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Chapter 1

Some basics

1.1 Discipline of Statistics

Statistics is a discipline that serves other scientific disciplines. Statistics is

itself may not considered by many as a branch of science. A scientific disci-

pline constantly develops theories to describe how the nature works. These

theories are falsified whenever their prediction contradicts the observations.

Based on these theories and hypotheses, scientists form a model for the nat-

ural world and the model is then utilized to predict what happens to the

nature under new circumstances. Scientific experiments are constantly de-

signed find evidences that may contradict the prediction of the proposed

model and aim at DISPROVING hypotheses behind the model/theory. If

a theory is able to make useful predictions and we fail to find contradicting

evidences, it gains broad acceptance. We may then temporarily consider it

as “the truth”. Even if a model/theory does not give a perfect prediction,

but a prediction precise enough for practical purposes and it is much simpler

than a more precise model/theory, we tend to retain it as a working model. I

regard, for example, Newton’s laws as such an example as compared to more

elaborating Einstein’s relativity.

If a theory does not provide any prediction that can potentially be dis-

proved by some experiments, then it is not a scientific theory. Religious

theories form a rich group of such examples.

Statistics in a way is a branch of mathematics. It does not model our
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2 CHAPTER 1. SOME BASICS

nature. For example, it does not claim that when a fair die is rolled, the

probability of observing 1 is 1/6. Rather, for example, it claims that if the

probability of observing 1 is 1/6, and if the outcomes of two dice are indepen-

dent, then the probability of observing (1, 1) is 1/36, and the probability of

observing either (1, 2) and (2, 1) is 2/36. If one applies a similar model to the

spacial distribution of two electrons, the experimental outcomes may contra-

dict the prediction of this probability model, yet the contradiction does not

imply that the statistic theory is wrong. Rather, it implies that the statistical

model does not apply to the distribution of the electrons. The moral of this

example is, a statistical theory cannot be disproved by physical experiments.

Its theories are of logical truth, and this makes it unqualified as a scientific

discipline in the sense we mentioned earlier.

We should make a distinction of the inconsistency between a probability

model and the real world, and the inconsistency within our logical deriva-

tions. If we err at proving a proposition, that proposition is very likely false

within our logical system. It does not disprove the logical system. We call

logically proved propositions as theorems. In comparison, the propositions

regarded as temporary truth in science are named as laws. Of course, we

sometimes abuse these terminologies such as “Law of Large Numbers”.

In a scientific investigation, one may not always be able to find clear-cut

evidence against a hypothesis. For instance, genetic theory indicates that

tall fathers have tall sons in general. Yet there are many factors behind the

height of the son. Suppose we collect 1000 father-son pairs randomly from a

human population. Let us measure their heights as (xi, yi), i = 1, 2, . . . , 1000.

A regression model in the form of

yi = a+ bxi + εi

with some regression coefficient (a, b) and random error ε, can be a useful

summary of the data.

If the statistical analysis of the data supports the model with some b > 0,

then the genetic theory survives the attack. If we have a strong evidence to

suggest b is not very different from 0, or it may even be negative, then the

genetic theory has to be abandoned. In this case, the genetic theory is not

disproved by statistics, but by physical experiments (data collected on father-

son heights) assisted by the statistical analysis. Whatever the outcome of
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the statistical analysis is, the statistic theory is not falsified. It is the genetic

theory that is being tortured.

1.2 Probability and Statistics models

In scientific investigations, we often quantify the outcomes of an experiment

in order to develop a useful model for the real world. An existing scientific

theory can often give a precise prediction: the water boils at 100 degrees

Celsius at the sea level on the Earth. In other cases, precise prediction

is nearly impossible. For example, scientists still cannot predict when and

where the next serious earthquake will be. There used to be beliefs that a

yet to be discovered perfect scientific model exists which can explain away all

randomness. In terms of earthquakes, it might be possible to have a precise

prediction if we know the exact tensions between the geographic structures

all around the world, the amount of heat being generated at the core of the

earth, the positions of all heavenly bodies and a lot more.

In other words, the claim is that we study randomness only because we

are incompetent in science or because a perfect model is too complicated to

be practically useful. This is now believed not the case. The uncertainty

principle in quantum theory indicates that the randomness might be more

fundamental than many of us are willing to accept. It strongly justifies the

study of statistics as an “academic discipline”.

A probability space is generally denoted as (Ω,B, P ). We call Ω the sam-

ple space, which is linked to all possible outcomes of an experiment under

consideration. The notion of experiment becomes rough when the real world

problem becomes complex. It is better off to take the mathematical conven-

tion to simply assume its existence. B is a σ-algebra. Mathematically, it

stands for a collection of subsets of Ω with some desirable properties. We

require that it is possible to assign a probability to each subset of Ω that is a

member of B without violating some desired rules. How large a probability

is assigned to a particular member of B is a rule denoted by P .

A random variable (vector) X is a measurable function on Ω. It takes

values on Rn if X has length n. It induces a probability space (Rn,B, F )

where F is its distribution. In statistics, we consider problems of inferring
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about F within a set of distributions pre-specified. This set of distributions

is called statistical model, and it is presented as a probability distribution

family F sometime with additional structures. If vector X has n components

and they are independent and identically distributed (i.i.d. ), we use F for

individual distribution, not for the joint distribution. This convention will be

clear when we work with specific problems. In this case, we call it population

F defined on (R,B). Components of X are samples from population F .

When the individual probability distributions in F is conveniently la-

belled by a subset of Rd, the Euclid space of dimension d, we say that F is

a parametric distribution family. The label is often denoted as θ, and its all

possible values Θ is called parameter space. In applications, we usually only

consider parametric models whose probability distributions have a density

function with respect to a common σ-finite measure. In such situations, we

write

F = {f(x; θ) : θ ∈ Θ}.

The σ-finite measure is usually the Lebesgue which makes f(x; θ) the com-

monly referred density functions. When the σ-finite measure is the counting

measure, the density functions are known as probability mass function.

If F is not parameterized, we have a non-parametric model.

Probability theory and statistics Probability theory studies the prop-

erties of stochastic systems. For instance, the convergence property of the

empirical distribution based on an i.i.d. sample. Statistical theory aims at

inferring about the stochastic system based on (often) an i.i.d. sample from

this system. For instance, does the system (population) appear to be a mix-

ture of two more homogeneous subpopulations? Probability theory is the

foundation of statistical inference.

Given an inference goal, statisticians may propose many possible ap-

proaches. Some approaches may deem inferior and dismissed over the time.

Most approaches have merits that are not completely shadowed by other

approaches. Some statistical techniques used as standard methods in other

disciplines yet most statisticians never heard of. As a statistician, I hope to

have the knowledge to understand these approaches, not to have the knowl-

edge of all statistical approaches.
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1.3 Statistical inference

Let X = (X1, X2, . . . , Xn) be a random sample from a statistical model F .

That is, we assume that they are independent and identically distributed

with a distribution which is a member of F . Let their realized values be

x = (x1, x2, . . . , xn). A statistical inference is to infer about the specific

member F of F based on the realized value x. If we take a single guess of

F , the result is a point estimate; If we provide a collection of possible F , the

result is an interval estimate (usually); If we make a judgement on whether

a single or a subset of F contains the “true” distribution, the procedure is

called hypothesis test. In general, in the last case, we are required to quantify

the strength of the evidence based on which the judgement is made. If we

partition the space of F into several submodels and infer which submodel

F belongs, the procedure is called model selection. In general, for model

selection, we do not quantify the evidence favouring the specific submodel.

This is the difference between “hypothesis test” and “model selection”.

Another general category of statistical inference is based on Bayesian

paradigm. The Baysian approach does not identify any F or any set of F .

Instead, it provides a probabilistic judgement on every member of subset of

F . The probabilistic judgement is obtained via conditional distribution by

placing a prior distribution on F and conditional on observations in the form

of X = x. We call it posterior distribution. The final decision will be made

based on consideration such as minimizing expected lost.

Definition 1.1. A statistic is a function of data which does not depend on

any unknown parameters.

The sample mean x̄n = n−1(x1 + x2 + · · · + xn) is a statistic. However,

x̄n−E(X1) is in general not a statistic because it is a function of both data,

x̄n, and the usually unknown value, E(X1). The value of E(X1) often depends

on parameter θ behind F .

Let T (x) be a statistic. We may also regard T (x) as the realized value of

T when the realized value of X is x. We may regard T = T (X) as a quantity

to be “realized”. Since X is random, the outcome of T is also random.

The distribution of T (X) is called its sample distribution. Unfortunately,

it is often hard to be completely consistent when we deal with T (X) and
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T (x). We may have to read between lines to tell which one of the two is

under discussion. Since the distribution of X is usually only known up to

being a member of F which is often labeled by a parameter θ, the (sample)

distribution of T is also only known up to the unknown parameter θ.

Definition 1.2. Let T (x) be a statistic. If the conditional distribution of

X given T does not depend on unknown parameter values, we say T is a

sufficient statistics.

When T is sufficient, all information contained in X about θ is contained

in T . In this case, one may choose to ignore X but work only on T without

loss of any efficiency. Such a simplification is most helpful if T is much

simpler than X or it is a substantial reduction of X.

Directly verifying the sufficiency of a statistic is often difficult. We gen-

erally use factorization theorem to identify sufficient statistics. If the density

function of X can be written as

f(x; θ) = h(x)g(T (x); θ)

for some function h(·) and g(·; ·), then T (x) is sufficient for θ.

In some situations, direct verification is not too complex. For example,

if X1, X2 are independent Poisson distributed with mean parameter θ. Then

the conditional distribution of X1, X2 given T = X1 + X2 are binomial (T ,

1/2) which is free from the unknown parameter θ. Hence, T is sufficient for

θ.

Definition 1.3. Sufficient statistic T (x) is minimum sufficient if T is the

function of every other sufficient statistic.

A minimum sufficient statistic may still contain some redundancy. If a

statistic has the property that none of its non-zero function can have identi-

cally 0 expectation, this statistic is called complete. When the requirement

is reduced to included only “bounded functions”, then T is called bounded-

complete. We have a few more such notions.

Definition 1.4. Sufficient statistic T (x) is complete if E(g(T )) = 0 under

every F ∈ F implies g(·) ≡ 0 almost surely.
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In contrast, if the distribution of T does not depend on θ or equivalently

on the specific distribution of X, we say that T is an ancillary statistic.

Definition 1.5. If the distribution of the statistic T (x) does not depend on

any parameter values, it is an ancillary statistic.

Example: Suppose X = (X1, . . . , Xn) is a random sample from N(θ, 1)

with θ ∈ R. Recall that T = X̄ is a complete and sufficient statistic of θ.

At the same time, X − T = (X1 − X̄, . . . , Xn − X̄) is an ancillary statistic.

It does not contain any information about the value of θ. However, it is not

completely useless. Under the normality assumption, X − T is multivariate

normal. We can study the realized value of X−T to see whether it looks like

a realized value from a multivariate normal. If the conclusion is negative, the

normality assumption is in serious question. If the validity of a statistical

inference heavily depends on normality, such a diagnostic procedure is very

important.

Remark: In this example the probability model F is all normal distribu-

tions with mean θ and known variance σ2 = 1. Notationally, F = {N(θ, 1) :

θ ∈ R}.

Definition 1.6. If T is a function of both data X and the parameter θ, but

its distribution is not a function of θ, we call T a pivotal quantity.

In the last example, S = X̄ − θ is a pivotal quantity. Note that this

claim is made under the assumption that θ is the “true” parameter value of

the distribution of X, it is not a dummy variable. This is another common

practice in statistical literature: if not declared, notation θ is used both as

a dummy variable and the “true” value of the distribution of the random

sample X. This notion also applies to Bayes methods, θ is often regarded as

a realized value from its prior distribution, and X is then a sample from the

distribution labeled by this “true” value of θ.

Note that the parameter θ is a label of F that belongs to F in parametric

models. It may as well be regarded as a function of F , call it functional if

you please. Any function of F can be regarded as a parameter by the same

token. For example, the median of F is a parameter. This works even if F
is a popularly used parametric distribution family such as Poisson.
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Chapter 2

Normal distributions

Let X be a random variable. Namely, it is a function on a probability

space (Ω,B, P ). It randomness is inherited from probability measure P . By

definition of random variable,

{X ≤ t} = {ω : ω ∈ Ω, X(ω) ≤ t}

is a member of B for any real value t. Hence, there is a definitive value

Fx(t) = P ({X ≤ t})

for any t ∈ F . We refer Fx(t) as the cumulative distribution function (c.d.f.

) of X. Often, we omit the subscript and write it as F (t). Note t itself is

a dummy variable so it does not carry any specific meaning other than it

stands for a real number. In most practices, we use F (x) for the c.d.f. of X.

This can lead to confusion: Once F (x) is used as c.d.f. of X, F (y) remains

the c.d.f. of X, not necessarily that of another random variable called Y .

The c.d.f. of a random variable largely determines it randomness prop-

erties. This is the basis of forming distribution families: distributions whose

c.d.f. having a specific algebraic form. Of course, there are often physical

causes behind the algebraic form. For instance, success-failure experiment is

behind the binomial distribution family.

Uni- and Multi-variate normal distribution families occupy a special space

in the classical mathematical statistics. We provide a quick review as follows.

9
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2.1 Uni- and Multivariate normal

A random variable has standard normal distribution if its density function

is given by

φ(x) =
1√
2π

exp(−1

2
x2).

We generally use

Φ(x) =

∫ x

−∞
φ(t)dt

to denote the corresponding c.d.f. . If X has probability density function

φ(x;µ, σ) = σ−1φ(
x− µ
σ

) =
1√
2πσ

exp(− 1

2σ2
x2)

then it has normal distribution with mean µ and variance σ2. We use

Φ(x;µ, σ) to denote the corresponding c.d.f.

If Z has standard normal distribution, then X = σZ + µ has normal

distribution with parameters (µ, σ2) which represent mean and variance. The

moment generating function of X is given by

Mx(t) = exp(µt+
1

2
σ2t2)

which exists for all t ∈ R. The moment of the standard normal Z are:

E(Z) = 0, E(Z2) = 1, E(Z3) = 0 and E(Z4) = 3.

Why is the normal distribution normal? The central limit theorem

tells us that if X1, X2, . . . , Xn, . . . is a sequence of i.i.d. random variables with

E(X) = 0 and var(X) = 1, then

P (n−1/2

n∑
i=1

Xi ≤ x)→
∫ x

−∞
φ(t)dt

for all x, where φ(t) is the density function of the standard normal distribu-

tion (normal with mean 0 and variance 1).

Recall that many distributions we investigated can be viewed as distribu-

tions of sum of i.i.d. random variables, hence, when properly scaled as in the

central limit theorem, their distributions are well approximated by normal.

These examples include: binomial, Poisson, Negative binomial, Gamma.
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In general, if the outcome of a random quantity is influenced by numerous

factors and none of them play a determining role, then the sum of their effects

is normally distributed. This reasoning is used to support the normality

assumption on our “height” distribution, even though none of us ever had a

negative height.

Multivariate normal. Let the vector Z = {Z1, Z2, . . . , Zd}′ consist of in-

dependent, standard normally distributed components. Their joint density

function is given by

f(z) = {2π}−d/2 exp{−1

2
zτz} = {2π}−d/2 exp{−1

2

d∑
j=1

z2
i }.

Easily, we have E(Z) = 0 and var(Z) = Id, the identity matrix. The moment

generating function of Z (joint one) is given by

Mz(t) = exp{1

2
tτt}

which is in vector form.

Let B be a matrix of size m× d and µ be a vector of length m. Then

X = BZ + µ

is multivariate normally distributed with

E(X) = µ, var(X) = BBτ .

We will use notation Σ = BBτ . It is seen that if X is multivariate nor-

mally distributed, N(µ,Σ), then its linear function, Y = AX + b is also

multivariate normally distributed: N(Aµ + b,AΣAτ ).

Note this claim does not require Σ nor A to have full rank. It also implies

all marginal distributions of a multivariate normal random vector is normally

distributed. The inverse is not completely true: if all marginal distributions

of a random vector are normal, the random vector does not necessarily have

multivariate normal distribution. However, if all linear combinations of X

has normal distribution, then the random vector X has multivariate normal

distribution.
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When Σ has full rank, then N(µ,Σ) has a density function given by

φ(x;µ,Σ) = (2π)−d/2{det(Σ)}−1/2 exp{−1

2
(x− µ)τΣ−1(x− µ)}

where det(·) is the determinant of a matrix. We use Φ(x;µ,Σ) for the

multivariate c.d.f. .

Partition of X. Assume that a multivariate normal random vector is parti-

tioned into two parts: Xτ = (Xτ
1,X

τ
2). The mean vector, covariance matrix

can be partitioned accordingly. In particular, we denote the partition of the

mean vector as µτ = (µτ
1,µ

τ
2) and the covariance matrix as

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.

Theorem 2.1. Suppose Xτ = (Xτ
1,X

τ
2) is multivariate normal, N(µ,Σ).

Then

(1) X1 is multivariate N(µ1,Σ11).

(2) X1 and X2 are independent if and only if Σ12 = 0.

(3) Assume Σ22 has full rank. Then the conditional distribution of X1|X2

is normal with conditional mean µ1 + Σ12Σ
−1
22 (X2−µ2) and variance matrix

Σ11 −Σ12Σ
−1
22 Σ21.

That is, for multivariate normal random variables, zero-correlation is

equivalent to independence. The above result for conditional distribution

is given when Σ22 has full rank. The situation where Σ22 does not have full

rank can be worked out by removing the redundancy in X2 before applying

the above result.

2.2 Standard Chi-square distribution

We first fix the idea with a definition.

Definition 2.1. Let Z1, Z2, . . . , Zd be a set of i.i.d. standard normally dis-

tributed random variables. The sum of squares

T = Z2
1 + Z2

2 + · · ·+ Z2
d

is said to have chi-square distribution with d degrees of freedom.
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For convenience of future discussion, we first put down a simple result

without a proof here.

Theorem 2.2. Let Z1, Z2, . . . , Zd be a set of i.i.d. standard normally dis-

tributed random variables. The sum of squares

T = a1Z
2
1 + a2Z

2
2 + · · ·+ adZ

2
d

has chi-square distribution if and only if a1, . . . , ad are either 0 or 1.

We use notation χ2
d as a symbol of the chi-square distribution with d

degrees of freedom. The above definition is how we understand the chi-

square distribution. Yet without seeing its probability density function and

so on, we may only have superficial understanding

To obtain the density function of T , we may work on the density function

of Z2
1 first. It is seen that

P (Z2
1 ≤ x) = P (−

√
x ≤ Z1 ≤

√
x). =

∫ √x
−
√
x

φ(t)dt

Hence, by taking derivative with respect to x, we get its pdf as

fZ2
1
(x) =

1

2
√
π

(x
2

)1/2−1

exp(−x
2

).

This is the density function of a specific Gamma distribution with 1/2 degrees

of freedom and scale parameter 2. Because of this and from the property of

Gamma distribution, we conclude that T has Gamma distribution with d/2

degrees of freedom, and scale parameter 2. Its p.d.f. is given by

fT (x) =
1

2Γ(d/2)

(x
2

)d/2−1

exp(−x
2

).

Its moment generating function can also be obtained easily:

MT (t) =

(
1

1− 2t

)d/2
.

Note that this function is defined only for t < 1/2. The mean of T is d, and

its variance is 2d.
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Clearly, if X is N(µ,Σ) of length d and that Σ has full rank, then W =

(X−µ)τΣ−1(X−µ) has chi-square distribution with d degrees of freedom.

The cumulative distribution function of standard chi-square distribution with

(virtually) any degrees of freedom has been well investigated. There used to

be detailed numerical tables for their quantiles and so on. We have easy-to-

use R functions these days. Hence, whenever a statistic is found to have a

chi-square distribution, we consider its distribution is known.

If A is a symmetric matrix such that AA = A, we say that it is idem-

potent. In this case, the distribution of ZτAZ is chisquare distribution with

degrees of freedom equaling the trace of A when Z is N(0, I).

2.3 Non-central chi-square distribution

We again first fix the idea with a definition.

Definition 2.2. Let Z1, Z2, . . . , Zd be a set of i.i.d. standard normally dis-

tributed random variables. The sum of squares

T = (Z1 + γ)2 + Z2
2 + · · ·+ Z2

d

is said to have non-central chi-square distribution with d degrees of freedom

and non-centrality parameter γ2.

Let

T ′ = (Z1 − γ)2 + Z2
2 + · · ·+ Z2

d

with the same γ as in the definition. The distribution of T ′ is the same as

the distribution of T . This can be proved as follows. Let W1 = −Z1 and

Wj = Zj for j = 2, . . . , d. Clearly,

T ′ = (W1 + γ)2 +W 2
2 + · · ·+W 2

d

and W1,W2, . . . ,Wd remain i.i.d. standard normally distributed. Hence, T

and T ′ must have the same distribution. However, T 6= T ′ when they are

regarded as random variables on the same probability space.
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The second remark is about the stochastic order of two distributions.

Without loss of generality, γ > 0. When d = 1, and for any x > 0, we find

P{(Z1 + γ)2 ≥ x2} = 1− Φ(x− γ) + Φ(−x− γ).

Taking derivative with respect to γ, we get

φ(x− γ)− φ(−x− γ) = φ(x− γ)− φ(x+ γ) > 0.

That is, the above probability increases with γ over the range of γ > 0. That

is, (Z1 + γ)2 is always more likely to take larger values than Z2
1 does.

For convenience, let χ2
d and χ2

d(γ
2) be two random variables with respec-

tively central and non-central chi-square distributions with the same degrees

of freedom d. We can show that for any x,

P{χ2
d(γ

2) ≥ x2} ≥ P{χ2
d ≥ x2}.

This proof of this result will be left as an exercise.

In data analysis, a statistic or random quantity T often has central

chisquare distribution under one model assumption, say A, but non-central

chisquare distribution under another model assumption, say B. Which model

assumption is better supported by the data? Due to the above result, a large

observed value of T is supportive of B while a small observed value of T

is supportive of A. This provides a basis for hypothesis test. We set up

a threshold value for T so that we accept B when the observed value of T

exceeds this value.

Let X be multivariate normal N(µ, Id). Then XτX has non-central

chisquare distribution with non-centrality parameter µτµ. This can be proved

as follow. Without loss of generality, assume µ 6= 0. Let A be an orthogonal

matrix so that its first row equals µ/‖µ‖. Let

Y = AX.

Write Yτ = (Y1, Y2, . . . , Yd). Then Y ′1 = Y1−‖µ‖, Y2, . . . , Yd are i.i.d. standard

normal random variables. Hence,

XτX = YτY = (Y ′1 + ‖µ‖)2 + Y 2
2 + · · ·+ Y 2

d
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has non-central chi-square distribution with non-centrality parameter µτµ.

As an exercise, please show that if X is multivariate normal N(µ,Σ),

then

Q = XΣ−1X

has non-central chi-square distribution with non-centrality parameter γ2 =

µτΣ−1µ.

It can be verified that

E(Q) = d+ γ2; var(Q) = 2(d+ 2γ2).

When Σ = σ2Id, then XτX has non-central chi-square distribution with

d degrees of freedom and non-centrality parameter γ2 = ‖µ‖2.

Suppose W1 and W2 are two independent non-central chi-square dis-

tributed random variables with d1 and d2 degrees of freedome, and non-

centrality parameters γ2
1 and γ2

2 . Then W1 + W2 is also non-central chi-

square distributed and its degree of freedom is d1 + d2 and non-centrality

parameters γ2
1 + γ2

2 .

2.4 Cochran Theorem

We first look into a simple case.

Theorem 2.3. Suppose X is N(0, Id) and that

XτX = XτAX + XτBX = QA + QB

such that both A and B are symmetric with ranks a and b respectively.

If a + b = d, then QA and QB are independent and have χ2
a and χ2

b

distributions.

Proof: By standard linear algebra result, there exists an orthogonal matrix

R and diagonal matrix Λ such that

A = RτΛR.

This implies

B = Id −A = Rτ (Id −Λ)R
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in which (Id −Λ) is also diagonal.

The rank of A equals the number of non-zero entries of Λ and that of

B is the number of entries of Λ not equalling 1. Since a + b = d, this

necessitates all entries of Λ are either 0 or 1. Without loss of generality,

Λ = diag(1, · · · , 1, 0, . . . , 0).

Note that orthogonal transformation Y = RX makes entries of Y i.i.d. standard

normal. Therefore,

QA = YτΛY = Y 2
1 + · · ·+ Y 2

a

which has χ2
a distribution. Similarly,

QB = Yτ (Id −Λ)Y = Y 2
a+1 + · · ·+ Y 2

d

which has χ2
b distribution. In addition, they are quadratic forms of different

segments of Y. Therefore, they are independent.

Remark: Since XτAX = XτAτX, we have QA = Xτ{(A + Aτ )/2}X in

which {(A+Aτ )/2} is symmetric. Hence, we do not loss much generality by

assuming both A and B are symmetric. The result does not hold without

symmetry assumption though I cannot find references: Try

A =

[
1 −1

0 0

]
, B =

[
0 1

0 1

]
.

Under symmetry assumption, take it as a simple exercise to show that if

XτX = XτA1X + · · ·+ XτBpX =

p∑
j=1

Qj

such that

rank(A1) + · · ·+ rank(Ap) = d

then Qj’s are independent, each has chisquare distribution of degrees rank(Aj).

2.5 F- and t-distributions

If X and Y have chisquare distributions with degrees of freedom m and n

respectively, then the distribution of

F =
X/m

Y/n
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is called F with m and n degrees of freedom. Note that

X/(X + Y ) = (1 + Y/X)−1

has Beta distribution. Thus, there is a very simple relationship between the

F -distribution and the Beta distribution.

t-distribution. If X has standard normal distribution, and S2 has chisquare

distribution with n degrees of freedom. Further, when X and S2 are inde-

pendent,

t =
X√
S2/n

has t-distribution with n degrees of freedom.

When n = 1, this distribution reduces to the famous Cauchy distribution,

none of its moments exist.

When n is large, S2/n converges to 1. Thus, the t-distribution is not very

different from the standard normal distribution. A general consensus is that

when n ≥ 20, it is good enough to regard t-distribution with n degrees of

freedom as the standard normal in statistical inferences.

2.6 Examples

In this section, we give a few commonly used distributional results in mathe-

matical statistics. Two examples are generally referred to as one-sample and

two-sample problems.

Example 2.1. Consider the normal location-scale model in which for i =

1, . . . , n, we have

Yi = µ+ σεi

such that ε1, . . . , εn are i.i.d. N(0, 1). Let Y be the corresponding Y vector

which is multivariate normal with mean

µτ = (1, 1, . . . , 1) = µ1τ

and identity covariance matrix I. Similarly, we use ε for the vector of ε.
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The sample variance can be written as

s2
n = (n− 1)−1Yτ (I− n−111τ )Yτ

= (n− 1)−1σ2ετ (I− n−111τ )ε.

The key matrix (I − n−111τ ) is idempotent. Hence, other than factor (n −
1)−1σ2, the sample variance has chisquare distribution with n− 1 degrees of

freedom.

In addition, the sample mean Ȳn = n−11τY is uncorrelated to (I −
n−111τ )Yτ . Hence, they are independent. This further implies that the sam-

ple mean and sample variance are independent.

Example 2.2. Consider the classical two-sample problem in which we have

two i.i.d. samples from normal distribution: Xτ = (X1, X2, . . . , Xm) are

i.i.d. N(µ1, σ
2) and Yτ = (Y1, Y2, . . . , Yn) are i.i.d. N(µ2, σ

2). We are of-

ten interested in examining the possibility whether µ1 = µ2.

Let X̄m and Ȳn be two sample means. It is seen that

RSS0 =
mn

m+ n
{X̄m − Ȳn}2

is a quadratic form that represents the variation between two samples. At the

same time,

RSS1 =
m∑
i=1

{Xi − X̄m}2 +
n∑
j=1

{Yj − Ȳn}2

is a quadratic form that represents the internal variations within two popu-

lations. It is natural to compare the relative size of RSS0 against RRS1 to

decide whether two means are significantly different. For this purpose, it is

useful to know their sample distributions and independence relationship.

It is easy to directly verify that RSS0 and RRS1 are independent and both

have chisquare distributions. We may also find

XτX + YτY = RSS0 + RSS1 + (m+ n)−1(Xτ1m + Yτ1n)(1τmX + 1τnY)

The ranks of three quadratic forms on the right hand side are 1, m + n − 2

and 1 which sum to n. The decomposition remains the same when we replace

X by (X− µ)/σ and Y by (Y− µ)/σ. Hence when µ1 = µ2 = µ and σ = 1,
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RSS0 and RRS1 independent and chisquare distributed by Cochran Theorem

(after scaled by σ2).

This further implies that

F =
RSS0

RSS1/(m+ n− 2)

has F-distribution with degrees of freedom 1 and m+ n− 2.

The F-distribution conclusion is the basis for the analysis of variance,

two-sample t-test and so on.
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Exponential distribution

families

In mathematical statistics, the normal distribution family plays a very im-

portant role for its simplicity and for the reason that many distributions are

well approximated by a normal distribution. We have also seen many useful

other distributions are derived from normal distributions.

There are many other commonly used distribution families in mathe-

matical statistics. Many of them have density functions conform to a specific

algebraic structure. The algebraic structure further enables simple statistical

conclusions in data analysis. Hence, it is often useful to have this structure

discussed in mathematical statistics.

3.1 One parameter exponential distribution

family

Consider a one parameter distribution family whose probability distributions

have a density function with respect to a common σ-finite measure. That is,

the family is made of

{f(x; θ) : θ ∈ Θ ⊂ R}

with Θ being its parameter space.

21
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Definition 3.1. Suppose there exist real valued functions η(θ), T (x), A(θ)

and h(x) such that

f(x; θ) = exp{η(θ)T (x)− A(θ)}h(x). (3.1)

We say {f(x; θ) : θ ∈ Θ ⊂ R} is a one-parameter exponential family.

The definition does not give much insight on the specific algebraic form

is of interest. Let us build some intuition from several examples.

Example 3.1. Suppose X1, . . . , Xn are i.i.d. from Binomial (m, θ). Their

joint density (probability mass) function is given by

f(x1, . . . , xn; θ) =
n∏
i=1

[(
m

xi

)
θxi(1− θ)m−xi

]
.

Let

T (X) =
∑

Xi, and T (x) =
∑

xi

and

h(x) =
n∏
i=1

(
m

xi

)
.

Then we find

f(x1, . . . , xn; θ) = exp{T (x) log θ + (nm− T (x)) log(1− θ)}h(x)

= exp{log{θ/(1− θ)}T (x) + nm log(1− θ)}h(x).

This conforms the definition of one parameter family with

η = log{θ/(1− θ)}

and

A(θ) = nm log(1− θ).

As an exercise, you can follow this example to show that both Negative

Binomial, Poisson distributions are one-parameter exponential families.
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In the above example, η is call log-odds because θ/(1 − θ) is the odds

of success compared to failure in typical binary experiments. It is equally

useful to “label” Binomial distribution family by log-odds. Note that

θ =
exp(η)

1 + exp(η)
.

Hence, we may equivalently state that the joint density function of X is given

by

g(x1, . . . , xn; θ) = exp{ηT (x)− nm log(1 + exp(η))}h(x).

This form also confirms the definition of the one-parameter exponential fam-

ily.

Definition 3.2. Let X be a random variable or vector. The support of X of

that of its distribution is the set of all x such that for any δ > 0,

P{X ∈ (x− δ, x+ δ)} > 0.

For the sake of accuracy, a definition sometimes has to be abstract. The

support of X is intuitively the set of x such that X = x is a “possible event”.

When Z is N(0, 1), we have P (Z = z) = 0. Hence, we cannot interpret

“possible event” as a positive probability event. The above definition first

expands x and then judges its “possibility”. Hence, the support contains all

x at which the density function is positive and continuous.

We do not ask you to memorize this definition. Rather, we merely point

out that if two distributions belong the same one-parameter exponential fam-

ily, then they have the same support. In comparison, a standard exponential

distribution has support [0,∞) and a standard normal distribution has sup-

port R. Let us now show you another interesting property.

Example 3.2. Let us now consider the natural form of the one-parameter

exponential family:

f(x1, . . . , xn; η) = exp{ηT (x)− A(η)}h(x)

with η being a real value whose parameter space is an interval. The moment

generating function of T (x) is given by

MT (s) = E exp{sT (X)} = exp{A(η + s)− A(η)}.
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This implies that

E{T} = M ′
T (0) = A′(η).

and

E{T 2} = M ′′
T (0) = A′′(η) + {A′(η)}2.

Hence,

var(T ) = A′′(η).

This example shows that the exponential families have some neat prop-

erties which make them an interest object to study.

3.2 The multiparameter case

We can practically copy the previous definition without any changes.

Definition 3.3. Suppose there exist real-vector valued functions η(θ), T(x),

and real valued functions A(θ) and h(x) such that

f(x;θ) = exp{ητ (θ)T(x)− A(θ)}h(x). (3.2)

We say {f(x; θ) : θ ∈ Θ ⊂ Rd} is a multi-parameter exponential family.

Without the above expansion, the exponential family does not even in-

clude normal distribution.

Example 3.3. Let X1, X2, . . . , Xn be i.i.d. with distribution N(µ, σ2). Their

joint density function

φ(x1, . . . , xn;µ, σ2) = (2π)−n/2σ−n exp{−
∑n

i=1(xi − µ)2

2σ2
}

= (2π)−n/2 exp{ µ
σ2

n∑
i=1

xi −
1

2σ2

n∑
i=1

x2
i −

nµ2

2σ2
− n log σ}.

We now regard θ as a vector made of µ and σ. The above density function
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fits into the definition (3.2) with the following functions:

η(θ) =

(
µ

σ2
,− 1

2σ2

)τ
,

T(x) = (
∑

xi,
∑

x2
i )
τ ,

A(θ) = −nµ
2

2σ2
− n log σ,

h(x) = (2π)−n/2.

Recall the Binomial distribution example. We had joint density function

given by

f(x1, . . . , xn; θ) = exp{T (x) log θ + (nm− T (x)) log(1− θ)}h(x).

It can also be regarded as a multi-parameter exponential family with d = 2

and

η = (log θ, log(1− θ))τ ; Tnew(x) = (T (x), nm− T (x))τ .

The parameter space in terms of values of η is a curve in R2 which does not

contain any open (non-empty) subset of R2. We generally avoid having a

distribution families with degenerate parameter spaces.

As an exercise, one can verify that two-parameter Gamma distribution

family is a multiple parameter exponential family.

3.3 Other properties

Suppose X1 and X2 both have distributions belonging to some exponential

families and they are independent. Then their joint distribution also belongs

to an exponential family.

By factorization theorem, T(X) in exponential family is a sufficient statis-

tic. It is also a complete statistic when the family does not degenerate.

The distribution of T belongs to an exponential family.

Definition 3.4. Let T be a k-dimensional vector valued function and h be a

real value function. The canonical k-dimensional exponential family gener-

ated by T and h is

g(x; η) = exp{ητT (x)− A(η)}h(x).
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The parameter space for η is all η ∈ Rk such that exp{ητT (x)}h(x) has finite

integration with respect to the corresponding σ-finite measure.

We call the parameter space, E, the natural parameter space. We call T

and h generators.

Because the integration of a density function equals 1, the integration of

exp{ητT (x)}h(x) equals exp(A(η) if it is finite. Hence, the natural parameter

space E contains all η at which A(·) is well-defined.

Definition 3.5. We say that an exponential family F is of rank k if and only

if the generating statistic T is k-dimensional and 1, T1, . . . , Tk are linearly

independent with positive probability. That is,

P (a0 +
k∑
j=1

ajTj = 0; η) < 1

for some η unless all non-random coefficients a0 = a1 = · · · = ak = 0.

In the above definition, we only need to verify the probability inequality

for one η value. If it is satisfied for one η value, then it is satisfied for any

other η value.

Theorem 3.1. Suppose F = {g(x; η) : η ∈ E} is a canonical exponential

family generated by (T, h) with natural parameter space E such that E is

open. Then the following are equivalent:

(a) F is of rank k.

(b) var(T; η) is positive definite.

(c) η is identifiable: g(x; η1) ≡ g(x; η2) for all x implies η1 = η2.

These discussions on exponential family suffice for the moment so we

move to the next topic.
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Criteria of point estimation

A general setting of the mathematical statistics is: we are given a data x

believed to be the observed value of a random object X. The probability

distribution of X will be denoted as F ∗ and F ∗ is believed to be a member

of a distribution family F . Based on the fact that X has an observed value

x, identify a single or a set of F in F which might be the “true” F ∗ that

describe the probability distribution of X.

There are many serious fallacies related to the above thinking. The first

one I can tell is the specification of F , which is referred as a model in this

course. If a specific form of F is given, how certain are we on F ∗ is one of

F? Even if the distribution of X is a member of F , X may not be accurately

observed. What we have recorded may be Y = X + ε. Hence, we may

unknowingly working to the distribution of Y instead that of X.

In this course, we do not discuss these possible fallacies but leave them

to other more applied courses. We take the approach that if the distribution

of X is indeed a member of F and x is its accurate observed value, what can

we say about F ∗? Also, we often study the situation where X is an i.i.d.

replication of some random system so that X = (X1, . . . , Xn). The model of

the distribution of X will be then taken over by the model for X1 which is

representative for every Xi, i = 1, 2, . . . , n. We state that X1, . . . , Xn is an

random or an i.i.d. sample from population/distribution F of F . In this case

n is referred to as sample size. With many replications, or when n→∞, we

should be able to learn a lot more about F ∗.

27
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4.1 Point estimator and some optimality cri-

teria

Let θ be a parameter in the probability model F and suppose we have a

random sample X. The parameter space is loosely Θ = {θ : θ = g(F ), F ∈
F} for some functional g. A point estimator of θ is a statistic T whose range

is Θ. The realized value of T , T (x), is an estimate of θ. We generally allow,

for the least, T to take values on the smallest closed set containing Θ. That

is, taking values on limiting points of Θ.

Definition 4.1. A point estimator of θ is a statistic T whose range is Θ.

The realized value of T , T (x), is an estimate of θ.

The definition implies that as an estimator, T (X) is regarded as a mech-

anism/rule of mapping X to Θ; as an estimate, T (x) is a value in Θ which

corresponding to data x. In both cases, we may use θ̂ as their common

notation.

One must realize T (x) = 0 is an estimator of θ as long as 0 ∈ Θ. Hence,

we always can estimate the parameter in any statistical models, no matter

how complex the model is. We may not be able to find an estimator with a

satisfactory precision or certain desired properties.

Suppose the parameter space is a subset of Rd for some integer d. Hence,

T (X) takes values in Rd. When the distribution of X is given by an F ∈ F
or equivalently c.d.f. F (x; θ) or p.d.f. f(x; θ). Hence, T (X) is a distribution

induced by F (x; θ) or simply by θ. To fix the idea, we assume the “true” pa-

rameter value of F is θ, the generic θ. When θ̂ = T (X) has finite expectation

under any θ, we define

bias(θ̂) = E{T (X); θ} − θ

as the bias of θ̂ = T (X) when it is used as an estimator of θ and when the

true parameter value is θ.

Definition 4.2. Suppose X has a distribution F ∈ F which is parameterized

by θ ∈ Θ. Suppose T (X) is an estimator of θ such that

E{T (X); θ} = θ
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for all θ ∈ Θ, then we say T (X) is an unbiased estimator of θ.

For some reason, statisticians and others prefer estimators that are unbi-

ased. This is not always well justified.

Example 4.1. Suppose X has binomial distribution with parameters n and

θ, n is known and θ is an unknown parameter.

A commonly used estimator for θ is

θ̂ =
X

n
.

An estimator motivated by Bayesian approach is

θ̃ =
X + 1

n+ 2
.

It is seen E{θ̂; θ} = θ. Hence, it is an unbiased estimator.

We find that other than θ = 0.5,

bias(θ̃) =
1− 2θ

n+ 2
6= 0.

Hence, θ̃ is a biased estimator.

Which estimator makes more sense to you?

In the above example, the bias of θ̃ has a limit 0 when n goes to infinite.

Often, we discuss situations where the data set contains n i.i.d. observations

from a distribution F which is a member of F . The above result indicates that

even though θ̃ is biased, the size of the bias diminishes when the sample size

n gets large. Many of us tends to declare that θ̃ is asymptotically unbiased

when this happens.

While we do not feel such a notion of “asymptotically unbiased” is wrong,

this terminology is often abused. In statistical literature, people may use this

term when √
n(θ̂ − θ)

has a limiting distribution whose mean is zero. In this case, the bias of θ̂

does not necessarily goes to zero.

To avoid such confusions, let us invent a formal definition.
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Definition 4.3. Suppose there is an index n such that Xn has a distribution

in Fn and an → ∞ as n → ∞ while the parameter space Θ of Fn does not

depend on n. Let θ be the true parameter value and θ̂n is an estimator (a

sequence of estimators). If

an(θ̂n − θ)

has a limiting distribution whose expectation is zero, for any θ ∈ Θ, then we

say θ̂n is asymptotically rate-an unbiased.

Most often, we take an = n1/2 in the above definition. We do not have

good reasons to require an estimator unbiased. Yet we feel that being asymp-

totically unbiased for some an is a necessity. When n → ∞ in common

settings, the amount of information about which F is the right F becomes

infinity. If we cannot make it right in this situation, the estimation method

is likely very poor.

The variance of an estimator is as important a criterion in judging an

estimator. Clearly, having a lower variance implies the estimator is more

accurate. In fact, let ϕ(·) be a convex function. Then an estimator is judged

superior if

E{ϕ(θ̂ − θ)}

is smaller. When ϕ(x) = x2, the above criterion becomes Mean Squared

Error:

mse(θ̂) = E{(θ̂ − θ)2}.

It is seen that

mse(θ̂) = bias2(θ̂) + var(θ̂).

To achieve lower mse the estimator must balance the loss due to variation

and bias.

Similar to asymptotic bias, it helps to give definite notions of asymptotic

variance and mse of an estimator.

Definition 4.4. Suppose there is an index n such that Xn has a distribution

in Fn and an → ∞ as n → ∞ while the parameter space Θ of Fn does not

depend on n. Let θ be the true parameter value and θ̂n is an estimator (a

sequence of estimators). Suppose

an(θ̂n − θ)
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has a limiting distribution with mean B(θ) and variance σ2(θ), for θ ∈ Θ.

We say θ̂n has asymptotic bias B(θ) and asymptotic variance σ2(θ) at

rate an.

Further more, we define the asymptotic mse at rate an as the σ2(θ) +

B2(θ).

Unfortunately, the mse is often a function of θ. In any specific application,

the “true value” of θ behind X is not known. Hence, it is not possible to

find an estimator which is a better estimator in terms of variance or mse

whichever value θ is the true value.

Example 4.2. Suppose X1, X2, . . . , Xn form an i.i.d. sample from N(θ; 1)

such that Θ = R.

Define θ̂ = n−1
∑
Xi and θ̃ = 0.

It is seen that var(θ̂) = n−1 > var(θ̃) for any θ ∈ R. However, no one

will be happy to use θ̃ as his/her estimator.

In addition, mse(θ̂) = n−1 > mse(θ̃) for all |θ| < n−1/2. Hence, even if

we use a more sensible performance criterion, it still does not imply that our

preferred sample mean is indisputably a superior estimator.

4.2 Uniformly minimum variance unbiased es-

timator

This section contains some materials that most modern statisticians believe

we should not have them included in statistical classes. Yet we feel a quick

discussion is still a good idea.

Either bias, var, mse can be used to separate the performance of es-

timators we can think of. Yet without any performance measure, how can

statisticians recommend any method to scientists? This is the same problem

when professors are asked to recommend their students. Everyone is unique.

Simplistically declaring one of them is the best will draw more criticisms than

praises. Yet at least, we can timidly say one of the students has the highest

average mark on mathematics courses, in this term, among all students with

green hair and so on.
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Definition 4.5. Suppose X is a random sample from F with parameter

θ ∈ Θ.

An unbiased estimator θ̂ is uniformly minimum variance estimator of θ,

UMVUE, if for any other unbiased estimator θ̃ of θ,

varθ(θ̂) ≤ varθ(θ̃)

for all θ ∈ Θ.

In the above definition, we added a subscript θ to highlight the fact that

the variance calculation is based on the assumption that the of X has true

parameter value θ. We do not always do so in other part of the course note.

Upon the introduction of UMVUE, a urgent question to be answered is

its existence. This answer is positive at least in textbook examples.

Example 4.3. Suppose X1, X2, . . . , Xn form an i.i.d. sample from Poisson

distribution with mean parameter θ and the parameter space is Θ = R+.

Let θ̂ = X̄n = n−1
∑
Xi. It is easily seen that θ̂ is an unbiased estimator

of θ.

Suppose that θ̃ is another unbiased estimator of θ. Because X̄n is complete

and sufficient statistic, we find

θ̆ = E{θ̃|X̄n)

is a function of data only. Hence, it is an estimator of θ. Using a formula

that for any two random variables, var(Y ) = E{var(Y |Z)}+var{E(Y |Z)},
we find

var(θ̆) ≤ var(θ̃).

Furthermore, this estimator is also unbiased. Hence,

E{θ̂ − θ̆} = 0

for all θ ∈ R+. Because both estimators are function of X̄n and the com-

pleteness of X̄n, we have

θ̂ = θ̆.

Hence,

var(θ̂) = var(θ̆) ≤ var(θ̃).

Therefore, X̄n is the UMVUE.
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Now, among all estimators of θ that are unbiased, the sample mean has

the lowest possible variance. If UMVUE is a criterion we accept, then the

sample mean is the best possible estimator under the Poisson model for the

mean parameter θ.

Why is such a beautiful conclusion out of fashion these days? Some of the

considerations are as follows. In real world applications, having a random

sample strictly i.i.d. from a Poisson distribution is merely a fantasy. If

so, why should we bother? Our defence is as follows. If the sample mean

is optimal in the sense of UMVUE under the ideal situation, it is likely

a superior one even if the situation is slightly different from the ideal. In

addition, the optimality consideration is a good way of thinking.

Suppose λ = 1/θ which is called rate parameter under Poisson model

assumption. How would you estimate λ? Many will suggest that X̄−1
n is a

good candidate estimator. Sadly, this estimator is biased and has infinite

variance! Lastly, in modern applications, we rarely work with such simplistic

models. In these cases, it is nearly impossible to have a UMVUE. If so, we

probably should not bother our students with such technical notions.

4.3 Information inequality

At least in textbook examples, some estimators are fully justified as optimal.

This implies that there is an intrinsic limit on how precise an estimator can

achieve.

Let X be a random variable modelled by F or more specifically a para-

metric family f(x; θ). Let T (X) be a statistic with finite variance given any

θ ∈ Θ. Denote

ψ(θ) = E{T (X); θ} =

∫
T (x)f(x; θ)dx

where the Lebesgue measure can be replaced by any other suitable measures.

Suppose some regularity conditions on f(x; θ) are satisfied so that our fol-

lowing manipulations are valid. Taking derivatives with respect to θ on two
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sides of the equality, we find

ψ′(θ) =

∫
T (x)f ′(x; θ)dx

=

∫
T (x)s(x; θ)f(x; θ)dx

where

s(x; θ) =
f ′(x; θ)

f(x; θ)
=

∂

∂θ
{log f(x; θ)}.

It is seen that∫
s(x; θ)f(x; θ)dx =

∫
f ′(x; θ)dx =

d

dθ

∫
f(x; θ)dx = 0.

We define the Fisher information

I(θ) = E
[
∂

∂θ
{log f(X; θ)}

]2

= E{s(X; θ)}2.

Hence,

{ψ′(θ)}2 = {
∫
{T (x)− ψ(θ)}f(x; θ)dx}2

≤
∫
{T (x)− ψ(θ)}2s(x; θ)f(x; θ)dx×

∫
{s(x; θ)}2f(x; θ)dx

= var(T (x))I(θ).

This leads to the following theorem.

Theorem 4.1. Cramér-Rao information inequality. Let T (X) be any

statistic with finite variance for all θ ∈ Θ. Under some regularity conditions,

var(T (X)) ≥ {ψ
′(θ)}2

I(θ)

where ψ(θ) = E(T (X); θ).

If T (X) is unbiased for θ, then ψ′(θ) = 1. Therefore, var(T ) ≥ I−1(θ).

When I(θ) is larger, the variance of T could be smaller. Hence, it indeed



4.3. INFORMATION INEQUALITY 35

measures the information content in data X with respect to θ. For conve-

nience of reference, we call I−1(θ) the information lower bound for estimating

θ.

In assignment problems, X is often made of n i.i.d. observations from

f(x; θ). Let X1 be one component of X. It is a simple exercise to show that

I(θ;X) = nI(θ;X1)

in the obvious notation. We need to pay attention to what I(θ) stands for

in many occasions. It could be the information contained in a single X1, but

also could be information contained in the i.i.d. sample X1, . . . , Xn.

Example 4.4. Suppose X1, X2, . . . , Xn form an i.i.d. sample from Poisson

distribution with mean parameter θ and the parameter space is Θ = R+.

The density function of X1 is given by

f(x; θ) = P (X1 = x; θ) =
θx

x!
exp(−θ).

Hence,

s(x; θ) =
x

θ
− 1

and the information in X1 is given by

I(θ) = E
{
X

θ
− 1

}2

=
1

θ
.

Therefore, for any unbiased estimator Tn of θ based on the whole sample, we

have

var(Tn) ≥ 1

nI(θ)
=
θ

n
.

Since the sample mean is unbiased and has variance θ/n, it is an estimator

that attains the information lower bound.

The definition of Fisher information depends on how the distribution

family is parameterized. If η is a smooth function of θ, the Fisher information

with respect to η is not the same as the Fisher information with respect to

θ.

As an exercise, find the information lower bound for estimating η =

exp(−θ) under Poisson distribution model. Derive its UMVUE given n i.i.d.

observations.
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4.4 Other desired properties of a point esti-

mator

Given a data set from an assumed model F , we often ask or are asked whether

certain aspect of F can be estimated. This can be the mean or median of

F where F is any member of F . In general, we may write the parameter as

θ = θ(F ), a functional defined on F .

Definition 4.6. Obsolete Concept of Estimability. Suppose the data set

X is a random sample from a model F and suppose θ = θ(F ) is a parameter.

We say θ is estimable if there exists a function T (·) such that

E(T (X);F ) = θ(F )

for all F ∈ F .

In other words, a parameter is estimable if we can find an unbiased estima-

tor for this parameter. We can give many textbook examples of estimability.

In contemporary applications, we are often asked to “train” a model given

a data set with very complex structure. In this case, we do not even have

a good description of F . Because of this, being estimable for a useful func-

tional on F is a luxury. We have to give up this concept but remain aware

of such a definition.

It is not hard to give an example of un-estimable parameters according

to the above definition though the example can overly technical. Instead, we

show that there is a basic requirement for a parameter to be estimable.

Definition 4.7. Identifiability of a statistical model. Let F be a para-

metric model in statistics and Θ be its parameter space. We say F is iden-

tifiable if for any θ1, θ2 ∈ Θ,

F (x; θ1) = F (x; θ2)

for all x implies θ1 = θ2.

A necessary condition for a parameter θ to be estimable is that θ is

identifiable. Otherwise, suppose F (x; θ1) = F (x; θ2) for all x, but θ1 6= θ2.

For any estimator θ̂, we cannot have both

E{θ̂; θ1} = θ1; E{θ̂; θ2} = θ2
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because two expectations are equal while θ1 6= θ2.

Definition 4.8. Proposed notion of estimability. Let F be a parametric

model in statistics and Θ be its parameter space. Suppose the sample plan

under consideration may be regarded as one of a sequence of sampling plans

indexed by n with sample Xn from F . If there exists an estimator Tn, a

function of Xn, such that

P (|Tn − θ| ≥ ε; θ)→ 0

for any θ ∈ Θ and ε > 0 as n → ∞, then we say θ is (asymptotically)

estimable.

The sampling plans in my mind include the plan of obtaining i.i.d. ob-

servations, obtaining observations of time series with extended length and so

on. This definition makes sense but we will not be surprised to draw serious

criticisms.

Example 4.5. Suppose we have an i.i.d. sample of size n from Poisson

distribution. Let λ be the rate parameter. It is seen that λ is asymptotically

estimable because

P
(∣∣ 1

n−1 + X̄n

− λ
∣∣ > ε

)
→ 0

as n→∞, where X̄n is the sample mean.

In this example, I have implicitly regarded “having i.i.d. sample of size

n” as a sequence of sampling plan. If one cannot obtain more and more i.i.d.

observations from this population, then the asymptotic estimability does not

make a lot of sense.

If two random variables are related by Y = (5/9)(X−32) such as the case

where Y and X are the temperatures measured in Celsius and Fahrenheit.

Given measures X1, X2, . . . , Xn on a random sample from some population,

it is most sensible to estimate the mean temperature as X̄n, the sample

mean of X. If one measures the temperature in Celsius to get Y1, . . . , Yn
on the same random sample, we should have estimated the mean by Ȳn, the

sample mean of Y . Luckily, we have Ȳn = (5/9)(X̄n − 32). Some internal

consistency is maintained. Such a desirable property is termed as equivariant.

and sometimes is also called invariant. See Lehmann for references.
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In another occasion, one might be interested in estimating mean parame-

ter µ in Poisson distribution. This parameter tells us the average number of

events occuring in a time period of interest. At the same time, one might be

interested in knowing the chance that nothing happens in the period which is

exp(−µ). Let X̄n as the sample mean of the number of events over n distinct

periods of time. We naturally estimate µ by X̄n and exp(−µ) by exp(−X̄n).

If so, we find

ĝ(µ) = g(µ̂)

with g(x) = exp(−x). This is a property most of us will find desirable. When

an estimator satisfies above property, we say it is invariant.

Rigorous definitions of equivariance and invariance can be lengthy. We

will be satisfied with a general discussion as above.

In the Poisson distribution example, it is seen that

E{exp(−X̄n)} = exp{nµ[exp(−1/n)− 1]} 6= exp(−µ).

Hence, the most natural estimator of exp(−µ) is not unbiased.

The UMVUE of exp(−µ) is given by E{1(X1 = 0)|X̄n}. The UMVUE of

µ is given by X̄n. Thus, the UMVUE is not invariant when the population

is the Poisson distribution family. As a helpful exercise for improving one’s

technical strength, work out the explicit expression of E{1(X1 = 0)|X̄n}.

4.5 Consistency and asymptotic normality

A point estimator is a function of data and the data are a random sample from

a distribution/population that is a member of distribution family. Hence,

it is random in general: its does not take a value with probability one. In

other words, we can never be completely sure about the unknown parameter.

However, when the sample size increases, we gain more and more information

about its underlying population. Hence, we should be able to decide what

the “true” parameter value with higher and higher precision.

Definition 4.9. Let θn be an estimator of θ based on a sample of size n from

a distribution family F (x; θ) : θ ∈ Θ. We say that θn is weakly consistent if,
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as n→∞, for any ε > 0 and θ ∈ Θ

P (|θ̂n − θ| ≥ ε; θ)→ 0.

In comparison, we have a stronger version of consistency.

Definition 4.10. Let θn be an estimator of θ based on a sample of size n from

a distribution family F (x; θ) : θ ∈ Θ. We say that θn is strongly consistent

if, as n→∞, for any θ ∈ Θ

P ( lim
n→∞

θ̂n = θ; θ) = 1.

Here are a few remarks one should not take them seriously but worth to

point out. First, the i.i.d. structure in the above definitions is not essential.

However, it is not easy to give a more general and rigorous definition with-

out this structure. Second, the consistency is not really a property of one

estimator, but a sequence of estimators. Unless θ̂n for all n are constructed

based on the same principle, otherwise, the consistency is nothing relevant

in applications: your n is far from infinity. For this reason, there is a more

sensible definition called Fisher consistency. To avoid too much technicality,

it is mentioned but not spelled out here. Lastly, when we say an estimator

is consistent, we mean weakly consistent unless otherwise stated.

The next topic is asymptotic normality. It is in fact best to be called

limiting distributions. Suppose θ̂n is an estimator of θ based on n i.i.d.

observations from some distribution family. The precision of this estimator

can be judged by its bias, variance, mean square error and so on. Ultimately,

the precision of θ̂n is its sample distribution. Unfortunate, the sample

distribution of θ̂n is often not easy to directly work with. At the same time,

when n is very large, the distribution of its standardized version stabilizes.

This is the limiting distribution. If we regard the limiting distribution as

the sample distribution of θ̂, the difference is not so large. That is, the error

diminishes when n increases. For this reason, statisticians are fond of finding

limiting distributions.

Definition 4.11. Let Tn be a sequence of random variables, we say its dis-

tribution converges to that of T if

lim
n→∞

P (Tn ≤ t) = P (T ≤ t)
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for all t ∈ R at which F (t) = P (T ≤ t) is continuous.

In this definition, Tn is just any sequence random variable, it may contain

unknown parameters in specific examples. The index n need not be the sam-

ple size in typical set up. The multivariate case will not be given here. The

typical applications, the limiting distribution is about asymptotic normality.

Example 4.6. Suppose we have an i.i.d. sample X1, . . . , Xn from a distri-

bution family F . A typical estimator for F (t), the cumulative distribution

function of X is the empirical distribution

Fn(t) = n−1

n∑
i=1

1(Xi ≤ t).

For each given t, the distribution of Fn(t) is kind of binomial. At the same

time, √
n{Fn(t)− F (t)} d−→ N(0, σ2)

with σ2 = F (t){1− F (t)} as n→∞.

Remark: in this example, we have a random variable on one side but a

distribution on the other side. It is interpreted as the distribution sequence

of the random variables, indexed by n, converges to the distribution specified

on the right hand side.

As an exercise, one can work out the following example.

Example 4.7. Suppose we have an i.i.d. sample X1, . . . , Xn from a uniform

distribution family F such that F (x; θ) is uniform on (0, θ) and Θ = R+.

Define

θ̂n = max{X1, X2, . . . , Xn}

which is often denoted as X(n) and called order statistic. It is well known

that

n{θ − θ̂} d−→ exp(θ).

Namely, the limiting distribution is exponential.

Is θ̂ asymptotically unbiased at rate
√
n, at rate n?



Chapter 5

Approaches of point estimation

Even though any statistics with proper range is a point estimator, we gener-

ally prefer estimators derived based on some principles. This leads to a few

common estimation procedures.

5.1 Method of moments

Suppose F is a parametric distribution family so that it permits a general

expression

F = {F (x; θ) : θ ∈ Θ}

such that Θ ⊂ Rd for some positive integer d. We assume the parameter is

identifiable.

In most classical examples, the distributions are labeled smoothly by θ:

two distributions having close parameter values are similar in some metric. In

addition, the first d moments are smooth functions of θ. They map Θ to Rd

in a one-to-one fashion: different θ value leads to different first d moments.

Suppose we have an i.i.d. sample X1, . . . , Xn of size n from F and X is

univariate. For k = 1, 2, . . . , d, define equations with respect to θ as

n−1{Xk
1 +Xk

2 + · · ·+Xk
n} = E{Xk; θ}.

The solution in θ, if exists and unique, are called moment estimator of θ.

41
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Example 5.1. If X1, . . . , Xn is an i.i.d. sample from Negative binomial dis-

tribution whose probability mass function (p.m.f. ) is given by

f(x; θ) =

(
−m
x

)
(θ − 1)xθm

for x = 0, 1, 2, . . .. It is known that E{X; θ} = m/θ. Hence, the moment

estimator of θ is given by

θ̂ = m/X̄n.

If X1, . . . , Xn is an i.i.d. sample from N(µ, σ2) distribution. It is known

that E{X,X2} = (µ, µ2 + σ2). The moment equations are given by

n−1{X1 +X2 + · · ·+Xn} = µ;

n−1{X2
1 +X2

2 + · · ·+X2
n} = µ2 + σ2.

The moment estimators are found to be

µ̂ = X̄n; σ̂2 = n−1
∑

X2
i − X̄2

n.

Note that σ̂2 differs from the sample variance by a scale factor n/(n− 1).

Moment estimators are often easy to construct and have simple distri-

butional properties. In classical examples, they are also easy to compute

numerically.

The use of moment estimator depends on the existence and also unique-

ness of the solutions to the corresponding equations. There seem to be little

discussion on this topic. We suggest that moment estimators are estima-

tors of ancient tradition in which era only simplistic models were considered.

Such complications do not seem to occur too often for these models. We will

provide an example based on exponential mixture as an exercise problem.

One may find the classical example in Pearson (1904?) where a heroic ef-

fort was devoted to solve moment equations to fit a two-component normal

mixture model. Other than it is a general convention, there exists nearly no

theory to support the use of the first d moments for the method of moments

rather than other moments. The method of moments also does not have to

be restricted to situations where i.i.d. observations are available.
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Example 5.2. Suppose we have T observations from a simple linear regres-

sion model:

Yt = βXt + εt

for t = 0, 1, . . . , T , such that ε1, . . . , εT are i.i.d. N(0, 1) and X1, . . . , XT are

non-random constants.

It is seen that

E{
∑

Yt} = β
∑

Xt.

Hence, a moment estimator of β is given by

β̂ =

∑
Yt∑
Xt

.

The method of moments makes sense based on our intuition. What statis-

tical properties does it have? Under some conditions, we can show that it is

consistent and asymptotically normal. Specifying exact conditions, however,

is surprisingly more tedious than we may expect.

Consider the situation where an i.i.d. sample of size n from a parametric

statistical model F is available. Let θ denote the parameter and Θ ⊂ Rd

be the parameter space. Let µk(θ) be the kth moment of X, the random

variable whose distribution is F (x; θ) which is a member of F .

Assume that µk(θ) exists and continuous in θ for k = 1, 2, . . . , d. Assume

also the moment estimator of θ, θ̂ is a unique solution to moment equations

for large enough n. Recall the law of large numbers:

n−1{Xk
1 +Xk

2 + · · ·+Xk
n} → µk(θ)

almost surely when n→∞.

By the definition of moment estimates, we have

µk(θ̂)→ µk(θ)

for k = 1, 2, . . . , d when n→∞, almost surely.

Assume that as a vector valued function made of first d moments, µ(θ)

“inversely continuous” a term we invent on spot: for any fixed θ∗ and dynamic

θ,

‖µ(θ)− µ(θ∗)‖ → 0
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only if θ → θ∗. Then, µk(θ̂) → µk(θ) almost surely implies θ̂ → θ almost

surely.

We omit the discussion of asymptotic normality here.

5.2 Maximum likelihood estimation

If one can find a σ-finite measure such that each distribution in F has a

density function f(x). Then the likelihood function is given by (not defined

as)

L(F ) = f(x)

which is a function of F on F . To remove the mystic notion of F , under

parametric model, the likelihood becomes

L(θ) = f(x; θ)

because we can use θ to represent each F in F . If θ̂ is a value in Θ such that

L(θ̂) = sup
θ
L(θ)

then it is a maximum likelihood estimate (estimator) of θ. If we can find a

sequence {θm}∞m=1 such that

lim
m→∞

L(θm) = sup
θ
L(θ)

and lim θm = θ̂ exists, then we also call θ̂ a maximum likelihood estimate

(estimator) of θ.

The observation x includes the situation where it is a vector. The common

i.i.d. situation is a special case where x is made of n i.i.d. observations from

a distribution family F . In this case, the likelihood function is given by

the product of n densities evaluated at x1, . . . , xn respectively. It remains a

function of parameter θ.

The probability mass function, when x is discrete, is also regarded as a

density function. This remark looks after discrete models. In general, the

likelihood function is defined as follows.
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Definition 5.1. The likelihood function on a model F based on observed

values of X is proportional to

P (X = x;F )

where the probability is computed when X has distribution F .

When F is a continuous distribution, the probability is computed as the

probability of the event “when X belongs to a small neighbourhood of x”.

The argument of “proportionality” leads to the joint density function f(x)

or f(x; θ) in general. The proportionality is a property in terms of F . The

likelihood function is a function of F .

The phrase “proportional to” in the definition implies the likelihood func-

tion is not unique. If L(θ) is a likelihood function based on some data, then

cL(θ) for any c > 0 is also a likelihood function based on the same data.

5.3 Estimating equation

The MLE of a parameter is often obtained by solving a score equation:

∂Ln(θ)

∂θ
= 0.

It is generally true that

E
[
∂ logLn(θ)

∂θ
; θ

]
= 0

where the expectation is computed when the parameter value (of the distri-

bution of the data) is given by θ. Because of this, the MLE is often regarded

as a solution to
∂ logLn(θ)

∂θ
= 0.

It appears that whether or not ∂ logLn(θ)/∂θ is the derivative function of

the log likelihood function matters very little. This leads to the following

consideration.

In applications, we have reasons to justify that a parameter θ solves equa-

tion

E{g(X; θ)} = 0.
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Given an set of i.i.d. observations in X, we may solve

n∑
i=1

g(xi; θ) = 0

and use its solution as an estimate of θ (or estimator if xi’s are replaced by

Xi).

Clearly, such estimators are sensible and may be preferred when com-

pletely specifying a model for X is at great risk of misspecification.

Example 5.3. Suppose (xi, yi), i = 1, 2, . . . , n is a set of i.i.d. observations

from some F such that E(Yi|Xi = xi) = xτiβ.

We may estimate β by the solution to

n∑
i=1

xτi (yi − xτiβ) = 0.

The solution is given by

β̂ = {
n∑
i=1

xix
τ
i }−1{

n∑
i=1

xiyi}

which is the well known least squares estimator.

The spirit of this example is: we do not explicitly spell out any distribu-

tional assumptions on (X, Y ) other than the form of the conditional expecta-

tion.

5.4 M-Estimation

Motivated from a similar consideration, one may replace Ln(θ) by some other

functions in some applications. Let ϕ(x; θ) be a function of data and θ but

we mostly interested in its functional side in θ after x is given. In the i.i.d.

case, we may maximize

Mn(θ) =
n∑
i=1

ϕ(xi; θ)
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use its solution as an estimate of θ (or estimator if xi’s are replaced by Xi).

In this situation, parameter θ is defined as the solution to the minimum point

of E{ϕ(X; ξ);F} in ξ where F is the true distribution of X.

Example 5.4. Suppose (xi, yi), i = 1, 2, . . . , n is a set of i.i.d. observations

from some F such that E(Yi|Xi = xi) = xτiβ.

We may estimate β by the solution to the minimization/optimization

problem:

min
β

{ n∑
i=1

(yi − xτiβ)2}.

In this case, ϕ(x, y;β) = (y − xτβ)2. The solution is again given by

β̂ = {
n∑
i=1

xix
τ
i }−1{

n∑
i=1

xiyi}

which is the well known least squares estimator.

In some applications, the data set may contain a few observations whose

y values are much much larger than the rest of observations. Their pres-

ence makes the other observed values have almost no influence on the fitted

regression coefficient β̂. Hence, Huber suggested to use

ϕ(x, y;β) =


(y − xτβ)2 |y − xτβ| ≤ k

k(y − xτβ) y − xτβ > k

−k(y − xτβ) y − xτβ < −k

for some selected constant k instead.

This choice limits the influences of observations with huge values. Some-

times, such abnormal values, often referred to as outliers, are caused by

recording errors.

5.5 L-estimator

Suppose we have a set of univariate i.i.d. observations and and it is simple

to record them in terms of sizes such that X(1) ≤ X(2) ≤ · · · ≤ X(n). We call
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them order statistics. To avoid the influence of outliers, one may estimate

the population mean by a trimmed mean:

(n− 2)−1

n−1∑
i=2

X(i).

This practice is used on Olympic games though theirs are not estimators.

One can certainly remove more observations from consideration and make

the estimator more robust. The extreme case is to use the sample median to

estimate the population mean. In this case, the estimator makes sense only if

the mean and median are the same parameters under the model assumption.

In general, an L-estimator is any linear combination of these order statis-

tics. The coefficients are required to be non-random and do not depend on

unknown parameters.



Chapter 6

Maximum likelihood estimation

In textbooks such as here, we have plenty of examples where the solutions

to MLE are easy to obtain. We now give some examples where the routine

approaches do not work.

6.1 MLE examples

The simplest example is when we have i.i.d. data of size n from N(µ, σ2)

distribution (family). In this case, the log-likelihood function is given by

`n(µ, σ2) = −n log σ − 1

σ2

n∑
i=1

(xi − µ)2.

Note that I have omitted the constant that does not depend on parameters.

Regardless of the value of σ2, the maximum point in µ is µ̂ = X̄n, the sample

mean. Let σ̃2 = n−1
∑n

i=1(xi − µ)2 and do not regard it as an estimator but

a statistic for the moment. Then, we find

`n(µ̂, σ2) = −n log σ − nσ̃2

σ2
.

This function is maximized at σ2 = σ̃2. Hence, the MLE of σ2 is given by

σ̂2 = σ̃2.

Type I censor. The next example is a bit unusual. In industry, it is vital

to ensure that components in a product will last for a long time. Hence, we

49
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need to have a clear idea on their survival distributions. Such information

can be obtained by collecting complete failure time data on a random sample

of the components. When the average survival time is very long, one has to

terminate the experiment at some point, likely before all samples fail. Let

the life time of a component be X and the termination time be nonrandom

T . Then, the observation may be censored and we only observe min(X,T ).

This type of censorship is commonly referred to as type I censor.

Suppose the failure time data can be properly modelled by exponential

distribution f(x; θ) = θ−1 exp(−x/θ), x > 0. Let x1, x2, · · · , xm be the ob-

served failure times of m out of n components. The rest of n−m components

have not experienced failure at time T (which is not random). In this case,

the likelihood function would be given by

Ln(θ) = θ−m exp

{
−θ−1[

m∑
i=1

xi + (n−m)T ]

}
.

Interpreting likelihood function based on the above definition makes it easier

to obtained the above expression.

Some mathematics behind this likelihood is as follows. To observe that

n−m components lasted longer than T , the probability of this event is given

by (
n

n−m

)
{exp(−θ−1T )}n−m{1− exp(−θ−1T )}m.

Given m components failed before time T , the joint distribution is equivalent

to an i.i.d. conditional exponential distribution whose density is given by

θ−1 exp(−θ−1x)

1− exp(−θ−1T )
.

Hence, the joint density of x1, . . . , xm is given by

m∏
i=1

[
θ−1 exp(−θ−1xi)

1− exp(−θ−1T )

]
.

The product of two factors gives us the algebraic expression of Ln(θ). Once

the likelihood function is obtained, we can find the explicit solution to the

MLE of θ easily.
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There are more than one way to arrive at the above likelihood function.

Discrete parameter space. Suppose a finite population is made of two

types of units, A and B. The population size N = A+B units where A and

B also denote the number of types A and B units. Assume the value of B

is known which occurs in capture-recapture experiment. A sample of size n

is obtained by “simple random sample without replacement” and x of the

sampled units are of type B.

Based on this observation, what is the MLE of A?

To answer this question, we notice that the likelihood function is given

by

L(A) =

(
A
n−x

)(
B
x

)(
A+B
n

) .

Our task is to find an expression of the MLE of A. Note that “find the MLE”

is not very rigorous statement.

Let us leave this problem to classroom discussion.

Non-smooth density functions. Suppose we have an i.i.d. sample of size

n from uniform distribution on (0, θ) and the parameter space is Θ = R+.

Find the MLE of θ.

6.2 Newton Raphson algorithm

Other than textbook examples, most applied problems do not permit an

analytical solutions to the maximum likelihood estimation. In this case, we

resort to any optimization algorithms that work. For illustration, we still

resort to “textbook examples.”

Example 6.1. Let X1, . . . , Xn be i.i.d. random variables from Weibull dis-

tribution with fixed scale parameter:

f(x; θ) = θxθ−1 exp(−xθ)

with parameter space Θ = R+ on support x > 0.

Clearly, the log likelihood function of θ is given by

`n(θ) = n log θ + (θ − 1)
n∑
i=1

log xi −
n∑
i=1

xθi .
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It is seen that

`′n(θ) =
n

θ
+

n∑
i=1

log xi −
n∑
i=1

xθi log xi;

`′′n(θ) = − n
θ2
−

n∑
i=1

xθi log2 xi < 0.

Therefore, the likelihood function is convex and hence has unique maximum

in θ. Either when θ → 0+ and when θ →∞, we have `n(α)→ −∞.

For numerical computation, we can easily locate θ1 < θ2 such that the

maximum point of `n(θ) is within the interval [θ1, θ2].

Following the above example, a bisection algorithm can be applied to

locate the maximum point of `n(θ).

1. Compute y1 = `′n(θ1), y2 = `′n(θ2) and θ = (θ1 + θ2)/2;

2. If `′n(θ) > 0, let θ1 = θ; otherwise, θ2 = θ;

3. Repeat the last step until |θ1 − θ2| < ε for a pre-specified precision

constant ε > 0.

4. Report θ as the numerical value of the MLE θ̂.

It will be an exercise to numerically find an upper and lower bounds and

the MLE of θ given a data set.

The bisection method is easy to understand. Its convergence rate, in

terms of how many steps it must take to get the final result is judged not

high enough. When θ is one dimensional, our experience shows the criticism

is not well founded. Nevertheless, it is useful to understand another standard

method in numerical data analysis.

Suppose one has an initial guess of the maximum point of the likelihood

function, say θ(0). For any θ close to this point, we have

`′n(θ) ≈ `′n(θ(0)) + `′′n(θ(0))(θ − θ(0)).
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If the initial guess is pretty close to the maximum point, then the value of

the second derivative `′′n(θ(0)) < 0. From the above approximation, we would

guess that

θ(1) = θ(0) − `′n(θ(0))/`′′n(θ(0))

is closer to the solution of `′n(θ) = 0. This consideration leads to repeated

updating:

θ(k+1) = θ(k) − `′n(θ(k))/`′′n(θ(k)).

Starting from θ(0), we therefore obtain a sequence θ(k). If the problem is

not tricky, this sequence converges to the maximum point of `n(θ). Once it

stabilizes, we regard the outcome as the numerical value of the MLE.

The iterative scheme is called Newton-Raphson method. Its success de-

pends on a good choice of θ(0) and the property of `n(θ) as a function of θ. If

the likelihood has many local maxima, then the outcome of the algorithm can

be one of these local maxima. For complex models and multi-dimensional

θ, the convergence is far from guaranteed. The good/lucky choice of θ(0) is

crucial.

Although in theory, each iteration moves θ(k+1) toward true maximum

faster by using Newton-Raphson method, we pay extra cost on computing

the second derivation. For multi-dimensional θ, we need to invert a matrix

which is not always a pleasant task. The implementation of this method is

not always so simple.

Implementing Newton-Raphson for a simple data example will be an ex-

ercise.

Example 6.2. Logistic distribution. Let X1, X2, . . . , Xn be i.i.d. with

density function

f(x; θ) =
exp{−(x− θ)}

[1 + exp{−(x− θ)}]2
.

The support of the distribution is the whole line, and parameter space is R.

We usually call it a location distribution family.

The log-likelihood function is give by

`n(θ) = nθ − nx̄n − 2
n∑
i=1

log[1 + exp{−(xi − θ)}].
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Its score function is

`′n(θ) = s(θ) = n− 2
n∑
i=1

exp{−(x− θ)}
1 + exp{−(x− θ)}

.

The MLE is a solution to s(θ) = 0.

One may easily find that

`′′n(θ) = s′(θ) = −2
n∑
i=1

exp{−(xi − θ)}
[1 + exp{−(xi − θ)}]2

< 0.

Thus, the score function is monotone in θ, which implies the solution to

s(θ) = 0 is unique. It also implies that the solution is the maximum point of

the likelihood, not minimum nor stationary points.

It is also evident that there is no analytical solution to this equation,

Newton-Raphson algorithm can be a good choice for numerically evaluate the

MLE in applications.

6.3 EM-algorithm

Suppose we have n observations from a tri-nomial distribution. That is, there

are n independent and independent trials each has 3 possible outcomes. The

corresponding parameters are p1, p2, p3. We summarize these observations

into n1, n2, n3. The log-likelihood function is

`n(p1, p2, p3) = n1 log p1 + n2 log p2 + n3 log p3.

Using Lagrange method, we can easily show that the MLEs are

p̂j = nj/n

for j = 1, 2, 3.

If, however, another m trials were carried out but we know only their

outcomes are not of the third kind. In some words, the data contains some

missing information.
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The log-likelihood function when the additional data are included be-

comes

`n(p1, p2, p3) = n1 log p1 + n2 log p2 + n3 log p3 +m log(p1 + p2).

Working out the MLE is no longer straightforward now. Given specific values,

there are many numerical algorithms can be used to compute MLE. We

recommand EM-algorithm in this case.

If we knew which of these m observations were of type I, we would have

obtained the complete data log-likelihood as:

`c(p1, p2, p3) = (n1 +m1) log p1 + (n2 +m2) log p2 + n3 log p3

where c stands for “complete data”. Since we do not know what these m1

and m2 are, we replace them with some predictions based on what we know

already. In this case, we use conditional expectations.

E-step: If the current estimates p̂1 = n1/n and p̂2 = n2/n are relevant.

Then, we might expect that out of m non-type III observations, m̂1 =

mp̂1/(p̂1 + p̂2) are of type I and m̂2 = mp̂2/(p̂1 + p̂2) are of type II. That

is, the conditional expectation (given data, and the current estimates of the

parameter values) of m1 and m2 are given by m̂1 and m̂2. When m1 and m2

are replaced by their conditional expectations, we get a function

Q(p1, p2, p3) = (n1 + m̂1) log p1 + (n2 + m̂2) log p2 + n3 log p3.

This is called E-stap because we Replace the unobserved values by their

conditional expectations.

M-step: In this step, we update unknown parameters by the maximizer of

Q(p1, p2, p3). The updated estimator values are

p̃1 = (n1 +m1)/(n+m) p̃2 = (n2 +m2)/(n+m), p̃3 = n3/(n+m).

If they represent a better guess of the MLE, then we should update the

Q-function accordingly. After which, we should carry out the M-step again

to obtain more satisfactory approximation to the MLE. We therefore iterate

between the E and M steps until some notion of convergence.

These idea is particularly useful when the data structure is complex. In

most cases, the EM iteration is guaranteed to increase the likelihood. Thus,

it should converge, and converge to a local maximum for the least.
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6.4 EM-algorithm for finite mixture models

Let envisage a population made of a finite number of subpopulations, each is

governed by a specific distribution from some distribution family. Taking a

random sample from a finite mixture model, we obtain a set of units without

knowing their subpopulation identities. The resulting random variable has

density function

f(x;G) =
m∑
j=1

πjf(x; θj)

with G denoting a mixing distribution on parameter space of θ, Θ, by as-

signing probability πj on θj.

Given a random sample of size n, x1, x2, . . . , xn, from this distribution,

the log likelihood function is given by

`n(G) =
n∑
i=1

log f(xi;G). (6.1)

Other than order m, we regard πj, θj as parameters to be estimated. Com-

puting the maximum likelihood estimate of G is to find the values of m pairs

of πj and θj such that `n(G) is maximized.

Taking advantage of the mixture model structure, EM-algorithm can of-

ten be effectively implemented to locate the location of the maximum point

of the likelihood function.

Conceptually, each observation x from a mixture model is part of a com-

plete vector observation (x, zτ ) where z is a vector of mostly 0 and a single

1 of length m. The position of 1 is its subpopulation identity. Suppose we

have a set of complete observations in the form of (xi, z
τ
i ): i = 1, 2, . . . , n.

The log likelihood function of the mixing distribution G is given by

`c(G) =
n∑
i=1

m∑
j=1

zij log{πjf(xi; θj)}. (6.2)

Since for each i, zij equals 0 except for a specific j value, only one log{πjf(xi; θj)}
actually enters the log likelihood function.

We use x for the vector of the xi and X as its corresponding random

vector and start the EM-algorithm with an initial mixing distribution with
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m support points:

G(0)(θ) =
m∑
j=1

π
(0)
j 1(θ

(0)
j ≤ θ).

E-Step. This step is to find the expected values of the missing data in the

full data likelihood function. They are zi in the context of the finite mix-

ture model. If the mixing distribution G is given by G(0), its corresponding

random variable has conditional expectation given by

E{Zij|X = x;G(0)} = pr(Zij = 1|Xi = xi;G
(0))

=
f(xi; θ

(0)
j )pr(Zij = 1;G(0))∑m

k=1 f(xi; θ
(0)
k )pr(Zik = 1;G(0))

=
π

(0)
j f(xi; θ

(0)
j )∑m

k=1 π
(0)
k f(xi; θ

(0)
k )

.

The first equality has utilized two facts: the expectation of an indicator ran-

dom variable equals the probability of “success”; only the ith observation is

relevant to the subpopulation identity of the ith unit. The second equality

comes from the standard Bayes formula. The third one spells out the proba-

bility of “success” if G(0) is the true mixing distribution. The superscript (0)

reminds us that the corresponding quantities are from G(0), the initial mixing

distribution. One should also note the expression is explicit and numerically

easy to compute as long as the density function itself can be easily computed.

We use notation w
(0)
ij for E{Zij|X = x;G(0)}. Replacing zij by w

(0)
i in

`c(G), we obtain a function which is usually denoted as

Q(G;G(0)) =
n∑
i=1

m∑
j=1

w
(0)
ij log{πjf(xi; θj)}. (6.3)

In this expression, Q is a function of G, and its functional form is determined

by G(0). The E-Step ends at producing this function.

M-Step. Given this Q function, it is often simple to find a mixing distribu-

tion G having it maximized. Note that Q has the following decomposition:

Q(G;G(0)) =
m∑
j=1

{ n∑
i=1

w
(0)
ij

}
log(πj) +

m∑
j=1

{ n∑
i=1

w
(0)
ij log f(xi; θj)

}
.
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In this decomposition, two additive terms are functions of two separate parts

of G. The first term is a function of mixing probabilities only. The second

term is a function of subpopulation parameters only. Hence, we can search

for the maxima of these two functions separately to find the overall solution.

The algebraic form of the first term is identical to the log likelihood of a

multinomial distribution. The maximization solution is given by

π
(1)
j = n−1

n∑
i=1

w
(0)
ij

for j = 1, 2, . . . ,m.

The second term is further decomposed into the sum of m log likelihood

functions, one for each subpopulation. When f(x; θ) is a member of classical

parametric distribution family, then the maximization with respect to θ often

has an explicit analytical solution. With a generic f(x; θ), we cannot give an

explicit expression but an abstract one:

θ
(1)
j = arg sup

θ
{

n∑
i=1

w
(0)
ij log f(xi; θj)}.

The mixing distribution

G(1)(θ) =
m∑
j=1

π
(1)
j 1(θ

(1)
j ≤ θ)

then replaces the role of G(0) and we go back to E-step.

Iterating between E-step and M-step leads to a sequence of intermediate

estimates of the mixing distribution: G(k). Often, this sequence converges to

at least a local maximum of `n(G).

With some luck, the outcome of this limit is the global maximum. In

most applications, one would try a number of G(0) and compare the values

of `n(G(k)) the EM-algorithm leads to. The one with the highest value will

have its G(k) regarded as the maximum likelihood estimate of G.

The algorithm stops after many iterations when the difference between

G(k) and G(k−1) is considered too small to continue. Other convergence cri-

teria may also be used.
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6.4.1 Data Examples

Leroux and Puterman (1992) and Chen and Kalbfleisch (1996) analyze data

on the movements of a fetal lamb in each of 240 consecutive 5-second intervals

and propose a mixture of Poisson distributions. The observations can be

summarized by the following table.

x 0 1 2 3 4 5 6 7

freq 182 41 12 2 2 0 0 1

It is easily seen that the distribution of the counts is over-dispersed. The

sample mean is 0.358 which is significantly smaller than the sample variance

which is 0.658 given that the sample size is 240.

A finite mixture model is very effective at explaining the over-dispersion.

There is a general agreement that a finite Poisson mixture model with order

m = 2 is most suitable. We use this example to demonstrate the use of EM-

algorithm for computing the MLE of the mixing distribution given m = 2.

Since the sample mean is 0.358 and the data contains a lot of zeros. Let

us choose an initial mixing distribution with

(π
(0)
1 , π

(0)
2 , θ

(0)
1 , θ

(0)
2 ) = (0.7, 0.3, 0.1, 4.0).

We do not have more specific reasons behind the above choice.

A simplistic implementation of EM-algorithm for this data set is as fol-

lows.

pp = 0.7;

theta = c(0.1, 4.0)

xx = c(rep(0, 182), rep(1, 41), rep(2, 12), 3, 3, 4, 4, 7)

#data inputted, initial mixing distribution chosen

last = c(pp, theta)

dd= 1

while(dd > 0.000001) {

temp1 = pp*dpois(xx, theta[1])

temp2 = (1-pp)*dpois(xx, theta[2])

w1 = temp1/(temp1+temp2)
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w2 = 1 - w1

#E-step completed

pp = mean(w1)

theta[1] = sum(w1*xx)/sum(w1)

theta[2] = sum(w2*xx)/sum(w2)

#M-step completed

updated = c(pp, theta)

dd = sum((last - updated)^2)

last = updated

}

print(updated)

When the EM-algorithm converges, we get π̂1 = 0.938 and θ̂1 = 0.229,

θ̂2 = 2.307. The likelihood value at this Ĝ equals −186.99 (based on the usual

expression of the Poisson probability mass function). The fitted frequency

vector is given by

x 0 1 2 3 4 5 6 7

freq 182 41 12 2 2 0 0 1

fitted freq 180.4 44.5 8.6 3.4 1.8 0.8 0.3 0.1



Chapter 7

Properties of MLE

Consider the situation we have have a data set x whose joint density function

is a member of distribution family specified by density functions {f(x; θ) :

θ ∈ Θ}.
Suppose η = g(θ) is an invertible parameter transformation and denote

the inverse transformation by θ = h(η) and the parameter space of η be Υ.

Clearly, for each θ, there is an η such that

f(x; θ) = f(x;h(η)) = f̃(x; η)

where we have introduced f̃(x; η) for the function under the new parameter-

ization. In other words,

{f(x; θ) : θ ∈ Θ} = {f̃(x; η) : η ∈ Υ}.

The likelihood functions in these two systems are related by

`(θ) = ˜̀(η)

for η = g(θ). If θ̂ is a value such that

`(θ̂) = sup
θ∈Θ

`(θ)},

we must also have

˜̀(g(θ̂)) = `(θ̂) = sup
θ∈Θ

`(θ) = sup
η∈Υ

˜̀(η).
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Hence, h(θ̂) is the MLE of η = h(θ).

In conclusion, the MLE as a general method for point estimation, is equi-

variant. If we estimate µ by x̄, then we estimate µ2 by x̄2 in common notation.

Next, we give results to motivate the use of MLE. The following inequality

plays an important role.

Jensen’s inequality. Let X be a random variable with finite mean and g

be a convex function. Then

E[g(X)] ≥ g[E(X)].

Proof: We give a heuristic proof. Function g is convex if and only if for every

set of x1, x2, . . . , xn and positive numbers p1, p2, . . . , pn such that
∑n

i=1 pi = 1,

we have
n∑
i=1

pig(xi) ≥ g(
n∑
i=1

pixi).

This essentially proves the inequality when X is a discrete random variable

of finite number of possible values. Since every random variable can be

approximated by such random variables, we can take a limit to get the general

case. This is always possible when X has finite first moment.

Kulback-Leibler divergence. Suppose f(x) and g(x) are two density func-

tions with respect to some σ-finite measure. The Kulback-Leibler divergence

between f and g is defined to be

K(f, g) = E{log[f(X)/g(X)]; f}

where the expectation is computed when X has distribution f .

Let Y = g(X)/f(X) and h(y) = − log(y). It is seen that h(y) is a convex

function. It is easily seen that

E{Y } ≤ 1

where the inequality can occur if the support of f(x) is a true subset of that

of g(x). In any case, by Jensen’s inequality, we have

E{h(Y )} ≥ h(E{Y }) ≥ 0.
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This implies that

K(f, g) ≥ 0

for any f and g. Clearly, K(f, f) = 0.

Because K(f, g) is positive unless f = g, it serves as a metric to measure

how different g is from f . At the same time, the KL divergence is not a

distance in mathematical sense because K(f, g) 6= K(g, f) in general.

Let F be a parametric distribution family possessing densities f(x; θ)

and parameter space Θ. Let f(x) be simply a density function may or may

not be a member of F . If we wish to find a density in F that is the best

approximation to f(x) in KL-divergence sense, a sensible choice is f(x; θ̂)

such that

θ̂ = arg min
θ∈Θ

K(f(x), f(x; θ)).

In most applications, f(x) is not known but we have an i.i.d. sample

X1, . . . , Xn from it. In this case, we may approximate K(f(x), f(x; θ)) as

follows:

K(f(x), f(x; θ)) =

∫
log{f(x)/f(x; θ)}f(x)dx

≈ n−1

n∑
i=1

log{f(xi)/f(xi; θ)}

= n−1

n∑
i=1

log{f(xi)} − n−1`n(θ)

where the second term is the usual log likelihood function. Hence, minimiz-

ing KL-divergence is approximately the same as maximizing the likelihood

function. The analog goes further to situations where non-i.i.d. observations

are available.

Unlike UMVUE or other estimators, MLE does not aim at most precisely

determining the best possible value of “true” θ. One may wonder if it mea-

sures up if it is critically examined from different angles. This will be the

topic of the next section.
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7.1 Trivial consistency

Under very general conditions, the MLE is strongly consistent. We work out

a simple case her. Consider the situation where Θ = {θj : j = 1, . . . , k} for

some finite k. Assume that

F (x; θj) 6= F (x; θl)

for at least one x value when j 6= l, where F (x; θ) is the cumulative distribu-

tion function of f(x; θ). The condition means that the model is identifiable

by its parameters. We assume an i.i.d. sample from F (x; θ0) has been ob-

tained but pretend that we do not know θ0. Instead, we want to estimate it

by the MLE.

Let `n(θ) be the likelihood function based on the i.i.d. sample of size n.

By the strong law of large numbers, we have

n−1{`n(θ)− `n(θ0)} → −K(f(x; θ0), f(x; θ))

almost surely for any θ ∈ Θ. The identifiability condition implies that

K(f(x; θ0), f(x; θ)) > 0

for any θ 6= θ0. Therefore, we have

`n(θ) < `n(θ0)

almost surely as n→∞. When there are only finite many choices of θ in Θ,

we must have

max{`n(θ) : θ 6= θ0} < `n(θ0)

almost surely. Hence, the MLE θ̂n = θ0 almost surely.

Let us summarize the result as follows.

Theorem 7.1. Let X1, . . . , Xn be a set of iid sample from the distribution

family {f(x; θ) : θ ∈ Θ} and the true value of the parameter is θ = θ0.

Assume the identifiability condition that

F (x; θ
′
) 6= F (x; θ

′′
) (7.1)
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for at least one x whenever θ
′ 6= θ

′′
.

Assume also that

E| log f(X; θ)| <∞ (7.2)

for any θ ∈ Θ, where the expectation is computed under θ0.

Then, the MLE θ̂ → θ0 almost surely when Θ = {θj : j = 0, 1, . . . , k} for

some finite K.

Although the above proof is very simple. The idea behind it can be

applied to prove the general result. For any subset B of Θ, define

f(x;B) = sup
θ∈B

f(x; θ).

We assume that f(x;B) is a measurable function of x for all B under con-

sideration. We can generalize the above theorem as follows.

Theorem 7.2. Let X1, . . . , Xn be a set of i.i.d. sample from the distribution

family {f(x; θ) : θ ∈ Θ} and that Θ = ∪kj=0Bj for some finite k. Assume

that the true value of the parameter is θ = θ0 ∈ B0 and that

E| log f(X;Bj)| < E[log f(X; θ0)] (7.3)

for j = 1, 2, . . . , k. Then, the MLE θ̂ ∈ B0 almost surely.

7.2 Trivial consistency for one-dimensional θ

Consider the situation where we have a set of i.i.d. observations from a one-

dimensional parametric family {f(x; θ) : θ ∈ Θ ⊂ R}. The log likelihood

function remains the same as

`n(θ) =
n∑
i=1

log f(xi; θ).

We likely have defined score function earlier, which is, given i.i.d. observations

Sn(θ;x) =
n∑
i=1

∂{log f(xi; θ)}
∂θ

.
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We will use plain S(θ;x) if when x is regarded as a single observation. We

can be sloppy by using notation E{S(θ)} in which x has to be interpreted as

the random variable X whose distribution is f(x; θ), with the same θ in S

and f .

Let us put done a few regularity conditions. They are not most general

but suffice in the current situation.

R0 The parameter space of θ is an open set of R.

R1 f(x; θ) is differentiable to order three with respect to θ at all x.

R2 For each θ0 ∈ Θ, there exist functions g(x), H(x) such that for all θ in

a neighborhood N(θ0),

(i)

∣∣∣∣∂f(x; θ)

∂θ

∣∣∣∣ ≤ g(x);

(ii)

∣∣∣∣∂2f(x; θ)

∂θ2

∣∣∣∣ ≤ g(x);

(iii)

∣∣∣∣∂3 log f(x; θ)

∂θ3

∣∣∣∣ ≤ H(x)

hold for all x, and∫
g(x)dx <∞; E0{H(X)} <∞.

R3 For each θ ∈ Θ,

0 < Eθ
{
∂ log f(x; θ)

∂θ

}2

<∞.

Although the integration is stated as with respect to dx, the results we

are going to state remain valid if it is replace by some σ-finite measure. For

instance, the result is applicable to MLE under Poisson model where dx

must be replaced by summation over non-negative integers. All conditions

are stated as they are required for all x. An exception over a 0-measure set

of x is allowed, as long as this 0-measure set is the same for all θ ∈ Θ.
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Lemma 7.1. (1) Under regularity conditions, we have

E
{
∂ log f(X; θ)

∂θ
; θ

}
= 0.

(2) Under regularity conditions, we have

E
{
∂ log f(X; θ)

∂θ

}2

= −E
{
∂2 log f(X; θ)

∂θ2

}
= I(θ).

Proof. We first remark that the first result is the same as stating E{S(θ)} =

0. The proof of one is based on the fact that∫
f(x; θ)dx = 1.

Taking derivative with respect to θ on both sizes, permitting the exchange

of derivative and integration under regularity condition R2, and expressing

the resultant properly, we get result (1).

To prove (2), notice that

∂2 log f(X; θ)

∂θ2
=

{
f ′′(X; θ)

f(X; θ)

}
−
{
f ′(X; θ)

f(X; θ)

}2

.

The result is obtained by taking expectation on both sizes and the fact

E
{
f ′′(X; θ)

f(X; θ)

}
=

∫
f ′′(x; θ)dx = 0.

This completes the proof.

We now give a simple consistency proof when θ is one-dimensional.

Theorem 7.3. Given an i.i.d. sample of size n from some one-parameter

model {f(x; θ) : θ ∈ Θ ⊂ R}. Suppose θ∗ is the true parameter value. Under

Conditions R0-R3, there exists an θ̂n sequence such that

(i) Sn(θ̂n) = 0 almost surely;

(ii) θ̂n → θ∗ almost surely.
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Proof. (i) As a function of θ, E{S(θ)} has derivative equaling −I(θ∗) at

θ = θ∗. Hence, it is a decreasing function at θ∗. This implies the existence

of sufficiently small ε > 0, such that

E{S(θ∗ + ε)} < 0 < E{S(θ∗ − ε)}.

By the law of large numbers, we have

n−1Sn(θ∗ ± ε) a.s.−→ E{S((θ∗ ± ε)}.

Hence, almost surely, we have

Sn(θ∗ + ε) < 0 < Sn((θ∗ − ε).

By intermediate value theorem, there exists a θ̂ ∈ (θ∗ − ε, θ∗ + ε) such that

Sn(θ̂) = 0.

This proves (i).

(ii) is a direct consequence of (i) as ε can be made arbitrarily small.

7.3 Asymptotic normality of MLE after the

consistency is established

Under the assumption that f(x; θ) is smooth, and the MLE θ̂ is a consistent

estimator of θ, we must have

Sn(θ̂) = 0.

By the mean-value theorem in mathematical analysis, we have

Sn(θ∗) = Sn(θ̂) + S ′n(θ̃)(θ∗ − θ̂)

where θ̃ is a parameter value between θ∗ and θ̂.

By the result in the last lemma, we have

n−1S ′n(θ̃)→ −I(θ∗),
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the Fisher information almost surely. In addition, the classical central limit

theorem implies

n−1/2Sn(θ∗)→ N(0, I(θ∗)).

Thus, by Slutzky’s theorem, we find

√
n(θ̂ − θ∗) = n−1/2I−1(θ∗)Sn(θ∗) + op(1)→ N(0, I−1(θ∗))

in distribution as n→∞.

Many users including statisticians ignore the regularity conditions. In-

deed, they are satisfied by most commonly used models. If one does not

bother with the full rigour, he or she should at least make sure that the

parameter value in consideration is an interior point, the likelihood function

is smooth enough. If the data set does not have i.i.d. structure, one should

make sure that some form of uniformity hold.

7.4 Asymptotic efficiency, super-efficient, one-

step update scheme

By Cramer-Rao information inequality, for any estimator of θ given i.i.d.

data and sufficiently regular model, we have

var(θ̂n) ≥ I−1
n (θ∗)

for any estimator θ̂n assuming unbiasedness. The MLE under regularity

conditions has asymptotic variance I(θ∗) at rate
√
n. Loosely speaking, the

above inequality becomes equality for MLE. Hence, the MLE is “efficient”:

no other estimators can achieve lower asymptotic variance.

Let us point out the strict interpretation of asymptotic efficiency is not

correct. Suppose we have a set of i.i.d. observations from N(θ, 1). The MLE

of θ is X̄n. Clearly, if θ∗ is the true value, we have

√
n(X̄n − θ∗)

d−→ N(0, 1).

Can we do better than the MLE? Let

θ̃n =

{
0 if |X̄n| ≤ n−1/4

X̄n otherwise.
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When the true value θ∗ = 0, then

pr(|X̄n| ≤ n−1/4)→ 1

as n→ 0. Hence, √
n(X̄n − θ∗)

d−→ N(0, 0)

with asymptotic variance 0 at rate
√
n.

When the true value θ∗ 6= 0, then

pr(|X̄n| ≤ n−1/4)→ 0

which implies

pr(θ̃n = X̄n)→ 1.

Consequently, √
n(θ̃n − θ∗)

d−→ N(0, 1).

What have we seen? If θ∗ 6= 0, then θ̃n has the same limiting distribution

as that of X̄n at the same rate. So they have the same asymptotic efficiency.

When θ∗ = 0, the asymptotic variance of θ̃n is 0 which is smaller than that

of X̄n (at rate
√
n). It appears that the unattractive θ̃n is superior than the

MLE in this example.

Is there any way to discredit θ̃n? Statisticians find that if θ∗ = n−1/4,

namely changes with n, then the variance of
√
nθ̃n goes to infinity while that

of
√
nX̄n remains the same. It is a good exercise to compute its variance in

this specific case.

If some performance uniformity in θ is required, the MLE is the one

with the lowest asymptotic variance. Hence, the MLE is generally referred

to as asymptotically efficient under regularity conditions, or simply

asymptotically optimal.

Estimators such as θ̃n are called super-efficient estimators. Their existence

makes us think harder. We do not recommend these estimators.

If one estimator has asymptotic variance σ2
1 and the other one has asymp-

totic variance σ2
2 at the same rate and both asymptotically unbiased, then

the relative efficiency of θ̂1 against θ̂2 is defined as σ2
2/σ

2
1. A higher ratio

implies higher relative efficiency. This definition is no longer emphasized in

contemporary textbooks.



7.4. ASYMPTOTIC EFFICIENCY, SUPER-EFFICIENT, ONE-STEP UPDATE SCHEME71

Suppose θ̃ is not asymptotically efficient. However, it is good enough such

that for any ε > 0, we have

pr{n1/4|θ̃ − θ| ≥ ε} → 0

as n→∞. Let

θ̂n = θ̃n − `′n(θ̃n)/`′′n(θ̃n)

in apparent notation. Under regularity conditions, it can be shown that

√
n(θ̂ − θ∗) d−→ N(0, I−1(θ∗)).

Namely, the Newton-Raphson update formula can turn an ordinary estimator

into an asymptotically efficient estimator easily.

Suppose we have a set of i.i.d. observations from Cauchy distribution

with location parameter θ. Under this setting, the score function has multiple

solutions. It is not straightforward to obtain the MLE in applications. One

way to avoid this problem is to estimate θ by the sample median which

is not optimal. The above updating formula can then be used to get an

asymptotically efficient (optimal) estimator. Let us leave it as an exercise

problem.
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Chapter 8

Analysis of regression models

In this chapter, we investigate the estimation problems when data are pro-

vided in the form

(yi; xi) : i = 1, 2, . . . , n. (8.1)

The range of y is R and the range of x is Rp. We call then response variable

and explanatory variables. In many applications, such data are collected

because the users believe a large proportion of the variability in y from in-

dependent trials can be explained away from the variation in x. Often, we

feel that they are linked via a regression relationship with additive error:

yi = g(xi;θ) + σεi (8.2)

such that the error terms εi are uncorrelated with mean 0 and variance 1.

In this setting, the analytical form of g(x;θ) is specified in general. Yet we

are left to decide what is the most “appropriate” value of θ for the specific

occasion. The distributional information about ε may or may not be specified

depending on specific circumstances. Factoring out σ in the error term may

not always be most convenient.

The observations on the explanatory variable, xi, are either regarded as

chosen by scientists (users) so that their values are not random, or they are

independent samples from some population whose distribution is not related

to g(·) nor θ. In addition, they are independent of ε.

The appropriateness of a regression model in specific applications will not

be discussed in this course. We continue our discussion under the assumption

73
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that all promises for (8.2) are solid.

It is generally convenient to use matrix notation here. We define and

denote the covariate matrix as

Xn =


x11 x12 · · · x1p

x21 x22 · · · x2p

. . . . . . . . .

xn1 xn2 . . . xnp

 =


xτ1
xτ2
. . .

xτn


= (X1,X2, . . . ,Xp).

We define design matrix as

Zn = (1,X1,X2, . . . ,Xp)

which is the covariate matrix supplemented by a column vector made of 1.

We also use bold faced y and ε for column vectors of length n for response

values and error terms. When necessary, we use yn,Xn with subindex n to

highlight the sample size n. Be cautious that X3 stands for the column vector

of the third explanatory variable, not the covariate matrix when n = 3. We

trust that such abuses will not cause much confusion though mathematically

ir-rigorous.

8.1 Least absolution deviation and least squares

estimators

Suppose we are given a data set in the form of (8.1) and we are asked to

use the data to fit model (8.2). Let us look into the problem of how to

best estimate θ and σ. We do not discuss the issues such that the fitness of

function g(·) and the distribution of ε.

There are many potential approaches for estimating θ. One way is to

select θ value such that the average difference between yi and g(xi; θ) is

minimized. If so, one may come up with many potential distances. The

absolute difference is one. If so, we would let

Mn(θ) =
n∑
i=1

|yi − g(xi; θ)|
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and find the corresponding M-estimator. This estimator is generally called

the least absolute deviation estimator. A disadvantage of this approach is

the inconvenience of working with absolute value function both analytically

and numerically.

A more convenient choice is

Mn(θ) =
n∑
i=1

{yi − g(xi; θ)}2.

The resultant estimator is called the least squares estimator.

We may place a parametric distribution assumption on that of ε. If ε

has standard normal N(0, 1) distribution, then the MLE of θ equals the

least squares estimator. If ε has double exponential distribution with density

function

f(u) =
1

2
exp{−|u|}

then, the least absolute deviation estimator is also the MLE. Note the vari-

ance of this distribution equals 2, which is against model assumption in (8.2)

but does not lead to any other issues.

Here is a likely mission-impossible task for many students at this moment.

Find the asymptotic efficiency of the least absolute deviation estimator when

the data are i.i.d. samples from normal distribution, and the asymptotic

efficiency of the least squares estimator when the data are i.i.d. samples

from double exponential.

8.2 Linear regression model

Linear regression model is a special signal plus error model. In this case, the

regression function E(Y |X = x) has a specific form:

E(Y |X = x) = g(x; θ) = β0 + β1x1 + · · ·+ βpxp.

We can write it in vector form with zτ = (1,xτ ) as

g(x; θ) = zτβ (8.3)

which is linear in regression coefficient β = (β0, β1, . . . , βp)
τ . While we

generally prefer to include β0 in most applications, this is not a mathematical
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necessity. In some applications, the scientific principle may seriously demand

a model with β0 = 0. Luckily, even though the subsequent developments will

be based on z which implies β0 is part of the model, all of them remain valid

when z is reduced to x so that β0 = 0 is enforced. We will not rewrite the

same result twice for this reason.

We have boldfaced two terminologies without formally defining them. It

is worth to emphasize here that model is linear not because the regression

function g(x; θ) is linear in x, but it is linear in θ which is denoted as β here.

In applications, we may use x1 for some explanatory variables such as dosage

and include x2 = log(x1) as another explanatory variable in the linear model.

If so, a linear regression model has a regression function g(x, θ) not linear in

x1.

Suppose we have n independent observations from regression model (8.2)

with linear regression function (8.3), one way to estimate the regression co-

efficient vector is by the least squares. The M-function now has form

Mn(β) = (yn − Znβ)τ (yn − Znβ) =
n∑
i=1

(yi − zτiβ)2. (8.4)

For linear regression model, there is an explicit solution to the least squares

problem in a neat matrix notation.

Theorem 8.1. Suppose (yi,xi) are observations from linear regression model

(8.2) with g(x, θ) given by (8.3). The solution to the least squares problem

as defined in (8.4) is given by

β̂n = (Zτ
nZn)−1Zτ

nyn (8.5)

if Zτ
nZn has full rank.

If Zτ
nZn does not have full rank, one solution to the least squares problem

is given by

β̂n = (Zτ
nZn)−Zτ

nyn

where A− here denotes a specific generalize inversion.

Remark: the statement hints that if Zτ
nZn does not have full rank, the

solution is not unique. However, we will not discuss it in details.
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Proof. We only give a proof when Zτ
nZn has full rank. It is seen that

Mn(β) = {(yn − Znβ̂) + Zn(β̂ − β)}τ{(yn − Znβ̂) + Zn(β̂ − β)}
= (yn − Znβ̂)τ (yn − Znβ̂) + (β̂ − β)τ (Zτ

nZn)(β̂ − β)

≥ (yn − Znβ̂)τ (yn − Znβ̂).

The lower bound implied by the above inequality is attained when β = β̂.

Hence, β̂ is the solution to the least squares problem.

Let β̂n be the least squares estimator of β and β be the true value of the

parameter without giving it a special notation. We find

E{β̂n|Xn} = (Zτ
nZn)−1Zτ

n{Znβ} = β.

Hence, β̂n is an unbiased estimator of the regression coefficient vector. No-

tice that this conclusion is obtained under the assumption that x and ε are

independent. Also notice that we assumed ε has zero mean and variance 1,

but placed no assumption on its distributions. Next, it is seen that

β̂n − β = σ(Zτ
nZn)−1Znεn.

Hence,

var(β̂n) = (Zτ
nZn)−1σ2.

Because we made a distinction between the covariate matrix Xn and the

design matrix Zn, the above expression may appear a bit strange.

With β estimated by β̂, it is naturally to regard

ŷn = Znβ̂n = Hnyn

as the estimated value of yn, where the hat matrix

Hn = Zn(Zτ
nZn)−1Zτ

n.

In fact, we call ŷn fitted value(s). How closely does ŷn match yn? The

residual of the fit is given by

ε̂n = (In −Hn)yn = σ(In −Hn)εn.
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One can easily verify that Hn and In −Hn are symmetric and idempotent,

and (In − Hn)Zn = 0. From geometric angle, Hn is a projection matrix.

The operation Hnyn projects yn into the linear space spun by Zn. Naturally,

(In −Hn)yn is the projection of yn into the linear space orthogonal to Zn.

This leads to a decomposition of the sum of squares:

yτnyn = yτnHnyn + yτn(In −Hn)yn.

The second term is the “residual sum of squares”. It is an easy exercise to

prove that

yτn(In −Hn)yn = ε̂τnε̂n.

We directly verified that β̂ solves the least squares problem. One may

derive this result by searching for solutions to

∂Mn(β)

∂β
= 0.

This leads to normal equation

Zτ
n{yn − Znβ} = 0.

We again leave it as an easy exercise.

We have seen that the least squares estimator β̂n has a few neat prop-

erties. Yet we cannot help to ask: can we find other superior estimators?

The answer is no at least in one respect. The least squares estimator has the

lowest variance among all unbiased linear estimators of β. A linear estimator

is defined as one that can be written as a linear combinations of yi. It must

be able to be written in the form of Ayn for some matrix A not dependent

on yn.

Theorem 8.2. Gauss-Markov Theorem. Let β̂n be the least squares

estimator and

β̃n = Ayn

for some nonrandom matrix A (may depend on Xn) be an unbiased linear

estimator of β under the linear regression model with n independent obser-

vations. Then

var(β̃)− var(β̂) ≥ 0.



8.3. LOCAL KERNEL POLYNOMIAL METHOD 79

Proof. Suppose Ayn is unbiased for β. We must have

E(Ayn) = AZnβ = β

for any β. Hence, we must have AZ = Ip+1. This implies

var(β̃−β̂) = σ2{A−(Zτ
nZn)−1Zτ

n}{Aτ−Zn(Zτ
nZn)−1} = var(β̃)−var(β̂).

Because the variance matrix for any random variable is non-negative definite.

Hence, we must have

var(β̃)− var(β̂) ≥ 0.

An estimator which is linear in data and unbiased for the target parameter

is called best linear unbiased estimator (BLUE) if it has the lowest

possible variance matrix.

Not only the least squares estimator β̂ is BLUE for β, but bτ β̂ is BLUE

for bτβ for any non-random vector b.

At the same time, be aware that if we have additional information about

the distribution of εn in the linear model, then we may obtain more efficient

estimator for β, but that estimator is either not linear or not unbiased.

8.3 Local kernel polynomial method

Naturally, a linear regression model is not always appropriate in applications,

but we may still believe a signal plus noise relationship is sound. In this sec-

tion, we consider the situation where the regression function g(x) is smooth

in x, but we are unwilling to place more restrictions on it. At the same time,

we only study the simple situation where x is a univariate covariate.

Suppose we wish to estimate g(x) at some specific x∗ value. By definition,

g(x) = E(Y |X = x∗). If among n observations {(yi, xi)}, i = 1, . . . , n we

collected, there are many xi such that xi = x∗. Then the average of their

corresponding yi would be a good estimate of g(x∗). In reality, there may

not be any xi equalling x∗ exactly. Hence, this idea does not work. On the

other hand, when n is very large, there might be many xi which are very

close to x∗. Hence, the average of their corresponding yi should be a sensible
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estimate of g(x∗). To make use of this idea, one must decide how close is

close enough. Even within the small neighbourhood, should we merely use

constant, rather than some other smooth functions of x to approximate g(x)?

For any u in close enough to x (rather than x∗ for notation simplicity)

and some positive integer p, when g(x) is sufficiently smooth at x, we have

g(u) ≈ f(x) + f ′(x)(u− x) + . . .+ (1/p!)f (p)(x)(u− x)p.

Let

β0 = f(x), β1 = f ′(x), . . . , βp = (1/p!)f (p)(x).

Then the approximation can be written as

g(u) ≈ β0 + β1(u− x) + . . .+ βp(u− x)p.

Note that at u = x, we have g(x) ≈ β0.

Suppose that for some h > 0, f(u) perfectly coincides with the above

polynomial function for x ∈ [x− h, x+ h]. If so, within this region, we have

a linear regression model with regression coefficient βx. A natural approach

of estimating this local βx is the least squares:

β̂ = arg min
β

n∑
i=1

1(|xi − x| ≤ h){yi − zτiβ}2

where

zi = {1, (xi − x), (xi − x)2, . . . , (xi − x)p}τ .

Note again that zi is defined dependent on x-value, the location at which

g(x) is being estimate.

Note that we have added a subindex x to β. This is helpful because this

vector is specific to the regression function g(u) at u = x. When we change

target from u = x1 to u = x2 6= x2, we must refit the data and obtain the β

specific for u = x2. We repeatedly state this to emphasize the local nature

of the current approach.

The above formulation implies that ith observation will be excluded even

if |xi − x| is only slightly larger than h. At the same time, any observations

with |xi−x| ≤ h are treated equally. This does not seem right in our intuition.

One way to avoid this problem is to replace the indicator function by a general

kernel function K(x) often selected to satisfy the following properties:
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1. K(x) ≥ 0;

2.
∫∞
−∞K(x)dy = 1;

3. K(x) = K(−x), That is, K(x) is a symmetric function.

For instance, the density function φ(x) of N(0, 1) has these properties. In

fact, any symmetric density function does.

Let Kh(x) = h−1K(x/h). We now define the local polynomial kernel

estimator of βx as

β̂x = arg min
β

n∑
i=1

Kh(xi − x){yi − zτiβ}2

An explicit solution to the above optimization problem is readily available

using matrix notation. Let ym be the response vector, define design matrix

Zx =

 1 x1 − x · · · (x1 − x)p

...
... · · · ...

1 xn − x · · · (xn − x)p


and weight matrix

Wx = diag{Kh(x1 − x), Kh(x2 − x), · · · , Kh(xn − x)}.

The M-function can then be written as

Mn(β) = (y− Zxβ)τWx(y− Zxβ).

It is an easy exercise to show that the solution is given by

β̂x = (Zτ
xWxZx)

−1Zτ
xWxyn

Let ej be a (p + 1)× 1 vector such that the jth element being 1 and all

other elements being 0, j = 1, . . . , p+ 1. Then we estimate g(x) by

ĝ(x) = β̂0 = eτ1(Zτ
xWxZx)

−1Zτ
xWxyn

where β̂0 is the first element of β̂x.
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Remark: Notationally, the above locally kernel polynomial estimator

remains the same for any choice of p.

Suppose g(x) is differentiable up to order p. Then, for k = 1, . . . , p, we

estimate the kth derivative g(k)(x) by

ĝ(k)(x) = k!β̂k = k!eτk+1(Zτ
xWxZx)

−1Zτ
xWxyn.

When we decide to use p = 0 in this approach, the estimator ĝ(x) becomes

f̂(x) =

∑n
i=1 Kh(xi − x)yi∑n
i=1Kh(xi − x)

,

which is known as the local constant kernel estimator, kernel regression es-

timator and Nadaraya-Watson estimator. This estimator can be motivated

by the fact that g(u) is a constant function in a small neighborhood of x:

u ∈ [x−h, x+h] for some sufficiently small h. The estimator is the weighted

average of the corresponding response values whose x is within small neigh-

bourhood of x.

When we decide to use p = 1 in this approach, the estimator is called the

local linear kernel estimator of g(x).

Before this estimator is applied to any specific data, we must make a

choice on the kernel function K, the degree of the polynomial p and the

bandwidth h. We now go over these issues.

Choice of K(y).

The choice of kernel function K(x) is not crucial. Other than it should

have a few desired properties, its specific form does not markedly change the

variance or bias of ĝ(x). In our future examples, we will mostly use normal

density function. Clearly, the normal density function has the listed three

properties.

Choice of p.

For the given bandwidth h and kernel K(x), a large value of p would

expectedly reduce the bias of the estimator because the local approximation

becomes more and more accurate as p increases. At the same time, when p

is large, we have more parameters to estimate as reflected in the dimension

of β. Hence, the variance of the estimator will increase and there will be a

larger computational cost.
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Fan and Gijbels (1996) showed that when the degree of the polynomial

employed increases from p = k + 2q to p = k + 2q + 1 for estimating g(k)(x),

the variance does not increase. However, if we increase the degree from

p = k + 2q + 1 to p = k + 2q + 2, the variance increases. Therefore for

estimating g(k)(x), it is beneficial to use a degree p such that p − k is odd.

Since bandwidth h also controls the bias and variance trade-off of g(k)(x),

they recommended the lowest odd order for p − k, namely p = k + 1, or

occasionally p = k+ 3. For the regression function itself, they recommended

local linear kernel estimator (i.e. p = 1) instead of the Nadaraya-Watson

estimator (i.e. p = 0).

To have a better understanding of the above information, we summarize

some theoretical results about the local linear kernel estimator and Nadaraya-

Watson estimator here. Let them be denoted as ĝll(x) and ĝnw(x), respec-

tively. We have

ĝnw(x) =

∑n
i=1 Kh(xi − x)yi∑n
i=1Kh(xi − x)

ĝll(x) = β̂0 = arg min
β0
{min

β1

n∑
i=1

Kh(xi − x){yi − β0 − β1(xi − x)}2}.

Under the regression model assumption that

yi = g(xi) + σεi

and for random xi such that its density function is given by f(x), and under

many conditions regulating f(x), g(x) and distribution of ε, we have

E{ĝnw(x)|x} ≈ g(x) + 0.5h2µ2(K)

{
g′′(x) +

2f ′(x)g′(x)

f(x)

}
;

E{ĝll|x} ≈ g(x) + 0.5h2g′′(x)µ2(K);

var{ĝnw(x)|x} ≈ σ2

nhf(x)
R(K);

var{ĝll(x)|x} ≈ σ2

nhf(x)
R(K)

where µ2(K) and R(K) are some positive constants depending on kernel

function K.
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The above results show that the local linear kernel estimator ĝll(x) and

Nadaraya-Watson estimator ĝnw(x) have the same asymptotic variance condi-

tional on x. which is the conclusion that we discussed before. The asymptotic

bias of ĝnw(x) has an extra bias term 2f ′(x)g′(x)µ2(K)h2/f(x). The coeffi-

cient 2f ′(x)g′(x)/g(x) is also called design bias because it depends on the

design, namely, the distribution of x. This implies that the bias is sensitive

to the positions of design point xi’s. Note that f ′(x)
f(x)

can have high influence

on the bias when x is close to the boundary. For example, when the den-

sity points xi have standard normal distribution, |f ′(x)/f(x)| = |x|, which is

very large when x approaches to∞. Hence 2f ′(x)g′(x)/f(x) is also known as

boundary bias. These two biases are reduced by using the local linear kernel

estimator. In summary, local linear kernel estimator is free from the design

and boundary biases, but Nadaraya-Watson estimator is not.

Choice of bandwidth h

Suppose we have made choice of the kernel function K(x) and p. We now

discuss the choice of bandwidth h. Bandwidth plays a very important role

in estimating the regression function g(x).

First, as h increases, the local approximation becomes worse and worse

and hence the bias of local polynomial kernel estimator increases. On the

other hand, more and more observations will be included in estimating g(x).

Hence the variance of local polynomial kernel estimator decreases. A good

choice of a bandwidth helps to balance the bias and variance. Second, as

h increases, the local polynomial kernel estimate becomes smoother and

smoother. This can be observed in Figure 8.1, in which we compare the

Nadaraya-Watson estimates of g(x) constructed when the bandwidth h takes

three values, 0.1, 1, and 4, respectively. Conceptually, the number of param-

eters required to describe the curve decreases. In this sense, h controls the

model complexity. We should choose a bandwidth to balance the modelling

fitting and model complexity.
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Figure 8.1: Motorcycle data: Nadaraya-Watson estimates of g(x) with nor-

mal kernel
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We introduce two bandwidth selection methods here: l eave-one-out cross-

validation (cv) and generalized cross-validation (gcv). These two methods

are also widely used in studying other regression problems.

The idea of leave-one-out cv is as follows. Recall that one purpose of

fitting a regression model is to predict the response value in a new trial. So

a reasonable choice of h should result in a small prediction error. Unfor-

tunately, we do not know the true response, and therefore we cannot know

how good is the prediction f̂(x) given h. The idea of cross-validation is to

first delete one observation from the data set, and treat the remaining n− 1

observations as the training data set and the deleted observations as testing

data. We then test the goodness of prediction for the testing observation by

using the training data set. We repeat the process for all observations and

get the prediction errors for all observations. We choose h by minimizing the

sum of prediction errors. Mathematically, let ĝ−i(xi) be the estimate of g(xi)

based on the n− 1 observations without xi. For the given h, the cv score is

defined as

cv(h) =
n∑
i=1

{yi − ĝ−i(xi)}2.

The optimal h based on the leave-one-out cross-validation idea is

hcv = arg mincv(h).

It seems that it might be time consuming to evaluate cv(h) since we ap-

parently need to recompute the estimate after dropping out each observation.

Fortunately, there is a shortcut formula for computing cv(h).

Let

l(x) =
(
l1(x), . . . , ln(x)

)
= eτ1(Zτ

xWxZx)
−1Zτ

xWx.

Then

ĝ(x) =
n∑
j=1

lj(x)yj and ĝ(xi) =
n∑
j=1

lj(xi)yj.

Define the fitted value vector

ŷ = (ŷ1, · · · , ŷn)τ = (ĝ(x1), · · · , ĝ(xn))τ .

It then follows that

ŷ = Ly
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where L is an n × n matrix whose ith row is l(xi); thus Lij = lj(xi) and

Lii = li(xi). It can be shown that

cv(h) =
n∑
i=1

{
yi − f̂(xi)

1− Lii

}2

.

We can minimize the above cv(h) to get the hcv.

The second method for choosing h is called the generalized cross-validation.

For this method, rather than minimizing cv(h), an alternative is to use an

approximation called generalized cross-validation (gcv) score in which each

Lii is replaced with its average v/n, where v = tr(L) =
∑n

i=1 Lii is called the

effective degrees of freedom. Thus, we would minimize gcvscore

gcv(h) =
n∑
i=1

{
Yi − f̂(xi)

1− v/n

}2

to obtain the bandwidth hgcv. That is,

hgcv = arg min
h

gcv(h).

Usually hcv is quite close to hgcv.

In Appendix I, we include the R function bw.cv() to choose the bandwidth

for the local polynomial kernel estimate for continuous response. The source

code is saved in bw cv.R. In this function, if the option cv=T, then the

cvmethod is used; if the option cv=F, then the gcvmethod is used. The R

function regCVBwSelC() in the R package locpol can also be used to obtain

hcv for the continuous response. The R function regCVBwSelC() gives the

same result as the R function bw.cv() with cv=T. Further it is much faster.

Figure 8.2 gives the cv(h) and gcv(h) for p = 0, 1. Here the normal kernel

is used. (Remark by your instructor: these programs are not included).

Similar to kernel density estimation, Wand and Jones (1995) applied the

idea of direct plug-in methods for bandwidth selection for local linear kernel

estimate. This idea is implemented in R function dpill() in the package

KernSmooth. I did not cover this idea because it is only applicable for local

linear kernel estimate. Further it is more complicated to implement compared

with cv and gcv methods.
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Figure 8.2: Motorcycle data: cv(h) and gcv(h) for p = 0, 1 with normal

kernel
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Applying the above mentioned R functions, for p = 0, hcv = 0.914 and

hgcv = 1.089; for p = 1, hcv = 1.476, hgcv = 1.570, and the direct plug-in

gives hDPI = 1.445. Figure 8.3 gives the fitted curves of f(x) with p = 0, 1,

in which the bandwidth is selected by cv or gcv. Here the normal kernel

is used. The two curves for p = 0 are almost the same. The fitted curves

for p = 1 with the bandwidths hcv, hgcv, and hDPI are almost the same.

Hence we only plot the curves with the bandwidths selected by cv and gcv.

The four fitted curves are very close to each. They do not show too much

difference when they are plotted in the same panel.

Properties of f̂(x)

Let h be given. We have

E{ĝ(x)|x} ≈ f(x)

and

var{ĝ(x)|x} = σ2e1
τ (Zτ

xWxZx)
−1(Zτ

xW
2
xZx)(Z

τ
xWxZx)

−1e1.

Therefore the standard error is given by

se{f̂(x)} =

√
σ̂2e1

τ (Zτ
xWxZx)−1(Zτ

xW
2
xZx)(Z

τ
xWxZx)−1e1,

where σ̂2 is an estimator of σ2. Wand and Jones (1995) suggested the fol-

lowing form for σ̂2:

σ̂2 = n− 2v + ṽ

with

v = tr(L) =
n∑
i=1

Lii, ṽ = tr(LτL) =
n∑
i=1

n∑
j=1

L2
ij.
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Figure 8.3: Motorcycle data: fitted curves for p = 0, 1 with normal kernel,

in which the bandwidth is selected by cvor gcv
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8.4 Spline method

Let us again go back to model (8.2) but do not assume a parametric regression

function g(x;θ). Instead, we only postulate that E(Y |X = x) = g(x) for

some smooth function g(·). Suppose we try to estimate g(·) by simplistic

least squares estimator without a careful deliberation. The solution will be

regarded as the solution to the minimization problem to

n∑
i=1

{yi − g(xi)}2.

If all xi values are different, the solution is given by any function ĝ such that

ĝ(xi) = yi. Such a perfect fitting clearly does not have any prediction power

for a new observation whose covariate value is not equal to the existing

covariate values. Furthermore, if ĝ(x) just connects all points formed by

observations, it lacks some smoothness we may expect.

If we require g(x) to be a linear function of x, then it is a very smooth

function, but the fitting is unsatisfactory if E(Y |X = x) is not far from

linear in x. One way to balance the need of smoothness and fitness is to use

smoothing spline. Among all functions with first two continuous derivatives,

let us find the one that minimizes the penalized L2-loss function

ĝλ(x) = arg min
g(x)

[
n∑
i=1

{yi − g(xi)}2 + λ

∫
{g′′(x)}2dx

]
, (8.6)

for some positive tuning or smoothing parameter λ. which is called smoothing

parameter. In the penalized L2-loss function, the first term measures the

goodness of model fitting, while the second term penalizes the curvature in

the function. We will remain vague on the range of x.

When we use λ = 0: ĝλ(x) becomes the ordinary least squares estima-

tor. The solution is not unique and has little prediction power.

When we use λ = ∞, then the optimal solution must be g′′(x) = 0

for all x. The solution must be linear in x. We are back to use linear

regression model and the associated least squares estimator.
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Clear, a good fit is possible by choose a λ value in between 0 to ∞ to

get a smooth function with reasonable fitting. Note that the above mini-

mization is taken over all possible function g(x), and such functions form

an infinite dimensional space. Remarkably, it can be shown that solution

ĝλ(x) to the penalized least squares problem is a natural cubic spline with

knots at the unique values of {xi}ni=1. Here we consider the case when x is

one-dimensional.

8.5 Cubic spline

We now need a brief introduction to the cubic spline. A cubic spline is a

function which is piece-wisely cubic polynomial. Namely, we partition the

real line into finite number of intervals and a cubic spline is a polynomial of

x of degree 3 which has continuous derivative.

More precisely, suppose −∞ = t0 < t1 < t2 < . . . < tk < tk+1 =∞ are k

distinct real values, then s(x) is a cubic spline if

1. It is a cubic function on each interval [ti, ti+1]:

si(x) = {ai + bix+ cix
2 + dix

3}

s(x) =
k∑
i=0

si(x)1(ti < x ≤ ti+1).

2. s(x) and its first and second derivatives are continuous:

si(ti+1) = si+1(ti+1),

s′i(ti+1) = s′i+1(ti+1),

s′′i (ti+1) = s′′i+1(ti+1).

The connection values t1, . . . , tk are called the knots of the cubic spline. In

particular, t1 and tk are called the boundary knots, and t2, . . . , tk−1 are called

the interior knots.

Furthermore, if
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3. s(x) is linear outside the interval [t1, tk]; that is,

s(x)1(x ≤ t1) = (a0+b0x)1(x ≤ t1); s(x)1(x ≥ tk) = (ak+bkx)1(x ≥ tk)

for some a0, b0, ak, bk,

we call s(x) a natural cubic spline with knots at t1, . . . , tk. Note that this

also means c0 = ck = 0.

The following result shows that there is a simpler way to express a cubic

spline.

Theorem 8.3. Any cubic spline s(x) with knots at {t1, . . . , tk} can be written

as:

s(x) = β0 + β1x+ β2x
2 + β3x

3 +
k∑
j=1

βj+3(x− tj)3
+, (8.7)

where (x)+ = max(0, x) for some coefficients β0, . . . , βk+3.

In other words, the cubic spline is a member of the linear space with basis

functions

1, x, x2, x3, (x− t1)3
+, . . . , (x− tk)3

+.

Proof. The function defined by (8.7) is clearly a cubic function on every

interval [t0, ti+1]. We can also easily verify that its first two derivatives are

continuous. This shows that such functions are cubic splines.

To prove this theorem, we need further show that every cubic spline with

knots at {t1, . . . , tk} can be written in the form specified by (8.7).

Let g(x) be a cubic spline with knots at {t1, . . . , tk}. Denote γi = g′′(ti)

for i = 1, 2, . . . , k. We show that there exists a function s(x) in the form of

(8.7) such that

β3 = 0, βk+3 = 0,

and s′′(ti) = γi for i = 1, . . . , k.
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If such a function exists, we must have, for other β values

β2/3 = γ1/6;

β2/3 + β4(t2 − t1) = γ2/6;

β2/3 + β4(t3 − t1) + β5(t3 − t2) = γ3/6;

· · ·
β2/3 + β4(tk−1 − t1) + · · ·+ βk+1(tk−1 − tk−2) = γk−1/6;

β2/3 + β4(tk − t1) + · · ·+ βk+1(tk − tk−2) + βk+2(tk − tk−1) = γk/6;

Taking differences, we find another set of equations whose solutions clearly

exist:

β4 = (1/6)(γ2 − γ1)/(t2 − t1);

β4 + β5 = (1/6)(γ3 − γ2)/(t3 − t2);

β4 + β5 + β6 = (1/6)(γ4 − γ3)/(t4 − t3);

· · ·
β4 + β5 + · · ·+ βk+2 = (1/6)(γk − γk−1)/(tk − tk−1).

The solution s(x) with any choice of β0 and β1 we have just obtained, has

the same second derivatives with the cubic spline g(x) at {t1 = 0, t2, . . . , tk}.
Now we can select β0 and β1 values such that s(t1) = g(t1) and s′(t1) = g′(t1).

Together with s′′(t1) = g′′(t1), s′′(t2) = g′′(t2), and they are both cubic

functions, we must have s(x) = g(x) for all x ∈ [t1, t2]. Applying the same

argument, they must be identical over [t1, tk]. This proves the existence.

As a remark, there can be multiple cubic splines identical on [t1, tk] but

different outside this interval.

Suppose

s(x) = β0 + β1x+ β2x
2 + β3x

3 +
k∑
j=1

βj+3(x− tj)3
+

is a natural cubic spline with knots {t1, t2, . . . , tk}. Since it is linear below

t1, we must have

β2 = β3 = 0.
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At the same time, being linear beyond tk implies we must have

k∑
j=1

βj+1(x− tj)+ = 0

for all x ≥ tk. This is possible only if both

k∑
j=1

βj+3 = 0,
k∑
j=1

tjβj+3 = 0.

In conclusion, out of k + 4 entries of β, only k of them are free for a natural

cubic spline. For this reason, we need to think a bit about how to fit a natural

cubic spline when data and knots are given.

One approach is as follows. Define functions for j = 1, . . . , k

dj(x) =
(x− tj)3

+ − (x− tk)3
+

tk − tj
.

Further, let N1(x) = 1, N2(x) = x, and for j = 3, . . . , k, let

Nj(x) = dj−1(x)− d1(x).

The following theorem says that every natural cubic spline is a linear com-

bination of Nj(x).

Theorem 8.4. Let t1 < t2 < . . . < tk be k knots and {N1(x), . . . , Nk(x)}
be functions defined above. Then all natural cubic splines s(x) with knots in

{t1, . . . , tk} can be expressed as:

s(x) =
k∑
j=1

βjNj(x),

for some coefficients β1, . . . , βk.

Proof. Note that

(tk − tj)dj(x) = (x− tj)3
+ − (x− tk)3

+.
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Equivalently,

(x− tj)3
+ = (tk − tj)dj(x) + (x− tk)3

+.

Substituting this expression into generic form of cubic spline, and activating

the constrains on βj implied by natural cubic spline, we find

s(x) = β0N1(x) + β1N2(x) +
k∑
j=1

βj+3(tk − tj)Nj+1(x).

Note that the kth term is zero. The conclusion is therefore true.

In general, a natural cubic spline can give very good approximation to

any function in a finite interval. This makes it useful to fit nonparametric

signal plus noise regression models. Given data {yi;xi} and the k knots,

t1, . . . , tk, we may suggest that

g(x) ≈
k∑
j=1

βjNj(x).

For the ith observation, we have

g(xi) ≈
k∑
j=1

βlNj(xi),

which is now a linear combination of k derived covariates. Let y be the

response vector, β the regression coefficient vector and ε the error vector.

Define design matrix

Zn =

 N1(x1) · · · Nk(x1)
...

...
...

N1(xn) · · · Nk(xn)

 .

The approximate regression model becomes

y ≈ Zβ + ε. (8.8)

We may use least squares estimator of β given by

β̂ = (ZτZ)−1Zτy.
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Let N(x) = {N1(x), . . . , Nk(x)}τ . Once β̂ is obtained, we estimate the re-

gression function by

ĝ(x) = Nτ (x)β̂.

Suppose (8.8) is in fact exact, then the properties of least squares estimator

are applicable. We summarize them as follows:

(a) E{β̂} = β and E{ĝ(x)} = g(x);

(b) var(β̂) = σ2(ZTZ)−1

(c) var{ĝ(x)} = σ2Nτ (x)(ZτZ)−1N(x).

If (8.8) is merely approximate, then the above equalities are approximate.

The approximation errors will not be discussed here.

The above idea is known as regression spline, which is a large research

topic in nonparametric regression. This approach is very widely used in many

applications to model a nonlinear and unknown function g(x). To apply this

method, we must decide the number of knots and choose the knots t1, . . . , tk
after the number of knots (k) is decided.

8.6 Smoothing spline

Smoothing spline addresses the knot-selection problem of regression spline by

taking all different covariate values as the knots. It uses the size of penalty

to determine the level of smoothness.

Recall that we claim that the numeric solution of smoothing spline to

(8.6) is a natural cubic spline with knots at all distinct values (t1 < · · · < tk)

of {xi}ni=1. This conclusion is implied by the following two claims.

Suppose ĝλ(x) is the solution to the penalized sum of squares. Two claims

about this function is as follows.

1. Given {ti; ĝλ(ti)}, based on the discussion in the last section there is a

unique natural cubic spline s(x) with knots in {t1, . . . , tk} such that

s(ti) = ĝλ(ti), i = 1, . . . , k.
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Because of the above, we have

n∑
i=1

{yi − s(xi)}2 =
n∑
i=1

{yi − ĝλ(xi)}2.

2 For the s(x) defined above, we have∫
{ĝ′′λ(x)}2dx ≥

∫
{s′′(x)}2dx

with the equality holds if and only if ĝλ(x) = s(x) for all x. If this is

true, we must have ĝλ(x) = s(x), a natural cubic spline.

A serious proof is needed for the second claim. Here is the proof.

Let γi = s′′(ti) for i = 1, . . . , k with s(x) being a cubic spline with knots

on t1, . . . , tk. Being “natural”, we have γ1 = γk = 0.

Let g(x) be another function with finite second derivatives such that

g(ti) = s(ti) for i = 1, 2, . . . , tk. It is seen that∫ ti+1

ti

g′′(x)s′′(x)dx =

∫ ti+1

ti

s′′(x)dg′(x)

= [s′′(ti+1)g′(ti+1)− s′′(ti)g′(ti)]−
∫ ti+1

ti

g′(x)s′′′(x)dx,

Note that

k−1∑
i=1

[s′′(ti+1)g′(ti+1)− s′′(ti)g′(ti)] = γkg
′(tk)− γ1g

′(t1) = 0.

Being linear on every interval [ti, ti=1], we have

s′′′(x) =
γi+1 − γi
ti+1 − ti

= αi

where we have used αi for the slope. With this, we find∫ ti+1

ti

g′(x)s′′′(x)dx = αi{g(ti+1)− g(ti)} = αi{s(ti+1)− s(ti)}
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where the last equality is from the fact that g(x) and s(x) are equal at knots.

Hence, we arrive at the conclusion that∫ tk

t1

g′′(x)s′′(x)dx = −
k∑
i=1

αi{s(ti+1)− s(ti)}.

This result is applicable when g′′(x) = s′′(x). Hence, we also have∫ tk

t1

s′′(x)s′′(x)dx = −
k∑
i=1

αi{s(ti+1)− s(ti)}.

This implies that ∫ tk

t1

g′′(x)s′′(x)dx =

∫ tk

t1

s′′(x)s′′(x)dx.

Making use of this result, we get∫ tk

t1

{g′′(x)− s′′(x)}2dx =

∫ tk

t1

{g′′(x)}2dx−
∫ tk

t1

{s′′(x)}2dx ≥ 0.

This equality holds only if g′′(x) = s′′(x) for all x ∈ [t1, tk]. Hence the overall

conclusion is proved.

Consider the problem of searching for a natural cubic splines that min-

imizes the penalized optimization problem (within this class of functions).

Given a function

g(x) =
k∑
j=1

βjNj(x)

for some constants β1, . . . , βk, its sum of squared residuals is given by

n∑
i=1

{yi − g(xi)}2 = (y− Zβ)τ (y− Zβ)

where

Z =

 N1(x1) · · · Nk(x1)
...

...
...

N1(xn) . . . Nk(xn)

 .
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The penalty term over interval [t1, tk] for this g(x) becomes∫
{g′′(x)}2dx =

∫ k∑
j=1

k∑
l=1

βjβlN
′′
j (x)N ′′l (x)dx = βTNβ

with

N = (Njl)k×k and Njl =

∫ tk

t1

N ′′j (x)N ′′l (x)dx.

The penalized sum of squares of g(x) is given by

(y− Zβ)τ (y− Zβ) + λβτNβ.

It is minimized, given λ, at

β̂λ = (ZτZ + λN)−1Zτy

and the fitted regression function is

ĝλ(x) =
k∑
j=1

β̂λ,jNj(x).

8.7 Effective number of parameters and the

choice of λ

If we regard ĝλ(x) as a fit based on a linear regression, then we seem to

have employed k independent parameters. Due to regularization induced by

penalty, the effective number of parameters is lower than k. Note that the

fitted value of response vector is given by

ŷλ = Z(ZτZ + λN)−1Zτy = Aλy.

We call Aλ smoother matrix. Similar to local polynomial kernel method, we

define the effective degrees of freedom (dfs) or effective number of parameters

to be

dfλ = trace(Aλ).
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As λ increases, the effective number of parameters (dfλ) decreases and ĝλ(x)

becomes smoother and smoother. We can hence try out a range of λ values

and examine the resulting ĝλ(x) and select the most satisfactory one. How-

ever, this procedure needs human interference and cannot be automated.

To overcome this deficiency, one may choose λ using cv or gcv criteria.

Similar to local polynomial kernel method, we define the gcv score as a

function of λ to be

gcv(λ) =
(y− ŷλ)

τ (y− ŷλ)

{1− trace(Aλ)/n}2
.

The gcvmethod chooses λ as the minimizer of gcv(λ).

The cv approach is similar. Let ĝ−i(xi) be the estimate of g(xi) based

on n − 1 observations without the ith observation. We define the cv score

as a function of λ to be

cv(λ) =
n∑
i=1

{yi − ĝ−i(xi)}2.

It turns out that

cv(λ) =
n∑
i=1

(
yi − ĝλ(xi)

1− trace(Aλ,i,i)

)2

.

This expression enable us to only fit the model once for each λ in order to

compute cv(λ). The cv method chooses λ value as the minimizer of cv(λ).

Remark: The so-called R-functions are not included.



102 CHAPTER 8. ANALYSIS OF REGRESSION MODELS



Chapter 9

Bayes method

Most of the data analysis methods we have discussed so far are regarded as

frequentist methods. More precisely, these methods are devised based on

the conviction that the data are generated from a fixed system which is a

member of a family of systems. While the system is chosen by nature, the

outcomes are random. By analyzing the data obtained/generated/sampled

from this system, we infer the properties of this system. The methods de-

vised subsequently are judged by their average performances when they are

repeated applied to all possible realized data from this system. For in-

stance, we regard sample mean as an optimal estimator for the population

mean under normal model in some sense. Whichever N(θ, σ2) is the true, on

average, (x̄ − θ)2 has the lowest average among all θ̂ whose average equals

θ. A procedure is judged optimal only if this optimality holds at each and

every possible θ, σ2 value.

When considered from such a frequentist point of view, the statisticians do

not play favours to any specific system against the rest of them in this family.

Simplistically, each system in the family is regarded of equal likelihood before

hand. This view is subject to dispute. In some applications, we may actual

have some preference between such systems. What is the chance that a

patient entering a clinic with fever actually has a simple flu? If this occurs

at a flu season, the doctor would immediately look for more signs of flu. If

it is not a flu season, the doctor will cast a bigger net to the cause of the

fever. The conclusion arrived by the doctor is not completely dependent on

103
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the evidence: having fever. This example shows that most of human being

act on their prior belief.

The famous Bayes theorem provides one way to formally utilize prior

information. Let A and B be two events in the context of probability theory.

It is seen that the conditional probability of B given A

pr(B|A) =
pr(A|B)pr(B)

pr(A|B)pr(B) + pr(A|Bc)pr(Bc)

where Bc is the complement of B, or the event that B does not occur. This

formula is useful to compute the conditional probability of B after A is known

to have occurred when all probabilities on the right hand side are known. The

comparison between pr(B|A) and pr(B) reflects what we learn from event

A about the likeliness of event B.

9.1 An artifical example

Suppose one of two students is randomly selected to write a typical exam.

Their historical averages are 70 and 80 percent. After we are told the mark

of this exam is 85%, which student has been selected in the first place?

Clearly, both are possible but most of us will bet on the one who has

historical average of 80%. It turns out that Bayes theorem gives us a quan-

titative way to justify our decision if we are willing to accept some model

assumptions.

Suppose the outcome of the exam results have distributions who densities

are given by

fa(x) =
x7−1(1− x)3−1

B(7, 3)
1(0 < x < 1);

fb(x) =
x8−1(1− x)2−1

B(8, 2)
1(0 < x < 1)

for students A and B with beta function defined to be

B(a, b) =

∫ 1

0

xa(1− x)b−1dx
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for a, b, > 0. The probability that they are selected to write the exam is

pr(A) = pr(B) = 0.5

which is our prior belief that reflects the random selection very well. Let X

denote the outcome of the exam. It is seen that

pr(A|X = x) =
0.5fa(x)

0.5fa(x) + 0.5fb(x)
.

If X = 85%, we find

pr(A|X = 85) = 0.3818.

If X = 60%, we find

pr(A|X = 60) = 0.7000.

Based on these calculations, we seem to know what to do next.

To use the frequentist approach discussed earlier, we re-state this ex-

periment as follows. One observation X has been obtained from a Beta

distribution family with parameter space

Θ = {(7, 3); (8, 2)}.

If X = 0.85, what is your estimate of θ?

The likelihood values at these two parameter points are given by

`((7, 3)) = fa(0.85) = 2.138;

`((8, 2)) = fb(0.85) = 3.462.

Hence, the MLE is given by θ̂ = (8, 2) corresponding to student B.

Based on frequentist approach which ignores the prior information, we

are told it is more likely that student B wrote the exam. If the MLE has

been chosen as the frequentist method to be used, then student B is our

conclusion, even though we know it is not certain.

Using Bayes analysis together with the prior information provided, we

claim that there is a 82% chance that student B wrote the exam. At this

moment, we have yet to make a decision. The calculation of the posterior

probability itself does not directly provide one. Suppose wrongfully conclud-

ing it was written by student B may result in a loss of a million dollars, while

wrongfully concluding it was student A may result in a loss of a single dollar,

then we may still claim/act that it was student A who wrote the exam.
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Figure 9.1: Posterior probability as a function of x
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9.2 Classical issues related to Bayes analysis

We suggested that a statistical model is a family of distributions often rep-

resented as a collection of parameterized density functions. We use {f(x; θ) :

θ ∈ Θ} as a generic notation. Often Θ is a subset of Rd.

When a set of observations X are obtained and a statistical model is

assumed, a frequentist would regard X is generated from ONE member of

{f(x; θ) : θ ∈ Θ} but usually we do not know which one. The information

contains in X helps us to decide which one is most likely, or a close proximate

of this ONE.

In comparison, a Baysian may also regard X is generated from ONE

member of {f(x; θ) : θ ∈ Θ}. However, this one θ value itself is gener-

ated from another distribution called prior distribution, Π(θ). Hence, it is a

realized value of a random variable whose distribution is given by Π(θ). If

we have full knowledge of Π(θ), then it should be combined with X to infer

which θ has been the θ in {f(x; θ) : θ ∈ Θ} that generated X. We gener-

ally cannot nail down to a single θ value given X and Π(θ). With the help

of Bayes theorem, we are able to compute the conditional distribution of θ

given X, which is called posterior. That is, we retain the random nature of

θ but update our knowledge about its distributions when X becomes avail-

able. Statistical inference about θ will then be made based on the updated

knowledge.

From the above discussion, it is seen that the a preliminary step in Bayes

analysis is to obtain posterior distribution of θ, assuming the model itself

has been given and the data have been collected. That is, we have already

decided on the statistical model f(x; θ), prior distribution Π(θ) and data X.

Note that this X can be a vector of i.i.d. observations given θ. The notion

of GIVEN θ is important because θ is a random variable in the context of

Bayes analysis.

Particularly in early days, the Bayes analysis is possible only if some kind

of neat analytical expression of the posterior is available. Indeed, I can give

you many such examples when things lineup nicely.

Example 9.1. Suppose we have an observation X from a binomial distri-

bution f(x; θ) = C(n, x)θx(1− θ)n−x for x = 0, 1, . . . , n. Suppose we set the
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prior distribution with density function

π(θ) =
θa−1(1− θ)b−1

B(a, b)
1(0 < θ < 1).

By Bayes rule, the density function of the posterior distribution of θ is given

by

fp(θ|X = x) =
f(x; θ)π(θ)∫
f(x; θ)π(θ)dθ

.

It appears to get explicit expression, we must find the outcome of the integra-

tion. However, this can often be avoided. Note that

f(x; θ)π(θ) = C(n, x)θa+x−1(1− θ)b+n−x−1
1(0 < θ < 1).

Hence, we must have

fp(θ|X = x) =
θa+x−1(1− θ)b+n−x−1

1(0 < θ < 1)

c(n, a, b, x)

for some constant c(a, b, x) not depending on θ. As a function of θ, it matches

the density function of Beta distribution with degrees of freedom a+x, b+n−x.

At the same time, its integration must be 1. This shows that we must have

c(n, a, b, x) = B(a+ 1, n+ b− x).

The posterior distribution is Beta with a+ x, n+ b− x degrees of freedom:

fp(θ|X = x) =
θa+x−1(1− θ)b+n−x−1

1(0 < θ < 1)

B(a+ 1, n+ b− x)

This will be the posterior distribution used for Bayes decision.

You may notice that Binomial distribution and the Beta distribution are

perfectly paired up to permit an easy conclusion on the posterior distribution.

There are many such pairs. For instance, if X has Poisson distribution

with mean θ, and θ has prior one parameter Gamma distribution, then the

posterior distribution of θ is also Gamma. We leave this case as an exercise.

Such prior distributions are call conjugate priors. Another good exercise

problem is to draw the density function of many beta distributions. It helps

to get an intuition on what you have assumed if a beta prior is applied.
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Definition 9.1. Let {f(x; θ) : θ ∈ Θ} be a statistical model. Namely, it is a

family of distributions. Suppose for any prior distribution π(θ) as a member

of distribution family {π(θ; ξ) : ξ ∈ Ξ}, the posterior distribution of θ given

a set of i.i.d. observations from f(x; θ) is a member of {π(θ; ξ) : ξ ∈ Ξ},
then we say that {π(θ; ξ) : ξ ∈ Ξ} is a conjugate prior distribution family of

{f(x; θ) : θ ∈ Θ}.

Remark: We have used

fp(θ|X = x) =
f(x; θ)π(θ)∫
f(x; θ)π(θ)dθ

in the above example. This formula is generally applicable. In addition, one

should take note that the denominator in this formula does not depend on

θ. Hence, the denominator merely serves as a scale factor in fp(θ|X = x).

In classical examples, its value can be inferred from the analytical form of

the numerator. In complex examples, its value does not play a rule in Bayes

analysis.

Example 9.2. Suppose that given µ, X1, . . . , Xn are i.i.d. from N(µ, σ2
0) with

known σ2
0. Namely, σ2

0 is not regarded as random. The prior distribution of µ

is N(µ0, τ
2
0 ) with both parameter values are known. The posterior distribution

of µ given the sample is still normal with parameters

µB =
nx̄/σ2

0 + µ0/τ
2
0

1/σ2
0 + 1/τ 2

0

;

and

σ2
B =

[
n

σ2
0

+
1

τ 2
0

]−1

.

The philosophy behind the Bayes data analysis is to accommodate our

prior information/belief about the parameter in statistical inference. Some-

time, prior information naturally exists. For instance, we have a good idea

on the prevalence of human sex ratio. In other applications, we may have

some idea on certain parameters. For example, the score distribution of a

typical course. Even if we cannot perfectly summarize our belief with a prior

distribution, one of the distributions in the beta distribution family can be

good enough.
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It is probably not unusual that we do not have much idea about the

parameter value under a statistical model assumption. Yet one may be at-

tracted to the easiness of the Bayesian approach and would like to use Bayes

analysis anyway. She may decide to use something called non-informative

prior. Yet there seem to be no regular definition on what a prior is a non-

informative prior.

In the normal distribution example, one may not have much idea about

the mean of the distribution in a specific application. If one insists on use

Bayesian approach, he or she may simply use a prior density function

π(µ) = 1

for all µ ∈ R. This prior seems to reflect the lack of any idea on which µ

value is more likely than any other µ values. In this case, π(µ) is not even

a proper density function with respect to Lebesgue measure. Yet one may

obtain a proper posterior density following the rule of Bayes theorem.

It appears to me that Bayes analysis makes sense when prior information

about the parameter truly exists. In some occasions, it does not hurt to

employ this tool even if we do not have much prior information. If so, the

Bayes inference conclusion should be critically examined just likely any other

inference conclusions.

9.3 Decision theory

Let us back to the position that a statistical model f(x; θ) is given, prior

distribution Π(θ) is chosen and data X have been collected. At least in

principle, the Bayes theorem has enabled us to obtain posterior distribution

of θ: fp(θ|X). At this point, we need to decide how to estimate θ, the value

generated from Π(θ), and X is a random sample from f(x; θ) with this θ.

With fp(θ|X) at hand, how do you estimate θ?

First of all, you may pick any function of X as your estimator of θ. This

has not changed.

Second, if you wish to find a superior estimator, then you must provide

a criterion to judge superiority. In the content of Bayes data analysis, the

criteria for point estimation is through loss functions.
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Definition 9.2. Assume a probability model with parameter space Θ. A

loss function `(·, ·) is a non-negative valued function on Θ × Θ such that

`(θ1, θ2) = 0 when θ1 = θ2.

Finally, since we do not know what the true θ value is, with the posterior

distribution, we can only hope to minimize the average loss. Hence, the

decision based on the bayes rule is to look for θ̂ such that the expected loss

is minimized: ∫
L(θ̂, θ)fp(θ|X)dθ = min.

A naturally choice of the loss function is

L(θ̂, θ) = (θ̂ − θ)2.

The solution to this loss function is clearly the posterior mean of θ for

one-dimension θ.. This extends to the situation where θ is multidimensional.

One may use the loss function

L(θ̂, θ) = |θ̂ − θ|.

If so, the solution is the posterior median for one-dimension θ. The exten-

sion to the multidimensional θ is possible.

Example 9.3. Suppose we have an observation X from a binomial distri-

bution f(x; θ) = C(n, x)θx(1− θ)n−x for x = 0, 1, . . . , n. Suppose we set the

prior distribution with density function

π(θ) =
θa−1(1− θ)b−1

B(a, b)
1(0 < θ < 1).

By Bayes rule, the density function of the posterior distribution of θ is given

by

fp(θ|X = x) =
f(x; θ)π(θ)∫
f(x; θ)π(θ)dθ

.

The posterior distribution is Beta with a+ x, n+ b− x degrees of freedom:

fp(θ|X = x) =
θa+x−1(1− θ)b+n−x−1

1(0 < θ < 1)

B(a+ 1, n+ b− x)
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If the square loss is employed, then the Bayes estimator of θ is given by∫
θfp(θ|X = x)dθ =

a+ x

a+ b+ n
.

When a = b = 1, the prior distribution of θ is uniform on (0, 1). This is

regarded as a non-informative prior. With this prior, we find

θ̂ =
x+ 1

n+ 2

which seems to make more sense than the MLE x/n.

Since Bayes estimator is generally chosen as the minimizer of some ex-

pected posterior loss, it is optimal in this sense by definition. However, the

optimality is judged with respect to the specific loss function and under the

assumed prior. Blindly claiming a Bayes estimator is optimal out of con-

tent is not recommended here. If this logic is applicable, then we would as

rightfully claim that the MLE is optimal, because it maximizes a criterion

function called likelihood. Such a claim would be ridiculous because we have

many examples where the MLEs are not even consistent.

We will have an exercise problem to work out Bayes estimators under

square loss under normal model with some conjugate prior distribution on

both mean and variance.

Once the posterior distribution is ready, we are not restricted to merely

give a point estimation. These issues will be discussed in other parts of this

course. At the same time, we may get some sense that being able to precisely

describing the posterior distribution is one of the most important topic in

Bayes data analysis.

9.4 Some comments

There are two major schools on how the statistical data analysis should be

carried out: frequentist and Bayesian. If some prior information exists and

can be reasonably well summarized by some prior distribution, then I feel

the inference based on Bayes analysis is fully justified. If one does not have

much sensible prior information on the statistical model appropriate to the



9.4. SOME COMMENTS 113

data at hand, it is still acceptable to use the formality of the Bayes analysis.

Yet blindly claiming the superiority of a Bayesian approach is not of my

taste. Particularly in the later case, the Bayes conclusion should be critically

examined as much as any data analysis methods.

To make things worse, many statisticians seem to regard themselves doing

research on Bayesian methods, yet they do not aware the principle of the

Bayes analysis. Probably, they merely feel that this is an easy topic to

publish papers (not true if one is a serious Bayesian). To be more strict,

a Bayesian should have a strong conviction that the model parameters are

invariably realized values from some distribution. There is an interest and

very valid question, is/was Bayes a Bayesian?
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Chapter 10

Monte Carlo and MCMC

Recall that a statistical model is a distribution family, at least this is what

we believe. Let us first focus on parametric models: {f(x; θ) : θ ∈ Θ}. In

this case, θ is generally a real valued vector and Θ is a subset of Euclidean

space with nice properties such as convex, open and so on. After placing

a prior distribution on θ, we have created a Bayes model. We do not seem

to be a consensus on a definition of and a notation for Bayes model, even

though statisticians are not shy at using this terminology. Based on my

understanding, I define a Bayes model as a system with two important com-

ponents: a family of distributions, and a prior distribution on distribution

on this family:

Bayes Model = [{f(x; θ) : θ ∈ Θ}, π(θ)].

Logically, a Bayes model is not the same as Bayes analysis. When Θ is a

subset of Euclidean space, we generally regard π(·) a density function with

respect to Lesbesgue measure on Θ.

Suppose a θ value is generated according to π(·), and subsequently, a data

set X is generated from THIS f(x; θ). Here we implicitly assume that X is

accurately measured and available to use for the purpose of inference. The

inference target is θ based on data from this experiment. Any decision about

the possible value of θ in Bayes analysis will be based on the posterior density

of θ given X. We use notation fp(θ|X) for posterior distribution (density). It

is conceptually straightforward to define and derive the posterior distribution.

115
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Hence, there are not much left for a statistician to do.

Bayes analysis makes a decision based on posterior distribution. Research

on Bayesis methods includes: (a) most suitable prior distributions in specific

applications; (b) the influence of the choice of prior distribution to the final

decision; (c) numerical or theoretical methods for posterior distribution; (d)

properties of the posterior distribution; (e) decision rule. There might be

more topics out there. This chapter is about topic (c).

For some well paired up f(x; θ) and π(θ) (when π(·) is a conjugate prior

for f(x; θ)), it is simple to work out the analytical form of the posterior

density function. A Bayesian needs only decide the best choices of π(θ) and

the subsequent decision rule. In many real world problems, the posterior

density is on high dimensional space and does not have an simple form. The

Bayes analysis before the contemporary computing power has been a serious

challenge. This problem becomes less and less an issue today. We discuss a

number of commonly used techniques in this chapter.

10.1 Monte Carlo Simulation

The content of this section is related but not limited to Bayes analysis. Sup-

pose in some applications, we wish to compute E{g(X)} and X is known

to have certain distribution. This is certainly a simple task in many text-

book examples. For instance, if X has Poisson distribution with mean θ and

g(x) = x(x− 1)(x− 2)(x− 3), then

E{g(X)} = θ4.

However, if g(x) = x log(x + 1), the answer to E{g(X)} is not analytically

available.

Suppose we have an i.i.d. sample x1, . . . , xn with sufficiently large n from

this distribution, then by the law of large numbers,

E{g(X)} ≈ n−1

n∑
i=1

xi log(xi).

Let us generate n = 100 values from Poisson distribution with θ = 2. Using

a function in R-package, we get 100 values
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5 2 3 4 1 2 1 2 1 1 2 3 2 2 2 3 1 2 0 4 1 2 5 1 1

2 3 1 1 1 2 0 2 1 1 3 0 5 1 5 1 2 1 0 2 3 5 2 6 3

2 4 3 1 1 2 2 1 1 2 2 5 0 2 1 3 3 1 3 1 1 2 2 3 1

2 1 4 0 4 2 3 0 0 2 1 3 1 0 2 1 0 3 1 3 6 1 3 3 3

Based on this sample, we get an approximated value

E{G(X)} ≈ 2.691.

I can just as easily use n = 10, 000 and find E{g(X)} ≈ 2.648 in one try.

With contemporary computer, we can afford to repeat it as many times as

we like: E{g(X)} ≈ 2.642, 2.641, 2.648. It appears E{g(X)} = 2.645 would

be a very accurate approximations. Computation based on simulated data

is generally called Monte Carlo method.

We must answer two questions before we continue. The first is why do

not we use a numerical approach if we need to compute E{g(X)}. Indeed,

we can put up a quick R-code

{ii= 0:50; sum(ii*log(1+ii)*dpois(ii, 2))}

and get a value 2.647645. This is a very accurate answer to this specific

problem. Yet if we wish to compute

E{(X1 +
√
X2)2 log(X1 +X3X4)},

where X1, X2, X3, X4 may have a not very simple joint distribution, a neat

numerical solution becomes hard. Since the contemporary computers are

so powerful, The above problem is only “slightly” harder. Yet there are

real world problem of this nature, but involves hundreds or more random

variables. For these problems, the numerical problem quickly becomes in-

feasible even for contemporary computers. In comparison, the complexity of

the Monte Carlo method remains the same even when g(X) is a function of

vector X with high dimension.

The second question is how easy is it to generate quality “random sam-

ples” from a given distribution by computer? There are two issues related

to this question. First, the computer does not have an efficient way to gen-

erate random numbers. However, with some well designed algorithms, it
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can produce massive amount of data which appear purely random. We call

them pseudo random number generators. We do not discuss this part of the

problem in this course. The other issue is how to make sure these random

numbers behave like samples from the desired distributions.

Our starting point is that it is easy to generate i.i.d. observations (pseudo

numbers) from uniform distribution [0, 1]. We investigate the techniques for

generating i.i.d. observations from other distributions.

Theorem 10.1. Let F (x) be any univariate continuous distribution function

and U be a standard uniformly distributed random variable. Let

Y = inf{x : F (x) ≥ U}.

Then the distribution function of Y is given F (·).

As an exercise, show that F (Y ) has uniform distribution when the dis-

tribution of Y is continuous and given by F (·).

Proof. We only need to work out the c.d.f. of Y . If it is the same as F (·),
then the theorem is proved.

Routinely, we have

pr(Y ≤ t) = pr(inf{x : F (x) ≥ U} ≤ t) = pr(F (t) ≥ U) = F (t)

because pr(U ≤ u) = u for any u ∈ (0, 1). This completes the proof.

Since we generally only have pseudo numbers in U , applying this too will

only lead to “pseudo numbers” in Y .

Example 10.1. Let g(u) = − log u. Then, Y = g(U) has exponential distri-

bution if U has standard uniform distribution.

Let g(u) = (− log u)a for some positive constant a. Then Y = g(U) has

Weilbull distribution.

As an exercise problem, find the function g(·) which makes g(U) standard

Cauchy distributed.

Here is another useful exercise problem for knowledge. If Z1, Z2 are inde-

pendent standard normally distributed random variables, then r2 = Z2
1 +Z2

2

are exponentially distributed. One should certainly know that r2 is also

chisquare distributed with 2 degrees of freedom.
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Example 10.2. Let U1, U2 be two independent standard uniform random

variables. Let

g1(s, t) =
√
−2 log s cos(2πt);

g2(s, t) =
√
−2 log s sin(2πt).

Then, g1(U1, U2), g2(U1, U2) are two independent standard normal random

variables.

If we can efficiently generate pseudo numbers from uniform distribution,

then the above result enables us to efficiently generate pseudo numbers from

standard normal distributions. Since general normal distributed random

variables are merely location-scale shifted standard normal random variables,

their generation can hence also be efficiently generated this way.

Due to well established relationship between various distributions, pseudo

numbers from many many classical distributions can be efficiently generated.

Here are a few well-known results which were also given in the chapter about

normal distributions.

Example 10.3. Let Z1, Z2, . . . be i.i.d. standard normally distributed random

variables.

(a) X2
n = Z2

1 +Z2
2 + · · ·+Z2

n has chisquare distribution with n degrees of

freedom.

(b) Fn,m = (X2
n/n)/(Y 2

m/m) has F distribution with n,m degrees of free-

dom when X2
n, Y

2
m are independent.

(c) Bn = (X2
n)/(X2

n + Y 2
m) has Beta distribution with n,m degrees of

freedom when X2
n, Y

2
m are independent.

We can also generate multinomial pseudo numbers with any probabilities:

p1, p2, . . . , pm: generate U from uniform, then let X = k for k such that

p1 + · · ·+ pk−1 < U ≤ p1 + · · ·+ pk−1 + pk−1.

The left hand side is regarded as zero for k = 1.
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10.2 Biased or importance sampling

: Back to the problem of computing E{g(X)} when X has a distribution with

density or probability mass function f(x). If generating pseudo numbers from

f(x) is efficient, then it is a good idea to approximate this expectation by

n−1

n∑
i=1

g(xi).

If it is more convenient to generate law of large numbers which recommends

pseudo numbers from a different distribution f0(x) which has the same sup-

port as f(x), then it is easier to approximate this expectation by

n−1

n∑
i=1

{g(yi)f(yi)/f0(yi)}

where y1, . . . , n observations are generated from f0(x).

If Y has distribution given by density f0(x), we have

E{g(Y )f(Y )/g0(Y )} =

∫
{g(y)f(y)/f0(y)}f0(y)dy

=

∫
g(y)f(y)dy = E{g(X)}

where X has distribution f(x). Note that it is important that f and f0 have

the same support so that the range of integrations remains the same. If X

has discrete distribution, the integration will be changed to summation. The

conclusion is not affected.

In sample survey, the units in the finite population often have different

probabilities to be included in the sample due to various considerations. The

population total

Y =
N∑
i=1

yi,

where N is the number of sample units in the finite population and yi is

the response value of the ith unit, is often estimated by Horvath-Thompson

estimator:

Ŷ =
∑
i∈s

yi/πi
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where s is the set of units sampled and πi is the probability that the unit i is

in the sample. The role of πi is the same as f0(x) in the importance sampling

content.

In sampling practice, some units with specific properties of particular in-

terest are hard to obtain in an ordinary sampling plan. Specific measures

are often taken so that these units have higher probability to be included

than otherwise when all units are treated equally. The practice may also be

regarded as finding a specific f0(x) to replace f(x) even though the expecta-

tion of g(X) under f(x) distribution is the final target. One such example

is to obtain the proportional of HIV+ person in Vancouver population. A

simple random sample may end up with a sample of all HIV- individuals

giving lower accurate estimation of the rate of HIV+. The same motivation

is used in numerical computation. If f(x) has lower values in certain region

of x, then a straightforward random number generator will have very few

values generated from that region. This problem makes such numerical ap-

proximations inefficient. Searching for some f0(x) can be a good remedy to

address this shortcoming.

Here is another example. To estimate the survival time of cancer patient.

Let us a random sample from all cancer patients at a specific time point. If

their survive times are denoted as Y1, Y2, . . . , Yn whose distribution is denoted

as f0(y). The actually survival distribution would be different if every cancer

patient is counted equally. This is because f0(y) ∝ yf(y) where f(y) is the

“true” survival time distribution. This may also be regarded as importance

sampling created by nature.

10.3 Rejective sampling

Instead of generating data from an original target distribution f(x), we may

generate data from f0(x) and obtain more effective numerical approximation

of E{g(X)}. This is what we have seen in the last section. The same idea is

at work in rejective sampling. The target of this game is to obtain pseudo

numbers which may be regarded as random samples from f(x). Of course,

to make it a good tool, we must select an f0(x) which is easy to handle.

Let f(x) be the density function from which we wish to get random
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samples. Let f0(x) be a density function with the same support and further

sup
x

f(x)

f0(x)
= u <∞

Denote

π(x) =
f(x)

uf0(x)
.

Apparently, π(x) ≤ 1 for any x. In addition, if f(x) is known up to a constant

multiplication, the above calculations remain feasible. One potential example

of such an f(x) is when

f(x) =
C exp(−x4)

1 + x2 + sin2(x)
.

Since f(x) > 0 and its integration converges, we are sure that

C−1 =

∫
exp(−x4)

1 + x2 + sin2(x)
dx

is well defined. Yet we do not have its exact value. In this example, an

accurate approximate value of C is not hard to get. Yet if f(·) is the joint

density of many variables, even a numerical approximation is not feasible.

Particularly in Bayes analysis, this can occur. If an effective way to generate

“random” samples from f(x) is possible, then we do not need to know C any

more in many applications.

Let X1, X2, . . . be a sequence of i.i.d. samples from f0(x) and U1, U2, . . .

be i.i.d. samples from uniform distribution. For i = 1, 2, . . ., if Ui ≤ π(Xi), let

Yi = Xi; otherwise, we leave Yi undefined. Hence, Y1, Y2, . . . is a subsequence

of X1, X2, . . . after some Xi rejected. Hence, this procedure is called rejective

sampling.

The output of the rejective sampling, Yi, has distribution F (x) with den-

sity function f(x) for any i. This is demonstrated as follows. First, we

consider the case for i = 1. It is seen that

pr{U > π(X)} = E{1− π(X)} = 1−
∫
π(x)f0(x)dx = 1− u−1.



10.3. REJECTIVE SAMPLING 123

Hence, the distribution of Y1 is given by

pr(Y1 ≤ y) =
∞∑
k=1

pr(U1 > π(X1), . . . , Uk−1 > π(Xk−1), Uk < π(Xk), Xk ≤ y)

=
∞∑
k=1

(1− u−1)k−1pr(Uk < π(Xk), Xk ≤ y)

=
∞∑
k=1

(1− u−1)k−1pr(U < π(X), X ≤ y)

= uE{pr
(
X ≤ y, U ≤ π(X)|X

)
}

= uE{π(X)1(X ≤ y)}.

Taking the definition of π(x) into consideration, we find

pr(Y1 ≤ y) = u

∫ y

−∞

f(x)

uf0(x)
f0(x)dx = F (y).

This shows that the rejective sampling method indeed leads to random num-

bers from the target distribution.

Let us define the waiting time

T = min{i : Ui ≤ π(Xi)}

which is the number of pairs of pseudo numbers in (X,U) it takes to get a

pseudo observation Y . We find its probability mass function is given by

pr(T = k) = pr
(
U1 > π(X1), . . . , Uk−1 > π(Xk−1, Uk < π(Xk)

)
= (1− u−1)k−1u−1.

That is, T has geometric distribution with mean u.

If we use an f0 which leads to large u, the rejective sampling is numerically

less efficient. It takes more tries on average to obtain one sample from the

target distribution. The best choice is f0(·) = f(·). Of course, this means we

are not using a rejective sampling tool at all.

Here is an exercise problem. Suppose we want to generate random num-

bers from standard normal distribution whose density is given by φ(x) =
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(2π)−1/2 exp(−x2/2). Some how, we wish to generate data from double ex-

ponential:

f0(x) =
1

2
exp(−|x|).

Compute the constant u as defined above. Write a code in R to implement

the rejective sampling method to generate n = 1000 observations from N(0,

1). Show the Q-Q plot of the data generated and report the number of

pairs of (X,U) in rejective sampling required. How many pairs of (X,U) do

you expect to be needed to generate n = 1000 normally distributed random

numbers with this method?

10.4 Markov chain Monte Carlo

Not an expert myself, my comments here may not be accurate. The rejection

sample approach appears to be effective for generating univariate random

variables (pseudo numbers). In applications, we may wish to generate a large

quantity of vector valued observations. Markov chain Monte Carlo seems to

be one of the solutions to this problem. To introduce this method, we need

a dose of Markov chain.

10.4.1 Discrete time Markov chain

A Markov chain is a special type of stochastic process. A stochastic process

in turn is a collection of random variables. Yet we cannot pay equal amount

of attention to all stochastic processes but the ones that behave themselves.

Markov chain is one of them.

We narrow our focus even further on processes containing a sequence of

random variables having a beginning but no end:

X0, X1, X2, . . . .

The subindices {0, 1, 2, . . .} are naturally called time. In addition, we consider

the case where Xn takes values in the same space with countable members

for all n. Without loss of generality, we assume the space is

S = {0,±1,±2, . . .}.
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We call S state space. For such a stochastic process, we define transition

probabilities for s < t to be

pij(s, t) = pr(Xt = j|Xs = i).

Definition 10.1. A discrete time Markov chain is an ordered sequence of

random variables with discrete state space S and has Markov property:

pr(Xs+t = j|Xs = i,Xs−1 = i1, . . . , Xs−k = ik) = pij(s, s+ t)

for all i, j ∈ S and s, t ≥ 0.

If further, all one-step transition probabilities pij(s, s+ 1) do not depend

on s, we say the Markov chain is time homogeneous.

The Markov property is often referred to as: given present, the future

is independent of the past. In this section, we further restrict ourselves to

homogeneous, discrete time Markov chain. We will work as if S is finite and

S = {1, 2, . . . , N}.

The subsequent discussion does not depend on this assumption. Yet most

conclusions are simpler to understand under this assumption. We simplify

the one step transition probability notation to pij = pr(X1 = j|X0 = i).

Let P be a matrix formed by one step transition probabilities: P = (pij).

For finite state space Markov chain, its size is N × N . We may also notice

its row sums equal to 1. It is well known that the t-step transition matrix

P(t) = {pr(Xt = j|X0 = i)} = Pt

for any positive integer t. For convenience, we may take 0-step transition

matrix as P0 = I, the identity matrix. The relationship is so simple, we do

not need a specific notation for t-step transition matrix.

Let Πt be the column vector made of pr(Xt = i), i = 1, 2, . . . , N and

t = 0, 1, . . .. This vector fully characterizes the distribution of Xt. Hence, we

simply call it the distribution of Xt. It is seen that

Πτ
t = Πτ

0P
t.



126 CHAPTER 10. MONTE CARLO AND MCMC

Namely, the distribution of Xt in a homogeneous discrete time Markov chain

is fully determined by the distribution of X0 and the transition probability

matrix P.

Under some conditions, limt→∞Πt always exists. The limit itself is unique

and is a distribution on the state space S. For a homogeneous discrete time

Markov chain with finite state space, the following conditions are sufficient:

(a) irreducible: for any (i, j) ∈ S, there exists a t ≥ 1 such that pr(Xt =

j|X0 = i) > 0.

(b) aperiodic: the greatest common factor of {t : pr(Xt = i|X0 = i) > 0}
is 1 for any i ∈ S.

When a Markov chain is irreducible, all states in S have the same period

which is defined as the greatest common factor of {t : pr(Xt = i|X0 = i) >

0}.

Theorem 10.2. If a homogeneous discrete time Markov chain has finite

space and properties (a) and (b), then for any initial distribution Π0,

lim
t→∞

Πt = Π

exists and is unique.

We call Π in the above theorem as equilibrium distribution and such a

Markov chain ergodic. It can be shown further that when these conditions

are satisfied, then for any i, j ∈ S,

lim
t→∞

pr(Xt = j|X0 = i) = πj

where πj is the jth entry of the equilibrium distribution Π.

Definition 10.2. For any homogeneous discrete time Markov chain with

transition matrix P and state space S, if Π is a distribution on the state

space such that

Πτ = ΠτP

when we call it a stationary distribution.

It is seen that the equilibrium distribution is a stationary distribution.

However, there are examples where there exist many stationary distributions

but there is no equilibrium distribution.
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Finally, we comment on the relevance of this section to MCMC. If one

wishes to generate observations from a distribution f(x). It is always possible

for us to find a discrete distribution Π whose c.d.f. is very close that that

of f(x). Suppose we can further create a Markov chain with proper state

space and transition matrix with Π as its equilibrium distribution. If so, we

may generate random numbers from this Markov chain: x1, x2, . . .. When

t is large enough, the distribution of Xt is nearly the same as the target

distribution Π.

The Markov chain Monte Carlo also works for continuous distributions.

However, the general theory cannot be presented without a full course on

Markov chain. This section is helpful to provide some intuitive justification

on the Markov chain Monte Carlo in the next section.

10.5 MCMC: Metropolis sampling algorithms

Sometime, direct generation of i.i.d. observations from a distribution f(·) is

not feasible. Rejective sampling can also be difficult because to find a proper

f0(·) is not easy. These happen when f(·) is the distribution of a high-

dimensional random vector, or it does not have an exact analytical form.

Markov chain Monte Carlo is regarded as a way out in recent literature. Yet

you will see that the solution is not to provide i.i.d. random numbers/vectors,

but dependent with required marginal distributions.

Let X0, X1, X2, . . . be random variables that form a time-homogeneous

Markov process. We use process here instead of chain to allow the rang of

X to be Rd or something generic. It has all the properties we mentioned in

the last section “otherwise”. We define the kernel function K(x, y) be the

conditional density function of X1 given X0. Roughly speaking,

K(x, y) = pr(X1 = y|X0 = x) =
f(x, y)

fX(x)

which is the transition probability when the process is in fact a chain. We

may also use

K(x, y) = f1|0(x1|x0)
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as the conditional density of X1 given X0 when the joint density is definitely

needed.

One Metropolis sampling algorithm goes as follows.

1. Let t = 0 and choose a x0 value.

2. Choose a proposed kernel K0(x, y) so that the corresponding Markov

process is convenient to generate random numbers/vectors from the

conditional density.

3. Choose a function r(x, y) taking values in [0, 1] and r(x, x) = 1.

4. Generate a y value from conditional distribution K0(xt, y) and a stan-

dard uniform random number u. If u < r(xt, y), let xt+1 = y; otherwise,

let xt+1 = xt. Update t = t+ 1.

5. Repeat step 4 until sufficient number of random numbers are obtained.

In the above algorithm, we initially generate random numbers from a

Markov chain with transition probability matrix specified by K0(x, y). Due

to a rejective sampling step, the many outcomes are not accepted but the

previous value xt is retained. What have we obtained?

We can easily seen that {x0, x1, . . .} remains a Markov chain with the

same state space in spite of rejecting many y values generated according to

K0. We use Markov chain to illustrate the point. The transition probability

of this Markov chain is computed as follows. Consider the case when X0 = i

and the subsequent Y is generated according to the conditional distribution

K(i, ·). Let U be i.i.d. uniform [0, 1] random variables. For any j 6= i ∈ S,

we have

K(i, j) = pr(X1 = j|X0 = i) = pr(U < r(i, Y ), Y = j) = r(i, j)K0(i, j).

Clearly, the chance of not making a move is

K(i, i) = 1 +K0(i, i)−
∞∑
j=1

K0(i, j).

Suppose the target distribution has probability mass function Π. We

hope to select K0(x, y) and r(x, y) so that Π is the equilibrium distribution
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of the Markov chain with transition matrix K(x, y). Consider the situation

where the working transition matrix K0(x, y) is symmetric and we choose for

all i, j,

r(i, j) = min{1,Π(j)/Π(i)}

in the above so called Metropolis algorithm. One important property of this

choice is that we need not know individual values of Π(i) for each i but their

ratios. This is a useful property in Bayes method where the posterior density

function is often known up to a constant factor. Computing the value of the

constant factor is not a pleasant task. The above choice of r(i, j) makes the

computation unnecessary which is a big relief.

With this choice of r(x, y), we find

Π(i)K(i, j) = min{Π(i),Π(j)}K0(i, j)

= min{Π(i),Π(j)}K0(j, i)

= Π(j)K(j, i).

This property is a sufficient condition for Π to be the equilibrium distribution

of the Markov chain with transition probabilities given by K(i, j). Note that

the existence of the equilibrium distribution is assumed and can be ensured

by the choice of an appropriate K0(i, j).

Although Step 4 in the Metropolis algorithm is very similar to the rejec-

tive sampling, they are not the same. In rejective sampling, if a proposed

value is rejected, this value will be thrown out and a new candidate will be

generated. In current Step 4, if a proposed value is rejected, the previous

value in the Markov chain will be adopted.

We presented the result for discrete time homogeneous Markov chain with

countable state space. The symbolical derivation for general state space is

the same.

The symmetry requirement on K0(x, y) is not absolutely needed to ensure

the limiting distribution is given by Π. When K0(x, y) is not symmetric, we

may instead choose

r(x, y) = min
{

1,
f(y)K0(y, x)

f(x)K0(x, y)

}
.
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We use x, y here to reinforce the impression that both x, y can be real values,

not just integers.

A toy exercise is to show that this choice also leads to f(x) satisfying the

balance equation:

f(x)K(x, y) = f(y)K(y, x).

Finally, because f(x) is the density function of the equilibrium distribu-

tion, when t → ∞, the distribution of Xt generated from the Metropolis

algorithm is f(x). At the same time, the distribution of Xt for any finite t

is not f(x) unless that of X0 is. However, for large enough t, we may regard

the distribution of Xt as f(x). This is the reason why a burning period is

needed before we use Xt as random samples from f(x) in many applications.

Obviously, Xt, Xt+1 generated by this algorithm are not independent ex-

cept for very special cases. However, in many applications, a non-i.i.d.

sequence suffices. For instance, when the Markov chain is ergodic,

n−1

n∑
t=1

g(Xt)→ Eg(X)

where E is computed with respect to the limiting distribution.

10.6 The Gibbs samplers

Gibbs samplers are another class of algorithms to generate random numbers

based on a Markov chain. Suppose X = (U, V ) has joint distribution f(u, v)

with both u and v can be real valued vectors. Suppose that given U = u

for any u, it is easy to generate a value v from conditional distribution of

V |(U = u); and the opposite is also true. The goal is to generate number

vectors with distribution of U , with distribution of V , or with distribution

of (U, V ).

A Gibbs sampler as follows leads to a Markov chain/process whose equi-

librium distribution is that of U .

1. Pick a value u0 for U0. Let t = 0.

2. Generate a value vt from the conditional distribution V |(U = ut).
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3. Generate a value ut+1 from the conditional distribution U |(V = vt).

4. Let t = t+ 1 and go back to Step 2.

Theorem 10.3. The random numbers generated from the above sampler

with joint distribution/density f(u, v) form an observed sequence of a Markov

chain/process {U0, U1, . . .}.
The limiting distribution of Ut is the marginal distribution of f(u, v).

Proof. This is only a proof for discrete case. Let pu|v(u, v) be the conditional

probability mass function of U given V and similarly define pv|u(v, u). The

transition probability of the Markov chain is given by

pij = pr(Ut+1 = j|Ut = i) =
∑
k

pu|v(j|k)pv|u(k|i).

Let gu(u) and gv(v) be the marginal distributions of U and V . We have∑
i

gu(i)pij =
∑
i

{∑
k

pu|v(j|k)pv|u(k|i)gu(i)
}

=
∑
k

pu|v(j|k)
{∑

i

pv|u(k|i)gu(i)
}

=
∑
k

pu|v(j|k)gv(k)

= gu(j).

This implies that the distribution of U satisfies the relationship

Π = ΠP

for the discrete Markov chain.

Since the limiting distribution of Ut is gu(·) and the conditional dis-

tribution of Vt is pv|u(·). It is immediately clear that the marginal dis-

tribution of Vt in the limit is gv(v). Their joint limiting distribution is

f(u, v) = pv|u(v|u)gu(u) as desired.

There are clearly many other problems with the use of Gibbs sampling.

Not an expertise myself, it is best for me to not say too much here.
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10.7 Relevance to Bayes analysis

As we pointed out, the basis of Bayes data analysis is the posterior distri-

bution of the model parameters. However, we often only have the analytical

form of the posterior distribution up to a multiplicative constant. It is seen

that in Metropolis sampling algorithm, this is all we need to generate random

numbers from such distributions.

In the case of Gibbs samplers, the idea can be extended. Suppose U =

(U1, U2, . . . , Uk) and we wish to obtain samples whose marginal distribution

is that of U . Let U−i be subvector of U with Ui removed. Suppose it is

efficient to generate data from the conditional distribution of Ui given U−i
for all i. Then one may iteratively generate Ui to obtain sample from the

distribution f U using Gibbs samplers.

10.8 See you next term

You are welcome to Stat461/561 next term. We will cover some basics such

as hypothesis test and confidence interval. The rest of time, if any, will be

used on selective topics that you are interested and I am capable to handle.


