STAT 460/560- Assignments

Week I:

1. Let X_1, X_2, \ldots, X_n be a random sample (iid) from a continuous distribution f(x). Namely, the distribution family \mathcal{F} contains all univariate continuous distributions.

Let R_1, R_2, \ldots, R_n be the rank statistic. That is, R_1 = the rank of X_1 among n random variables.

(a) Show that R is an ancillary statistic and find its distribution.

(b) What information contained in R that might be useful for statistical inference?

2. Let X_1, X_2, \ldots, X_n be a random sample (iid) from $N(\theta, \sigma^2)$. Let \bar{X}_n and s_n^2 be the sample mean and variance.

(a) Verify that $(X_1 - \bar{X}_n, \dots, X_n - \bar{X}_n)/s_n$ is an ancillary statistic.

(b) Verify by factorization theorem that \bar{X}_n, s_n^2 are jointly sufficient.

(c) Suppose $\sigma = 1$ is known. Show that \bar{X}_n is complete for θ by definition.

3. Let χ_d^2 and $\chi_d^2(\gamma^2)$ be two random variables with respectively central and non-central chi-square distributions with the same degrees of freedom d. Show that for any x,

$$P\{\chi_d^2(\gamma^2) \ge x^2\} \ge P\{\chi_d^2 \ge x^2\}.$$

Suppose χ_n^2 is a third random variable with central chisquare distribution and n degrees of freedom. Then

$$F_{d,n}(\gamma) = \frac{\chi_d^2(\gamma^2)/d}{\chi_n^2/n}$$

is said to have non-central F-distribution, when the two chisquare random variables are independent. Show that for any x,

$$P\{F_{d,n}(\gamma^2) \ge x^2\} \ge P\{F_{d,n}(0) \ge x^2\}.$$

4. Let **Z** be a multivariate normal $N(0, \mathbb{I}_d)$ random vector. Show that for a symmetric matrix **A**,

$\mathbf{Z}^{\tau}\mathbf{A}\mathbf{Z}$

has central chisquare distribution if and only if $\mathbf{A}^2 = \mathbf{A}$.

5. Let **Z** be a multivariate normal $N(0, \mathbb{I}_d)$ random vector. Under symmetry assumptions on $\mathbf{A}_1, \ldots, \mathbf{A}_p$, show that if

$$\mathbf{Z}^ au\mathbf{Z} = \mathbf{Z}^ au\mathbf{A}_1\mathbf{Z} + \dots + \mathbf{Z}^ au\mathbf{A}_p\mathbf{Z} = \sum_{j=1}^p \mathbf{Q}_j$$

such that

$$\operatorname{rank}(\mathbf{A}_1) + \dots + \operatorname{rank}(\mathbf{A}_p) = d$$

then \mathbf{Q}_j 's are independent, each has chisquare distribution of degrees equaling rank (\mathbf{A}_j) .