
∑

i∈A1

log(1/σ1) + p̃n(σ1)} + sup
Γ2

n∑

i=1

log{g(Xi;G)/f(Xi;G0)} + pn(G0)

≤ 8Mnτ0(log τ0)
2 + 9 log n − 9δ(τ0)n/10 + pn(G0)

≤ −δ(τ0)n/2 + 9 log n + pn(G0)

which goes to −∞ as n → ∞ in view of condition C2 on pn(G0). This leads to

the conclusion.

We now claim the strong consistency of the PMLE.

Theorem 3. Assume the same conditions as in Theorem 1. For any mixing

distribution Gn = Gn(X1, . . . ,Xn) satisfying pln(Gn) − pln(G0) > c > −∞, we

have that Gn → G0 almost surely as n → ∞.

Proof. By Theorems 1 and 2, with probability one, Gn ∈ Γ3 as n → ∞. Confin-

ing the mixing distribution G in Γ3 is equivalent to placing a positive constant

lower bound for the variance parameters. Thus, consistency is covered by the

result in Kiefer and Wolfowitz (1956). Note that their proof can be modified to

accommodate a penalty of size o(n) due to (2.12) on page 892 of the paper.

Let Ĝn be the PMLE that maximizes pln(G). By definition, pln(Ĝn) −
pln(G0) > 0 and therefore Ĝn → G0 almost surely. Hence we have the following

corollary.
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Corollary 1. Under the same conditions as in Theorem 1, the PMLE Ĝn is

strongly consistent.

3.3 Strong consistency of the PMLE when p = p0 > 2. The strong

consistency of PMLE for the case where p0 > 2 can be proved in the same

manner. The only hurdle is producing a clear presentation.

For p sufficiently small positive constants ǫ10 ≥ ǫ20 ≥ · · · ≥ ǫp0, we partition

the parameter space Γ into

Γk = {G : σ1 ≤ · · · ≤ σp−k+1 ≤ ǫk0; ǫ(k−1)0 ≤ σp−k+2 ≤ · · · ≤ σp},

for k = 1, . . . , p and Γp+1 = Γ − ∪p
k=1Γk.

Similarly to the case p = p0 = 2, the proper choice of ǫk0(k = 2, . . . , p) will

be given after ǫ(k−1)0 is selected. Let

gk(x;G) =

p−k+1∑

j=1

πj√
2
φ(

x − θj√
2σj

)I(σj 6= 0, θj 6= ±∞)

+

p∑

j=p−k+2

πj

σj
φ(

x − θj

σj
)I(θj 6= ±∞).

As before, we can show that

sup
G∈Γk

{n−1
∑

i

log(gk(Xi;G)/f(Xi;G0))} → −δ(ǫk0) < −δ(ǫ(k−1)0) < 0 (3.3)

almost surely as n → ∞. The constants ǫk0 are then chosen so that (a):

ǫk0 < ǫ(k−1)0, and (b): 8(p − k + 1)Mǫk0(log ǫk0)
2 < 2δ(ǫ(k−1)0)/5. In this way,

Γ1, Γ2, · · · ,Γp are defined one after another. Let us observe that the key behind

the validity of (3.3) is that none of Γ1, . . . ,Γp contains G0. This fact will be used

again later.

The proof of the general case is also accomplished in three general steps.

Firstly, the probability of the PMLE belonging to Γ1 goes to zero. This is true

because all the σk’s are small. Secondly, we show the same for Γk, k = 2, 3, . . . , p.

Thirdly, when G is confined in Γp+1, consistency of the PMLE is covered by Kiefer

and Wolfowitz (1956) as before.

Step 1. For k = 1, . . . , p, define Ak = {i : |Xi − θk| ≤ |σk log σk|}. As in the
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case where p = p0 = 2, for sufficiently small ǫ10 and for G ∈ Γ1, we have

ln(G;Ac
1A

c
2 · · ·Ac

k−1Ak) + p̃n(σk) ≤ 8Mǫ10(log ǫ10)
2 + 9 log n

for k = 1, . . . , p almost surely. Therefore, the likelihood contribution of the Xi’s

in A1, . . . , Ap plus the penalty term

p∑

k=1

{ln(G;Ac
1A

c
2 · · ·Ac

k−1Ak) + p̃n(σk)} ≤ 8pMǫ10(log ǫ10)
2 + 9p log n.

At the same time, the total likelihood contributions of the Xi not in A1, . . . , Ap

are bounded as ln(G;Ac
1 · · ·Ac

p) ≤ 1
2n{− log ǫ10−(log ǫ10)

2/2}. A sufficiently small

ǫ10 not depending on n can hence be found such that pln(G) − pln(G0) < −n +

9p log n + pn(G0) almost surely and uniformly for G ∈ Γ1. The fact that the

upper bound goes to −∞ as n → ∞ leads to the conclusion of the first step.

Step 2. The definition of gk(x;G) is useful in this step. Similarly to the

case of p0 = 2, for each k it is seen that supΓk
E0 log{gk(X;G)/f(X;G0)} < 0.

Hence, using the same idea as for p0 = 2, we get

sup
Γk

pln(G) − pln(G0) ≤
p−k+1∑

j=1

sup
σj<ǫk0

[
∑

i∈Aj

{− log σj} + p̃n(σj)]

+ sup
Γk

n∑

i=1

log{gk(Xi;G)/f(Xi;G0)}

≤ (p − k + 1){8Mnǫk0(log ǫk0)
2 + 9 log n} − 9δ(ǫk0)n/10

≤ −δ(ǫk0)n/2 + 9(p − k + 1) log n.

The last step is a consequence of the choice of these constants.

In conclusion, the PMLE is not in Γ1, . . . ,Γp except for a zero probability

event.

Step 3. Again, confining G in Γp+1 amounts to setting up a positive constant

lower bound on σk, k = 1, . . . , p. Thus, the consistency proof of the PMLE is

covered by Kiefer and Wolfowitz (1956) as before.

In summary, the PMLE of G when p = p0 > 2 is also consistent.

Theorem 4. Assume that pn(G) satisfies C1–C3 and pln(G) is defined as in

(1.1). Then for any sequence Gn = Gn(X1, . . . ,Xn) with p = p0 components
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satisfying pln(Gn) − pln(G0) > c > −∞ for all n, we have Gn → G0 almost

surely.

3.4 Convergence of the PMLE when p ≥ p0. The exact number of

components is often unknown in applications. Thus, it is particularly important

to be able to estimate G consistently when only an upper bound p is known. One

such estimator is the PMLE with at most p components. Other than in Kiefer

and Wolfowitz (1956) and Leroux (1992), whose results do not apply to finite

mixture of normal models, there has been limited discussion of this problem.

When p0 < p < ∞, we cannot expect that every part of G converges to that

of G0. Instead, we measure their difference as two distributions. Let

H(G,G0) =

∫ ∫

R×R+

|G(λ) − G0(λ)| exp{−|θ| − σ2}dθdσ2 (3.4)

where λ = (θ, σ2). It is easily seen that H(Gn, G0) → 0 implies Gn → G0 in

distribution. An estimator Ĝn is strongly consistent if H(Ĝn, G0) → 0 almost

surely.

Theorem 5. Under the same conditions as in Theorem 1 except for p0 ≤ p < ∞,

for any mixing distribution Gn = Gn(X1, . . . ,Xn) satisfying pln(Gn)−pln(G0) ≥
c > −∞, we have H(Gn, G0) → 0 almost surely as n → ∞.

Most intermediate conclusions in the proof of consistency of the PMLE when

p = p0 ≥ 2 are still applicable; some need minor changes. We use many of these

results and notations to establish a brief proof.

For an arbitrarily small positive number δ, define H(δ) = {G : G ∈ Γ,H(G,G0) ≥
δ}. That is, H(δ) contains all mixing distributions with up to p components that

are at least δ > 0 distance from the true mixing distribution G0.

Since G0 6∈ H(δ), we have E[log{gk(X;G)/f(X;G0)}] < 0 for any G ∈
H(δ) ∩ Γk, k = 2, 3, . . . , p. Thus, (3.3) remains valid after being slightly revised

as follows:

sup
G∈H(δ)∩Γk

n−1
n∑

i=1

log{gk(Xi;G)/f(Xi;G0)} → −δ(ǫk0)

for some δ(ǫk0) > 0. Because of this, the derivations in Section 3.3 still apply

after Γk is replaced by H(δ) ∩ Γk. That is, with proper choice of ǫk0, we can

similarly get supG∈H(δ)∩Γk
pln(G) − pln(G0) → −∞ for all k = 1, 2, . . . , p.
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With what we have proved, it can be seen that the penalized maximum

likelihood estimator of G, Ĝn, must almost surely belong to Hc(δ)∪Γp+1, where

Hc(δ) is the complement of H(δ). Since δ is arbitrarily small, Ĝn ∈ Hc(δ) implies

H(Ĝn, G0) → 0. On the other hand, Ĝn ∈ Γp+1 is equivalent to putting a positive

lower bound on the component variances, which also implies H(Ĝn, G0) → 0 by

Kiefer and Wolfowitz (1956). That is, consistency of the PMLE is also true when

p ≥ p0.

4. Simulation and Real-Data Example. In this section, we present some

simulation results and a real-data example.

4.1 The EM algorithm. The EM algorithm is a preferred numerical

method in finite mixture models due to its simplicity in coding, and guaran-

teed convergence to some local maximum under general conditions (Wu, 1983).

The EM algorithm can also be easily modified to work with the penalized like-

lihood method. Often, the penalized log-likelihood function also increases after

each EM iteration (Green, 1990) and the algorithm converges as quickly.

Let zik be an indicator variable such that zik equals 1 when the ith ob-

servation is from the kth component, and equals 0 otherwise. The complete

observation log-likelihood under the normal mixture model is given by lc(G) =
∑

i

∑
k zik

{
log πk − log σk − (2σ2

k)−1(Xi − θk)
2
}

. Given the current parameter

value G(m) = (π
(m)
1 , . . . , π

(m)
p , θ

(m)
1 , . . . , θ

(m)
p , σ

(m)
1 , . . . , σ

(m)
p ), the EM algorithm

iterates as follows:

In the E-Step, we compute the conditional expectation

π
(m+1)
ik = E{zik|x;G(m)} =

π
(m)
k φ(Xi; θ

(m)
k , σ

2 (m)
k )

∑p
j=1 π

(m)
j φ(Xi; θ

(m)
j , σ

2 (m)
j )

and arrive at

Q(G;G(m)) = E{lc(G) + pn(G)|x;G(m)}

=

p∑

j=1

(log πj)

n∑

i=1

π
(m+1)
ij − 1

2

p∑

j=1

(log σ2
j )

n∑

i=1

π
(m+1)
ij

−1

2

p∑

j=1

σ−2
j

n∑

i=1

π
(m+1)
ij (Xi − θj)

2 + pn(G).

In the M-step, we maximize Q(G,G(m)) with respect to G, and an explicit
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solution is often possible. For example, when we choose

pn(G) = −an



Sx

p∑

j=1

(σ−2
j ) +

p∑

j=1

log(σ2
j )



 (4.1)

with Sx being a function of the data, Q(G,G(m)) is maximized at G = G(m+1)

with 



π
(m+1)
j =

1

n

n∑

i=1

π
(m+1)
ij ,

θ
(m+1)
j =

∑n
i=1 π

(m+1)
ij Xi

∑n
i=1 π

(m+1)
ij

,

σ
2 (m+1)
j =

2anSx + S
(m+1)
j

∑n
i=1 π

(m+1)
ij + 2an

where

S
(m+1)
j =

n∑

i=1

π
(m+1)
ij (Xi − θ

(m+1)
j )2.

It is worth observing here that adding the penalty function (4.1) results in a soft

constraint on the scale parameters. From the update formula on σ2
j , we can easily

see that 2anSx/(n + 2an) ≤ σ
2(m)
j . We naturally choose the initial values of the

location parameters to be within the data range. In this case, it can be shown

that σ
2(m)
j ≤ (2anSx + n2)/(2an). At the same time, from a Bayesian point of

view, the penalty function (4.1) puts an Inverse Gamma distribution prior on σ2
j ,

where Sx is the mode of the prior distribution or a prior estimate of σ2
j , and a

large value of an implies a strong conviction on the prior estimate.

4.2 Simulation results for p = p0. When p = p0, it is meaningful to

investigate the bias and variance properties of individual parts of the PMLE.

To obtain the results in this section, we generated data from two- and three-

component normal mixture models. Two sample sizes, n = 100 and n = 300,

were chosen to examine the consistency. We computed the bias and standard

deviation of the PMLEs based on 5000 replicates.

The EM algorithm may miss the global maximum in general. In our simu-

lation, we used true values as initial values. The EM algorithm was terminated

when ‖λ(m) − λ(m+1)‖∞ < 5 × 10−6 where ‖v‖∞ denotes the maximal absolute
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value among the elements of the vector v. We found that the outcomes were

satisfactory.

A desirable property of statistical inference for location-scale models is in-

variance. In this context, given any two real numbers a and b with a 6= 0, we

desire that the PMLE G̃ based on Yi = aXi + b and the PMLE Ĝ based on

Xi, i = 1, . . . , n have the functional relationship G̃(aθ + b, aσ) = Ĝ(θ, σ). This is

true for the ordinary MLE in general but is not necessarily true for the PMLE

unless we choose our penalty function carefully. For illustration, from a large

number of possible penalty functions satisfying conditions C1–C3, we select two

penalty functions as follows:

P0 pn(G) = − 1
n

{
Sx

∑p
j=1(σ

−2
j ) +

∑p
j=1 log(σ2

j )
}

,

P1 pn(G) = −0.4
∑p

j=1(σ
−2
j + log σ2

j ).

Note that C3 is satisfied because when σ < 8/(nM), σ−2 ≈ n2. The quantity Sx

in P0 is chosen as the sample variance of the observations between two sample

quartiles, i.e., 25% and 75% in our simulations. Unlike P1, P0 is invariant under

location-scale transformations. The choice of the constant 0.4 in P1 is somewhat

arbitrary. A sensible choice should depend on n and the value of the true vari-

ances, but this is not possible as the true variances are unknown. Replacing the

true variances with a round estimate reduces it back to P0. In the case of P0,

the influence of the penalty is minor when the σj ’s are not close to 0. Yet it

effectively stops the irregularity. Replacing 1/n by 1/
√

n or 1 does not markedly

change our simulation results. We include P1 in the simulation to illustrate the

importance of the invariance property. For this reason, we computed the PMLEs

based on Yi = Xi/a, i = 1, . . . , n, a = 3.0, 5.0, 10.0.

In applications, it is a common practice to estimate G with a good local

maximum Ĝ of the likelihood function such that σ̂2
j 6= 0 for all j. Although there

are few theoretical guidelines for choosing among the local maxima, we can often

identify one that best fits the data by some standard. We regard as the MLE the

local maximum located by the EM algorithm with the true mixing distribution

as the initial value. When the EM algorithm leads to a local maximum with

σ̂2
j = 0 for some j, this outcome will be removed; the simulated bias and standard

deviation are based on outcomes where none of σ̂2
j = 0. The results provide a
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yardstick for the proposed PMLEs.

Example 1. We consider a two-component normal mixture model with G0 =

(π0, θ10, σ
2
10, θ20, σ

2
20) = (0.5, 0, 1, 3, 9). The density function of this model has

two modes.

The biases and standard deviations (in brackets) of the parameter estimators

are presented in Table 5.1. To make the comparison more sensible, we compute

the relative bias and standard deviation of σ̂2
j in terms of (σ̂2

j −σ2
j0)/σ

2
j0 instead of

σ̂2
j −σ2

j0. The rows marked P11, P12, P13 are the biases and standard deviations

of the PMLEs of P1 calculated based on transformed data with a = 3.0, 5.0, and

10.0 respectively. In addition, these values were transformed back to the original

scale for easy comparisons.

We note that P0 and P1 have similar performance to the MLE and therefore

are both very efficient. As expected, the PMLE of P1 is not invariant, and it

becomes poor as a increases. Hence, the invariance consideration is very impor-

tant in selecting appropriate penalty functions. When a decreases, though, the

performance of P1 does not deteriorate.

When the sample size increases, all biases and standard deviations decrease

reflecting the consistency of the PMLE. The PMLE based on P1 still suffers from

not being invariant but the effect is not as severe.

Probably due to the well separated kernel densities, and the use of the true

mixing distribution as initial values, the EM algorithm converged to a reasonable

local maximum in all cases in this example.

Table 1 about here

Example 2. In this example, we choose the two-component normal mixture model

with G0 = (π0, θ10, σ
2
10, θ20, σ

2
20) = (0.5, 0, 1, 1.5, 3). In contrast to the model used

in Example 1, the density function of this model has only one mode. The EM

algorithm may not be able to locate a reasonable local maximum. Otherwise,

the set up is the same as in Example 1. The simulation results are presented in

Table 5.2.

The EM algorithm converged to a local maximum with σ̂2
j = 0 in the case

of the ordinary MLE 46 out of 5000 times when n = 100, even though the true

parameter G0 was used as the initial value. This number decreases to 1 out of
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5000 when n = 300. We note that the biases and standard deviations decrease

when n increases. In general, the precisions of mixing proportion estimators are

not high due to the fact that the two mixing components are close, which is well

documented in Redner and Walker (1984). The performances of P11, P12, and

P13 are poor, which reaffirms the importance of invariance consideration.

Table 2 about here

Example 3. In this example, we consider a more complex three-component normal

mixture model with

G0 = (π10, θ10, σ
2
10, π20, θ20, σ

2
20, π30, θ30, σ

2
30)

= (0.2,−3.0, 1, 0.5, 0, 0.01, 0.3, 3, 0.5).

The simulation results are presented in Table 5.3. The performances of the

MLE and of the PMLE with P0 or P1 are satisfactory. We note again that the

invariance issue is important. Probably due to the well-separated component

densities, the EM algorithm converged in all cases.

We remark here that when the component densities are not well separated,

much larger sample sizes are needed to achieve precision similar to that in our

simulation.

Table 3 about here

4.3 Simulation results for p ≥ p0. In this subsection, we study the

properties of the PMLE when p ≥ p0, and p0 = 1, 2. We generated data from

N(0, 1) and 0.3N(0, 0.12) + 0.7N(2, 1) respectively. Three sample sizes, n =

100, n = 500, n = 2500, were used. In each case, we computed the MLE and

the PMLE for p = p0, p0 + 1, . . . , 5 with penalty function P0. The number of

replications was 500.

The EM algorithm was employed to locate the (local) maxima of the pln(G).

In the EM algorithm, we chose ten initial values; five were in the neighborhood

of the true parameter G0 and the other five were in the neighborhood of some

estimates of G0 without knowledge of p0. In many cases, the EM algorithm failed

to converge when computing the ordinary MLE. A failure was recorded whenever

one of the σ̂2
j , j = 1, ..., p became very large (greater than 1032) or very small

(less than 10−32). In all cases, the local maximum (non-degenerated) with the
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largest likelihood value was considered as the final estimate. The numbers of

failures (out of 500× 10) are given in Table 4. When n = 100, p0 = 1 with p = 2

and p = 5, we found two cases where the EM degenerated with all 10 initial

values. These were not included in our simulation results.

Table 4 about here

The distance defined in (3.4) is convenient for theoretical development, but

not sensible for measuring the discrepancy between the estimated mixing distri-

bution and the true mixing distribution. To improve the situation, we take a log-

transformation on σ2, and define H∗(Ĝ,G0) =
∫ ∫

[−10,10]×[−15,5] |Ĝ(λ)−G0(λ)|dλ

where λ = (θ, log σ2). This region of integration was chosen because all the

PMLEs of θ and log σ2 were within it. The averages of H∗(Ĝ,G0) are reported

in Table 5.

We first note that it is costly to estimate the mixing distribution with p = 2

when p0 = 1. The efficiency of the MLE and the PMLE when n = 2500 is not as

good as the MLE with p = 1 and n = 100. Nevertheless, the mean of H∗(Ĝ,G0)

apparently decreases when n increases in each case. At the same time, the rate

of decrease is mediocre which might be explained by the result in Chen (1995)

that the optimal convergence rate of Ĝ is at most n−1/4 when p > p0.

Table 5 about here

4.4 Real-data example. Liu, Umbach, Peddada, Li, Crockett and Wein-

berg (2004) analyzed microarray data of the levels of gene expression over time,

presented in Bozdech, Llinas, Pulliam, Wong, Zhu and DeRisi (2003). By employ-

ing a random period model, Liu, Umbach, Peddada, Li, Crockett and Weinberg

(2004) identified 2400 cycling transcripts from 3719 transcripts listed. There

is a strong indication that the periods can be modeled by a normal mixture

with p = 2. By applying a normal mixture model with equal variance, Liu and

Chen (2005) found that there is significant evidence for p = 2 against p = 1

and the best two-component equal-variance normal mixture model is given by

0.676N(38.2, 4.472) + 0.324N(53.2, 4.472 ). Figure 2 contains the histogram and

the density function of the fitted model.

Figure 5.2 about here.
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We can also answer the question of whether or not the equal-variance assump-

tion can be justified by testing the hypothesis H0 : σ1 = σ2 ↔ H1 : σ1 6= σ2.

We computed the PMLE with penalty P0 as given in Table 6.

Table 6 about here

It is straightforward that, under the null hypothesis, the penalized likelihood

ratio test statistic R = 2{supH1
pln(G)− supH0

pln(G)} converges in distribution

to χ2(1). Here R = 2(8236.3 − 8235.8) = 1.0 and P
(
χ2(1) > 1

)
= 0.317. There-

fore, we have no evidence against the equal-variance assumption.

5. Concluding Remarks. In this paper, we provide a rigorous proof of the

consistency of the penalized MLE both when the putative number of mixture

components p = p0 and when p > p0. The technique developed could be useful

in studying problems of a similar nature such as the consistency of the penalized

MLE under a mixture of distributions in location-scale families. The mixture of

multivariate normal model is another class of models of practical importance. Its

consistency problem remains unsolved, and we believe that further development

of our technique may solve this problem.

When p = p0 is known, consistency easily leads to the asymptotic normality

of the estimators (Ciuperca, Ridolfi and Idier, 2003). At the same time, the

chi-square limiting distribution conclusion for testing equal-component variances

is also an easy consequence. When p0 is unknown, the limiting distribution of Ĝ

is not well formulated because of the lack of the corresponding true component

parameters in G0.
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Table 5.1: Simulation Results for Example 1: Bias and Standard Deviation

π(= 0.5) θ1(= 0) θ2(= 3) σ2
1(= 1) σ2

2(= 9)

n=100

MLE 0.052(0.13) 0.038(0.27) 0.519(1.05) 0.126(0.58) -0.147(0.32)

P0 0.053(0.13) 0.038(0.27) 0.521(1.05) 0.127(0.58) -0.148(0.32)

P1 0.061(0.13) 0.045(0.24) 0.589(1.09) 0.155(0.60) -0.179(0.32)

P11 0.116(0.11) 0.107(0.26) 0.917(1.00) 0.536(0.54) -0.193(0.32)

P12 0.167(0.08) 0.184(0.35) 1.188(0.82) 1.072(0.65) -0.159(0.32)

P13 0.333(0.15) 0.865(0.56) 1.488(1.07) 5.361(10.7) 2.892(3.97)

n=300

MLE 0.015(0.07) 0.006(0.12) 0.145(0.53) 0.027(0.27) -0.042(0.16)

P0 0.015(0.07) 0.006(0.12) 0.145(0.53) 0.027(0.27) -0.042(0.16)

P1 0.016(0.07) 0.005(0.12) 0.156(0.54) 0.030(0.27) -0.050(0.16)

P11 0.042(0.07) 0.030(0.12) 0.301(0.56) 0.189(0.26) -0.057(0.18)

P12 0.079(0.06) 0.074(0.13) 0.534(0.57) 0.446(0.26) -0.070(0.19)

P13 0.158(0.05) 0.242(0.14) 0.951(0.47) 1.374(0.36) -0.011(0.18)

Table 5.2: Simulation Results for Example 2: Bias and Standard Deviation

π(= 0.5) θ1(= 0) θ2(= 1.5) σ2
1(= 1) σ2

2(= 3)

n=100

MLE 0.147(0.24) 0.089(0.40) 0.987(1.25) 0.080(0.56) -0.352(0.44)

P0 0.147(0.24) 0.088(0.40) 0.990(1.25) 0.079(0.56) -0.354(0.44)

P1 0.173(0.22) 0.105(0.38) 1.108(1.22) 0.116(0.50) -0.397(0.40)

P11 0.229(0.17) 0.236(0.33) 0.716(0.73) 0.651(1.15) 0.161(0.57)

P12 0.395(0.19) 0.571(0.31) 0.705(0.77) 1.887(3.72) 4.007(3.21)

P13 0.457(0.20) 0.722(0.29) 0.482(1.06) 6.340(19.3) 30.34(7.26)

n=300

MLE 0.095(0.20) 0.067(0.23) 0.547(0.87) 0.047(0.38) -0.192(0.32)

P0 0.095(0.20) 0.067(0.23) 0.548(0.87) 0.047(0.38) -0.193(0.32)

P1 0.110(0.19) 0.077(0.22) 0.615(0.89) 0.070(0.36) -0.218(0.31)

P11 0.163(0.11) 0.129(0.17) 0.566(0.53) 0.264(0.25) -0.092(0.25)

P12 0.236(0.11) 0.280(0.20) 0.573(0.36) 0.623(1.09) 0.358(1.10)

P13 0.474(0.14) 0.706(0.25) 1.214(1.05) 3.495(12.8) 27.21(10.7)
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Table 5.3: Simulation Results for Example 3: Bias and Standard Deviation

n=100 n=300

π1(= 0.2) π2(= 0.5) π3(= 0.3) π1(= 0.2) π2(= 0.5) π3(= 0.3)

MLE 0.000(0.04) 0.001(0.05) -0.001(0.05) 0.000(0.02) 0.000(0.03) 0.000(0.03)

P0 0.000(0.04) 0.001(0.05) -0.001(0.05) 0.000(0.02) 0.000(0.03) 0.000(0.03)

P1 -0.002(0.04) 0.002(0.05) -0.001(0.05) -0.001(0.02) 0.001(0.03) 0.000(0.03)

P11 -0.005(0.04) 0.006(0.05) -0.001(0.05) -0.002(0.02) 0.002(0.03) -0.001(0.03)

P12 -0.004(0.06) -0.001(0.08) 0.005(0.09) -0.002(0.02) 0.003(0.03) -0.001(0.03)

P13 -0.162(0.19) -0.500(0.00) 0.662(0.19) -0.146(0.09) -0.367(0.22) 0.512(0.31)

θ1(= −3) θ2(= 0) θ3(= 3) θ1(= −3) θ2(= 0) θ3(= 3)

MLE 0.005(0.25) 0.000(0.01) 0.001(0.13) -0.004(0.13) 0.000(0.01) 0.000(0.08)

P0 0.004(0.25) 0.000(0.01) 0.001(0.13) -0.004(0.13) 0.000(0.01) 0.000(0.08)

P1 -0.016(0.24) -0.001(0.02) 0.001(0.13) -0.012(0.13) 0.000(0.01) 0.001(0.08)

P11 -0.042(0.24) -0.007(0.02) 0.005(0.13) -0.027(0.13) -0.002(0.01) 0.002(0.08)

P12 0.129(0.46) -0.028(0.08) -0.065(0.37) -2.043(0.21) -0.003(0.01) 2.010(0.13)

P13 2.704(0.38) -0.292(0.39) -2.696(0.21) 1.970(1.01) -0.338(0.32) -2.016(1.16)

σ2
1(= 1) σ2

2(= 0.01) σ2
3(= 0.5) σ2

1(= 1) σ2
2(= 0.01) σ2

3(= 0.5)

MLE -0.022(0.41) -0.018(0.21) -0.044(0.26) -0.010(0.20) -0.007(0.12) -0.013(0.15)

P0 -0.025(0.41) 0.000(0.21) -0.044(0.26) -0.011(0.20) -0.005(0.12) -0.013(0.15)

P1 -0.067(0.34) 1.600(0.30) -0.017(0.25) -0.030(0.19) 0.534(0.13) -0.006(0.15)

P11 0.242(0.31) 15.33(2.11) 0.403(0.26) 0.052(0.18) 4.935(0.36) 0.130(0.15)

P12 1.719(2.72) 94.78(325.) 1.727(2.35) 1.938(0.50) 15.46(1.01) 2.129(0.39)

P13 95.36(18.2) ≈ 104(0.01) 17.22(36.4) 73.34(42.6) > 103(> 103) 7.530(6.12)

Table 5.4: Number of Degeneracies of EM Algorithm When Computing Ordinary MLE

p0 = 1 p0 = 2

n 100 500 2500 100 500 2500

p=2 20 0 0 0 0 0

p=3 209 9 1 16 0 0

p=4 355 33 1 55 0 0

p=5 735 138 23 126 5 0
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Table 5.5: Average H∗(Ĝ, G0) When p ≥ p0

MLE PMLE

n 100 500 2500 100 500 2500

p0 = 1

p=1 1.528 0.674 0.305

p=2 7.331 4.832 2.657 7.348 4.833 2.657

p=3 12.436 8.478 6.409 12.409 8.484 6.404

p=4 17.392 11.546 8.641 17.652 11.514 8.639

p=5 21.360 13.593 9.204 21.243 13.242 9.140

p0 = 2

p=2 4.135 1.853 0.851 4.098 1.851 0.851

p=3 8.085 4.658 2.406 8.105 4.856 2.442

p=4 11.601 7.857 4.079 11.690 7.913 4.079

p=5 14.671 11.042 6.673 14.775 11.085 6.732

Table 5.6: Parameter Estimates for the Real-Data Example

method θ1 θ2 σ2

1
σ2

2
π pln(Ĝ)

MLE 38.123 53.057 19.412 21.261 0.676 -8235.8

P0 38.123 53.057 19.412 21.260 0.676 -8235.8

σ2

1
= σ2

2
38.200 53.200 19.981 19.981 0.676 -8236.3
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Figure 5.1: Partition of Parameter Space Γ
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Figure 5.2: The Histogram and Fitted Models of the Real-Data Example


