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e Temporal
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e Spatio-temporal

© Wrap-up
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Introduction

1Introduction
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1.1 London fog

1952: The most infamous environmental space-time field.
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1.2 London fog

The most (in-) famous example
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1.3 London fog

Barbara Fewster recalls her 16-mile walk home - in heels - guiding her
fiancé’s car”
"It was the worst fog that I'd ever encountered. It had a yellow
tinge & a strong, strong smell strongly of sulphur, because it
was really pollution from coal fires that had built up. Even in
daylight, it was a ghastly yellow colour.
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1.4 London fog
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Figure 12-10. December 1962, London pollution episode.
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1.5 Ensuing developments

1952...: Environmental cleanup begins in Britain
1970: USA’s Clean Air Act
1971: USA EPA formed

1973: First SIMS group set up; Stanford & Paul Switzer +
others
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Introduction

1980s: Acid rain

1990s: Air pollution

2000s: Climate change

2010s: Environmental risk management

@ Agroclimate risk management; crop yields;
phenological events.

@ Long term monitoring; lumber properties; forest fires

@ Water quality and quantity
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1.6 Current directions

Uncertainty quanitification
@ Combining physical & statistical modeling
High dimensional random response vectors

e Eg. At 1000s of spatial sites
o Methods like MCMC don’t work
o INLA - Laplace approximation under active development

@ Model-based geostatistics
@ Multivariate extreme value theory for high dimensions

@ Nonstationary spatio - temporal covariance structures
@ Design of monitoring networks
°
°

Spatio-temporal point processes
Preferential sampling & network design
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1.7 ST modeling applications

Relationship between deaths & atmospheric particulate
concentrations [e.g. London Fog]

@ Climate modeling - 1000s of sites for temperature or precipation
@ Location, location, location: house prices

@ Used car prices

@ Strain gauges on the space station

@ Fires in tall wooden buildings

@ Lightning strikes & forest fires

@ Acid rain
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1.8 ST modeling: General approach

Hierarchical modeling:
@ Measurement model
@ Process model
@ Parameter model
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1.9 ST modeling: General approach

Hierarchical modeling: Alternate formulation; [X] = distribution of X

@ [measurement|process, parameters]
@ [process|parameters]

@ [parameters]
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1.10 ST modeling: General data categories

Time - usually discrete index, t =1,...,T.
Spatial locations indexed by s € D.
@ Point referenced data: D = continuum or dense spatial grid;
measurements made at irregular network of locations.
E.g: ozone field
@ Lattice processes: D = not necessarily regular grid of areal
regions or specified locations D where meaurements are made.
E.g: death counts per county; centroids = lattice points

@ Point processes: Measurements or “marks”. made at randomly
selected points in continuum D
E.g: lightning strikes

Selected references: [Schabenberger and Gotway, 2005], [Le and
Zidek, 2006], [Banerjee et al., 2003], [Cressie and Wikle, 2011]
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Processes Temporal processes

2. Temporal processes

Jim Zidek- (UBC) An Overview of Models and Methods for Spati May 30, 2012 15/106



2.1 Example- ozone fields in US

Time series plots: Hourly concentrations at 6 O3 monitoring sites,
Eastern USA Note 24 hour cycles.
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2.2 Example - ozone fields in BC

Time series plots: Monthly measurements at 25 O3 sites in BC. Note
seasonality and different start dates.
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Temporal processes
2.3 Examples - lessons learned

@ Monitoring start times different - staircase pattern in monitoring
data

@ Systematic patterns across space - trends, seasonality, daily
cycles
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Temporal processes
2.4 Autoregressive models

AR(1) process. For time t & fixed spatial location s

X(s,t) =aX(s,t —1)+Wi(s,t), t=1,...,
Here a = corr[X (s,t), X (s,t — 1)] for all t (stationary process);
{W(t,s)} iid zero mean sequence

Multivariate version MAR(1).

X(s,t) = aX(s,t — 1) +W(s,t), t=1,..

*
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Vel ez
2.5 Dynamic linear models

Generalize the AR process. At fixed spatial location s
measurement model:

X(s,t) = Fif(s,t) + (s, t), €(t,s) ~ N(0,V)
process model:
B(s,t) = GiB(s,t — 1) +w(t,s),w(s,t) ~ N0, W)

parameter model:
[5(0,5),V, W]
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Vel ez
2.6 Beyond linearity

Approaches to nonlinearity:

@ Nonlinearize linear models e.g. with link functions.
@ Purpose build them from "ground - up”
o Next few slides illustrate this approach
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Temporal processes
2.7 Markov chain models

Time series of binary outcomes. Theorem: Hosseini et al. [2011b].
For X (s,t) € {0,1} an r-th order Markov chain & g arbitrary, monotone,
then uniquely:

ol P(X(s,t) =1|X(s,t —1),---,X(s,0) -
P(X(s,t) =0|X(s,t —1),---,X(s,0))

T
ab + 3" X(s,t—i)al+ -+
i=1
Z af . X(s,t—ip) - X(s,t—ig)+ -+
1<y <dp <o <ip <r

oy X(s,t—1)X(s,t—2)--- X(s,t —7).
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Vel ez
2.8 Application: Markov chain models

Canadian Prairie droughts: Agroclimate risk management needs
stochastic models for non-precipitation days (X = 0). Model as Markov
chain. Resulting one step transition model fits to empirical data
[Hosseini et al., 2011a] for Calgary. Top curve (red) is for precip
yesterday = 1.
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Processes Spatial processes

3. Point referenced processes
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Processes Spatial processes

3.1 Example: US Ozone monitoring sites
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3.2 Moments and variograms
3.2 Moments and variograms

X ~ F:random vector field. ( Fixed time t omitted in sequel).
For locations {si,...,s,} forany g

Fo . . s,(x1,...,29) = P{X(51) < 21,...,X(59) < 24}

F, . s,(x) is joint distribution distribution (DF)
@ Moment of k"-order:

EIX(s)]F = / wFdF(2)
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Processes Spatial processes

o Expectation: If exists, defined as the 1¢-order moment for any s

@ Variance:
Var[X(s)] = E[X(s) — p(s)]>.

@ Covariance between locations s; & s9,

C(s1,52) = E[(X(s1) — p(s1))(X(s2) — p(s2))]

o NOTE: C(s1,s1) = Var[X(s1)]
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Processes Spatial processes

@ Variogram: Between any 2 locations, s; & so:

2v(s1,82) = war[X(s1) — X(s2)]
= B[X(s1) — X(52) — (sls1) — (s2)) ]

@ v(s1,s2) is called semi-variogram.
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3.3. Stationarity

An important concept in characterizing the random field Y’
@ Strict stationarity
X strictly stationary if:

FS17---78n (l’) = Fsl+h,...,sn+h(l’)

for any vector h & an arbitrary n

@ Second-order stationarity
X is second-order stationary if:

u(s) - BIX()] = u
C(s,s+h) = C(s+h—s) = C(h)
e whenh=0: Var[X(s)] = C(s,s) = C(0)

ie. Mean, Variance do not depend on location
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Processes Spatial processes

@ Second-order stationarity - cont’d

e C'(h): covariogram (or autocovariance in time series)
o Implies Intrinsic Stationarity (weaker)

Var[X(s) — X(s+h)] = Var[X(s)]+ Var[X(s+ h)]
—ZCOU[X(S),X(S + h)]
= C(0)+C(0) —2C(h)
= 2[C(0) = C(n)].

or equivalently semi-variogram
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4 gz e
3.4 Properties of C(h)

X second-order stationary process with covariance function C'(h).

@ Positive Definiteness (PD): If ¥ = {C(h;;)} being covariance
matrix of random vector (X (s1),...,X(sy)) makes it PD implying
for any vector a that:

ZZaiajC(hij) >0
v

@ Anisotropy: C(h) - function of length & direction
@ Isotropy: C(h) - function only of length |A|
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3.5 Isotropic Semi-Variogram Models
3.5 Isotropic Semi-Variogram Models

Second order stationarity implies vy(h) = C(0) — C(h) — ~v(0) =0

@ But often limj_,o v(h) # 0. Discontinuity called nugget effect.

@ When ~(h) — B as h — oo, B called a sill

Note: Few functions satisfy positive definiteness condition - only
certain ones (eg. variogram)
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3.6 Common isotropic models

Exponential model

b
£
s
-8 el
g y(h)y=a + b (1-e™ ")
I
£
3 for hi>0,a>0,b>0,andt;=0
a
o
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3.7 Common isotropic models

Gaussian model

y(hy=a + b (1-¢™® e )

for hl>0,a>0,b>0,andt,>0

semi-variogram

a

¢
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3.8 Common isotropic models

Whittle-Matern model

b
£
o
8
8
1 y(h)=a + b (1-(tgh)" Ky(tghl)/c)
) c=2""T(v)

a K, : Modified Bessel function

for hl>0,a>0,b>0,and ;>0
&
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3.9 Spatial prediction

Problem: Estimate at location s, given observed levels X(s;) ?

X(sn)
O

X(s1)
o

So
X

X(s3)
o

X(s2)
O
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3.10 Ordinary Kriging

Problem: Predict X (sg) given observations x4, ..., z, at locations

S1y...4,8n

@ Assume X (s) = u + Z(s) - intrinsic stationary, ie.

EX(s)] = n
Var[X(s) — X(s+h)] = 2v(|h|)

@ Kriging Predictor  X*(so) = > i, i X (s;)

Choose the {a} to get unbiasedness and minimum
prediction error, 02, = E [X*(s9) — X (s0)]?

\ Kriging predictor: Best linear unbiased predictor (BLUP)\

References: [Krige, 1951] & [Matheron, 1963]
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<1 016 Iy S g sy
3.11 Ordinary Kriging system
® E[X*(s0)] = B> iy cilX(si)] = pd iy i (1)

Thus 3", a; = 1 required.
@ Prediction error (Kriging variance)

o2 E[X*(s0) = X(s0)]* = E | ) ci(X(si) — X(s0))
i=1

= DD ey B[X(s) — X ()2

i=1 j—l

— Zaz z (80)]2
= ZZaiaﬂﬂhij\)—zz@i’Y(‘hioD (2)
i=1

i=1 j=1
«’s chosen to minimize (2) & satisfy (1)
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.12 Ordinary Kriging System
3.12 Ordinary Kriging System

@ Solution for a’s:
of/0a; = 0 i=1,...,n
af/ox = 0

where f(ai,...,an,A) =02 +2X (>0 a; — 1)
@ — ordinary Kriging system

> =1 oy ([higl) + A

Z?:1aj = 1

fori =1,...,n; hy;: distance between s; & s;

v(hiol)
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.13 Implementation
3.13 Implementation

@ Select suitable semi-variogram model & estimate 4(.) using the

data
@ Solve the Kriging system to obtain &’s
@ Kriging interpolator & estimated Kriging variance

n
X*(S(]) = Zdﬂ?z
lzl .

62, = D> audA(lhigl) Z A(|hiol)

=1 j=1 =1
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3.14 Remarks
3.14 Remarks

@ X ~ Gaussian implies 95% prediction interval:
[X*(s0) — 1.9605,, X*(s0) + 1.960,]

@ Kriging predictor is exact interpolator;
(interpolator = observed value at that location)

® o2 is

0’?0 = Z Z a;a;C(s4,85) — 2 Z a;C(si,50) + Var(X(so))

i=1 j=1 i=1

@ Stationarity required only because cannot otherwise estimate the
covariance.
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3:15 Universal Kriging
3.15 Universal Kriging

Random fields with non-constant means

o Let X(s)=u(s)+ Z(s)
Z(s): 2"-order stationary with mean = 0

@ 1(s), the drift, assumed to be S5 a;fi(s)
{fi(s),l =1,...,k} : known functions with parameters q;

@ Universal Kriging Estimator

n

X*(s0) = > _ i X(s;)

=1

Weights o’s chosen to get unbiased estimate with
smallest prediction error
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3:16 Universal Kriging
3.16 Universal Kriging

Derivation is similar to the ordinary Kriging
@ Non-Bias Condition: E[X*(so)] = E[X(s0)], or

p(so) = Y aip(si) =0
1=1

Equivalently  S™F  ai(fi(so) — S0, cifi(si)) = 0
Since a;’s are non zero, the condition becomes

filso)) = aifilss) for I=1,....k (3)
=1

@ Universal Kriging variance: same form as (2)
Hence «o’s chosen to minimize (2) & satisfy (3)
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Processes Spatial processes

@ Ordinary Kriging is a special case
eg. i=1& fo=...=f1=0
@ Like ordinary Kriging, stationarity not necessary
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3.17 Other Kriging methods

@ Multivariate Kriging - coKriging
@ Trans-Gaussian Kriging(TGK): applying the Kriging method on
Box-Coxed X - (indicator or probability Kriging)

@ Non-linear Kriging: disjunctive Kriging
XDK 50 Z fz
fi's: selected to minimize E[X (sg) — X*DK (s0)]?

References: [Cressie, 1993], [Wackernagel, 2003]
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3.18 Other Kriging methods

@ Model based Kriging
Example: Binary spatial process modeled by

= BX

p
1
08

where X is spatial process modeled by methods described above.
Observations are counts & X a latent Gaussian field

References: [Diggle and Ribeiro Jr, 2010]
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319 Deficiencies of Kriging
3.19 Deficiencies of Kriging

@ Optimal only if covariances known. In practice, they are estimated
& plugged into the interpolators, thereby underestimating the
uncertainty.

@ Generally requires isotropic variogram models - not realistic for
environmental problems. Can be achieved by spatial warping or
by dimension expansion
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3.20 The Sampson-Guttorp method: Warping
3.20 The Sampson-Guttorp method: Warping

Nonparametric method for modelling spatial covariance structure
without assuming stationarity [Sampson and Guttorp, 1992]
@ BASIC IDEA: Map geographic space (G-Space) into dispersion
space (D-space) where isotropy assumption valid. That is find
f: G — D with
zi = f(s;) or s; = f_l(zi)
@ Estimate (isotropic) semi-variogram, 4p, using D-distances (ie.
between z;) & estimated dispersion (v;; = 2 — 2corr;;)
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3.21 Warping for Hourly PM;, in Vancouver -
1994-1999

Geographic Coordinates

Fitted Variogram is Exponential
]
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3.22 The SG-method: Warping

@ Correlation ¢;; between s; & s;, obtained by:
e getting D-distance, d;; between z; & z;
) evaluating Cij = 1-— ’A)/D(d”)
@ The SG-approach ensures constructed correlation matrix, {c;;},
non-negative definite — based on a variogram.
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3.23 SG-method: Construction of f
3.23 SG-method: Construction of f

A two-step procedure using the observed dispersion (v;;):

@ Using the multidimensional scaling to find a configuration of the
locations, s;, so that their new inter-distances are ‘close’ to the
corresponding dispersions,

ie. )
mins 3 00 — dig)” — )

1<J ’]

over all monotone functions
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3.24 SG-method: Construction of f
3.24 SG-method: Construction of f

@ Fitting a thin-plate spline mapping, f, between new locations z; &
original locations s;,
ie.

f(s) = ao+ 15 + ags® + > Biu(s)
=1
where  u;(s) = |s — s;]%log|s — s
Find o’s & /5’s by minimizing

2 n
DD = HEP HADR) + ()

Smoothing parameter A — oo leads to 5 — 0
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3.25 SG-method: Implementation
3.25 SG-method: Implementation

@ Need to estimate A in the construction of f

@ By trial — &— error or cross-validation to best estimate of
dispersion while avoiding the folding of G space
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Spatial processes
3.26 New approach to nonstationarity: dimension
expansion

|An old idea actually (Abbott 1884) | Now picked up by physicists in
string theory who claim we live in 10 dimensional world.
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Processes Spatial processes

“Place a penny on one of your tables in space; and leaning
over look down upon it. It will appear as a circle. But now,
drawing back to the edge of the table, gradually lower your
eye....and you will find the penny becoming more and more
oval...until you have placed your eye exactly on at the edge of
the table [when] ...it will become a straight line.

Edwin Abbott Abbott (1884)”
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Processes Spatial processes

’ Example: Gaussian spatial process on half-ellipsoid.
Observations projected onto a 2-D disk.

Variogram plots

Variogram (with Latent Locations) Variogram (2D Ob.

Sermvarance

00 04 08 12
!

Semivarance
00 04 08 12
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Speill ez
3.27 Dimension Expansion:

Embed original field in space of higher dimension for easier modeling.
@ Original monitoring site coordinate vectors sq,. .., sy €ach of

dimension d
@ Augment these coordinate vectors to get new site coordinate
vectors [s1,z1],. .., [Sq, 24] €ach of dimension d + p.

@ Goal: Y ([x, z]) is now stationary with variogram
Vo([8i, zi] — [s5, 2])-
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Spatial processes
3.28 Theoretical support

Perrin and Schlather [2007]: Proves (subject to moment conditions)
that for any Gaussian process Z on R? there exists a stationary
Gaussian field Z* on R%P, p > 2 such that Z on R% is a realization of
z* .

Existence theorem only. Construction of Z* is not given. ‘
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Spatial processes
3.29 Finding the coordinates

Could find the z1,..., 25
(i, Z = argmin Z(v;j — ’y(z,(di’j([s, Z’])))2
P
Here v}; is an estimate of variogram (spatial dispersion between sites i
and j). E.g.

L

> X (si) = X(s)I%,

7|

with 7 > 1 indexing some relevant observations.
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Processes Spatial processes

Given matrix Z € R? x RP construct an f with f(S) ~ Z.
@ Could follow Sampson and Guttorp (1992 the original space

warpers) & use thin plate spline with smoothing parameter \,.

@ Then f~! carries us from the manifold in R**? defined by
(S, f(S)), S € R? back to the original space.

@ In other words, f~!(Z) = S so no issues arise around the
bijectivity of f as in e.g. space warping.
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Spatial processes
3.30 Finding the # of new coordinates

@ Could use cross-validation or model selection to determine Z’s
dimension.

@ But for parsimony and to regularize (avoid overfitting) in the
optimization step we instead solve

p
¢, Z = argmin Y (v} ; — 76(dij([S, Z']))* + M Y 11Z!4/h
1<j k=1

@ )\ regularizes estimation of Z and may be estimated through
cross-validation. But other model fit diagnostics or prior
information could be used.
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3.31 Solving the Optimization Problem

@ As with traditional multi-dimensional scaling, first objective
function does not have unique maximum. But learned locations
unique up to rotation, scaling, and sign.

@ Optimization problem more regularized, due to penalty function.
Result: optimization is unique (up to sign and indices of
zero/non-zero dimensions).

@ We use gradient projection method of [Kim et al., 2006] to do the
optimization.
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Spatial processes
3.32 Ellipsoid application revisited

@ Dimension expansion on ellipsoid simulation yields

Learned Locations (2)

Variogram (with Learned Locations)

» o
8

m2 § ©

g3
X s
_0 é

¢ ¥

w o
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e
| 4 S
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Processes Spatial processes

In contrast, warping does not work well. |

Original Grid Warped Grid: Ayy = 1 Warped Grid: 2y =05 Warped Grid: Ay =0.1
K K %
<7 vl
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% % % X
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e T T T e rTrTrTTTT1 S TTTTTTTT e T T
00 05 10 15 20 00 10 20 30 00 10 20 30 002 4 6
Disance Disance Disance Distance
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3.33 Bayesian Kriging
Prediction at © new locations given observations at ¢ current
monitoring sites
@ Let X(s)=pu(s)+ Z(s) with
k

u(s) = Z arfi(s), (universal Kriging setting)
I=1

Z(s) ~ Gaussian mean = 0

@ Vector notation:

Xl Xl gl
Xl — Xdg 7l
where 3 = (a1, ...,a;)" and X = function of f’s
e e
° LetE:Cov(Z):1< uu g )
o E!]u 299
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221 Eeyesion Sl
3.34 Bayesian Kriging

Note: If ¥ known, Kriging estimator & variance are mean and variance

of (X[ | X9y (Gaussian case)

Kitanidis [1986]: Assume X¥°’s known; put priors on 3 & 6

° ’Conjugate priors for 8 and 0:‘

B0 ~ Ng(Bo,(0F)™)

0 ~ Gamma (g,%)

e | Predictive distribution: |

(X[u] ‘ X[g]) ~ tu(ﬂu\g7\Iju\g7V +g)

where p,, and ¥, are functions of ¥ matrices

ulg
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3.35 Remarks
3.35 Remarks

@ Kriging a special case — no uncertainty in 5 and ¢

@ Important theory but not practical — need known 3°’s
@ Handcock and Stein [1993]: Assume further 3X° = {¢;;}
@ ¢;; = v(|s1 — s2|) - Whittle-Matern model (isotropic)
ie. ~v(x)=a+ Wbr(y) (1 — (tox)” Ky (tox))
]
e Plug—in estimates in applications

e Extended with recent advents in MCMC, eg. [De Oliveira et al.,
1997], [Gaudard et al., 1999]

@ Isotropy assumption still needed !!
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3.36 Hierarchical Bayesian Kriging - BSP method
3.36 Hierarchical Bayesian Kriging - BSP method

A fast Bayesian alternative to Kriging [Le and Zidek, 2006].

Consider a simple setting:

Time
1 X X X X X x X X X X X X X x
X X X X X X X X X
o o o o o o o o o
Observed Data
n X X x X X o o o o o o o o
1 2 cct* u 1 2 3 - g

Ungauged Sites Monitoring Stations
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3.37 Hierarchical Bayesian Kriging - BSP method
3.37 Hierarchical Bayesian Kriging - BSP method

Model construction:

@ Model: X | z, B,)Y o~ Np(ZtB, Z)
@ Prior: Conjugate

B| By, S, F ~ Ny (B, F'®Y)
S|0,6 ~ WNP,6)  (inverted Wishart)

@ Predictive distribution - D observed data
X@|D ~ t, (Mgg,\i/gg,5+n—u—g+1)

Xr(rlLL) ’ Xﬁrg)aD ~ (Mu|ga‘i1u|g75 —u+ 1)
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3.38 Remarks
3.38 Remarks

@ figg, Hulgs \ilgg, \ifum, : Functions of hyperparameters

@ The predictive distribution is not a standard distribution but a
product of two multivariate Student ¢ distributions - completely
characterized if hyperparameters are known

@ X unstructured with its uncertainty (and B’s) incorporated through
prior distribution - reflected in the predictive distribution.
@ Hyperparameters estimated using the type-Il MLE
ie. max f(D|V, B,,J)

e Empirical Bayes
o Estimated ¥, extended using SG method to estimate ¥ - avoiding
isotropy assumption
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3.39 Staircase pattern

BSP handles staircase data patterns with little computational
expense.

Time
1 1 X xX X X X 1 X X xX X xX X xX X X |
2! ' o o
1 1 x x
1 1 o © o«
, o o
I U
1
1 1
! ! X X X
: : o o o
1 1
1 1
i X X
' o o
1 block 1 block 2 block k
I o 3 ° © 3 ° © 3 ° © 3 ° © °
IS S S S S S S S S S S S S S
s 3 3 3 3 3 3 3 3 3 3 3 3 3
n X X X X X (o] (o) (o] (o] (o] (o] (o] (o) (o]
1 2 ocoo u 1 2 3 o oo g
Residential Locations Monitoring Stations
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Processes Spatial processes

5. Lattice processes
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Processes Spatial processes

5.1 Example

Annual Canadian prairie crop yield residuals by agrodistrict after linear
regression on water stress index. Bornn and Zidek [2012]

Mean Residual Error from Single LS Model

60

latitude
56 58

54

52

50

-120 -115 -110 -105 -100 -95 -90

longitude
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Spatial processes
5.2 Autogressive model analog; the CAR approach

Space unlike time not ordered. Conditional autogressive approach
(CAR) is one way of emulating the AR model for fixed time t. Let:

@ D = {s1,...,sm} be the lattice

@ X(s,t) be aresponse of interest
@ X; be all responses but X (s;,t)
@ N(s;) be s; neighbourhood

X(si,t) ~ N (ui,af) , for all i
with
E(X(si,)X) = > cijX(s,1), Var(X(si, )|X) = 77

Sj EN(Si)
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5.3 The CAR approach

Does CAR necessarily determine a joint distribution
(X (8i58)y -y X(8m, t)]?

Answer: Yes under reasonable conditions. [Besag, 1974]
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Spatial processes
5.4 CAR in process model

The following hierarchical model induces a CAR structure [Cressie and
Wikle, 2011].
@ Measurement model:

Y (si,t) ~ ind Poi(exp [X(s;,t])
@ Process model:
X|8,7%, ¢] = Gau(ZB,3[7*, ¢])

where Z represents site specific covariates or factors & (72, ¢]
the CAR neighbourhood structure.

@ Parameter model: |3, 72, ¢]
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Spatial processes
5.5 Markov random field (MRF)

As before time t is fixed &
@ D = {s1,...,sm} be the lattice
@ X(si,t) be aresponse of interest
@ X; be all responses but X (s;,t)
@ N(s;) be s; neighbourhood

MRF models:

[X (55, 0)[{X (s7,1), 5; € N(s;)}] for all i
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Processes Spatial processes

When do the local MRF models determine
[X(s1,t),..., X (8m,1)]?

Hammersley - Clifford Theorem: Gives necessary and
sufficient conditions involving the Gibbs distributions.
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Speill ez
5.6 Markov random fields: Example

Example: Crown die back in birch trees [Kaiser et al., 2002].
Features:

@ Single timepoint, t.

@ X (s;,t) = probability a tree’s crown dies back in region i with
m(s;, t) trees in it.

@ Y (s;,t) = # of trees with die back ~ Bin(m(s;,t), X (si,t).

@ N(s;) = all regions within 48 km of i. Conditional on N(s;), X (s;,t)
has beta distribution with parameters depending on responses in
neighbours.

@ parsimonious model but unclear how to include time
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Spatial processes
5.7 Markov random fields: Assessment

PROS:
@ elegant, simple mathematics + computational power
@ may be useful component in hierarchical model
CONS:
@ compatible joint distribution may not exist
@ neighbours may be hard to specify
@ a new site may not have neighbours for spatial prediction!

@ conditional distributions may be hard to specify when “sites” are
regions
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Spatial processes
5.8 Note on misaligned data

Different responses measured at monitoring sites in a systematic way.
We call unmeasured complements at each site systematically
missing. Often these unmeasured values are predicted from the

others at different sites.
Change of support means data measured at different resolutions,
e.g. some at a county level, some at point locations.

[Banerjee et al., 2003] provides extensive discussion.
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Spatial processes
5.9 Notes on areal data

Sometimes areal data can profitably be modeled as an aggregate of
individual data.

@ Can reflect greater uncertainty due to variation within areas [Zidek
et al., 1998]

@ Was used to explore the ecological effect and develop model that
avoids it [Wakefield and Shaddick, 2006].
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Processes Spatial processes

6. Spatial point processes
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Spatial processes
6.1 Point process patterns

lllustrations from Gelfand (2009). SAMSI lecture.

spatial homogeneity
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Spatial processes
6.2 Point process patterns

spatial heterogeneity

005 1 ou o
608 B
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Processes Spatial processes

6.3 Point process patterns

cluster pattern; systematic pattern

f— S— [—
Bt ) - .
5. .
i " ¥
] iesinds
v u
Feguta Ragutsr Fuguar
| L
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Spatial processes
6.4 Point process model

Poisson spatial point process (PSPP)
Let A C R? & X(A,t) = # points in A.

Assume
@ X (A1,t) and X (Ag,t) are independent if Ay N Ag = ¢
@ X(A,t) ~ Poi( [, Als, t]ds)

The X (-,t) has a PSPP with intensity function A[-, ¢].

Homogeneous if \[s,t] = A\
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Spatial processes
6.5 Point process properties

Suppose X (-, t) has a PSPP with intensity function A[-, ¢].
Then
E[X(At)] = Var[X (A, t)] = N[A, 1] [, Als, t]ds
o If Aissmall P[X(A,t) =0]=1— P[X(A,t) =1]
where \[A,t] = [, A[s, t]ds
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Spatial processes
6.6 Point process - inference

Partition D = U}, D;. Then conditional on X (D, t) = n,
[(X(D1,t),...,X(Du,t))] = multinomial(n, p)

with p = (p1,...,pm) and p; = A[D;, t]/A[D,t]. Butif the {D;} are
small

@ each will have 0 or 1 counts.

@ A\[D;, t] = A[s;, tlds;
So density of [s;,...,s,|X(D,t) =n] =11 A[s;, t]/(A[D, t]))"
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Spatial processes
6.7 Point process - inference

Conclusion: Given points {s?} at which events occur the likelihood
function is
G A, t]  A[D,t])" exp (—A[D, t])
X
(A[D, t])" n!

Example: \[s,t] = exp&y + &1Z(s) where Z is observable covariate
process e.g. ‘temperature’. Then the likelihood can be used to
estimate these parameters with integral approximated.
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6.8 Cox process

@ Measurement model: X (A,t)|A ~ Poi([, Als,t]ds), for all A

@ Process model: log \[-, t] is a Gaussian process on R? with
expectation and covariance

Ellog A[s, t]] = Z(s,t)8
Ci[s1, s2|@p] = Covllog A[s1,t], log A[sa,t]]

@ Parameter model: [3, ¢]

Then marginal distribution [ X] called Cox process
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Processes Spatio — temporal processes

7 Spatio—temporal processes
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Spatio —temporal processes
7.1 Spatio—temporal modeling

Incorporating time.

@ Depends on random response paradigm: point referenced; lattice;
point process.

@ Active area of current development
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Spatio —temporal processes
7.2 General approaches to incorporating time

Approach 1: Treat continuous time as like another
spatial dimension with stationarity assumptions. Eg.
Spatio—temporal Kriging. [Bodnar and Schmid, 2010].
NOTE: Constructing covariance models is more involved
[Fuentes et al., 2008]

Approach 2: Integrate spatial fields over time. Eg.
Given a spatial lattice let X(t) : m x 1 be vectors of spatial
responses at lattice points. Eg. use multivariate
autoregression.

Approach 3: Integrate times series across space. For
a temporal lattice let X(s) : 1 x T be vector of temporal
responses at - use multivariate spatial methods.
Eg.co—Kriging; BSP.
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7.3 Specialized approaches

Approach 4: Build a statistiical framework on physical
models that describe the evolution of physical processes
over time
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Speile el gusteses
7.4 Example: the DLM

] Combine dynamic linear models across space ‘ to get spatial predictor
& temporal forecastor Huerta et al. [2004].

Result: model for hourly /(O3) field over Mexico City - data from 19
monitors in Sep 1997.

Measurement model:
X(s,t) = B(t) + S (t)a(s, t) + Z(s,t)y(t) + €(s,1)

where
@ S;:2 x 1 has sin’s and cos’s;
@ « has their amplitudes, Z temperature covariate

@ ¢(s,t): un-autocorrelated error with isotropic exponential spatial
covariance.
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7.5 Specialized approaches: Eg DLM

Process model:

Bt) = Bt—1)+w(t)
a(s,t —1) +w*(s,t)
V() = (t-1)+w(t)

e
—
\‘CI.)

~

I
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7.6 Specialized approaches: Eg DLM

PROS:

@ intuitive, flexible

@ allows incorporation of physical/prior knowledge
CONS:

@ computationally intensive - maximum of 10 measurement sites

@ non - uniqgue model specification - finding good one can be difficult
@ unrealistic covariance
o

empirical tests suggest simpler multivariate BSP works better for
spatial prediction Dou et al. [2010] and temporal forecasting [Dou
et al., 2012] but much less computationally demanding, Eg. 300
measurement sites
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Spatio —temporal processes
7.7 Physical statistical modeling

@ physical models needed for background

e prior knowledge often expressed by differential equations (de’s)
can lead to big computer models

yield deterministic response predictions

can encounter difficulties:

butterfly effect

nonlinear dynamics

lack of relevant background knowledge

lack of sufficient computing power
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Spatio —temporal processes
7.8 Physical statistical modeling

@ statistical models also desirable

o prior knowledge expressed by statistical models
often lead to big computer models
yield predictive distributions
can encounter difficulty:
o off-the-shelf-models too simplistic
@ lack of relevant background knowledge
@ lack of sufficient computing power
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Spatio —temporal processes
7.9 Physical statistical modeling

May be strength in unity but:
@ big gulf between two cultures
@ communication between camps difficult
@ approaches different
@ route to reconciliation unclear
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Spatio —temporal processes
7.10 Physical statistical modeling

Approach to reconciliation - depends on: purpose; context; # of
(differential) equations; etc.
’With many equations (e.g. 100):‘

@ build a better predictive response density for [field response —
deterministic model outputs]
eg. input model value as prior mean

@ view model output as response and create joint density for
[field response, model output] =
[field response|A][model output|A] x 7(A|data)d\

References: Fuentes and Raftery [2005], Liu et al. [2011]
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Spatio —temporal processes
7.11 Physical statistical modeling

’With a few differential equations (de’s) ‘

Example: dX (t)/dt = AX(t).
Option 1: solve it and make known or unknown constants
uncertain (i.e. random):
X (t) = prexp At + Sy
Option 2: discretize the de and add noise to get a state
space model: X (t+1) = (1 4+ A\)X(t) + €(t)
Option 3: use functional data analytic approach -
incorporate de through a penalty term as in splines
>, (Y — X3)? + (smoothing parameter) [(DX — AX)?dt
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Spatio —temporal processes
7.13 Downscaling physical models

Regression — like approaches may be used:

X(s,1) = ase + Burst M (S, T) + By Z00 (s, 1)6 (s, 1)

where M is physical model output, s € §&rid cell g ¢ ¢ Time Interval |

References: Berrocal et al. [2010a], Zidek et al. [2012]
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Speile el gusteses
Wrapup

@ Spatio—temporal modeling and data analysis has expanded
rapidly in past 10 years. Lots of:
e papers
o books
@ jobs
e conference presentations applications
@ New directions are emerging:

e Bayesian hierarchical modeling
o Large datasets
e Large domains

@ climate change
@ INLA

@ Lots of research opportunities
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Contact information

@ Jim Zidek, Dept Statistics, UBC
e email: jim@stat.ubc.ca
o internet: http://www.stat.ubc.ca/ jim
o Copy of long version of this lecture:
www.stat.ubc.ca/ jim/talks.html
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