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Origins
-

f.ﬂ Need to model environmental space -time fields over
large space - time domains that challenge physical and
statistical modelers

#® Space time research study group: Statistical and
Applied Mathematical Sciences Institute, Jan - May,

2003.

o -

Spruce 2004 — p. 4/:



What's a Model?
T

‘an abstract, analogue representation of the prototype
whose behavior is being studied” (Steyn & Galmarini 2003)

=

o -
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Why Models Needed?
| L -

0.

# impute unmeasured responses

s temporal forecasting

» spatial prediction eg of systematically unmeasured
responses eg species at certain sites

Integrate physical and statistical models
Integrate “misaligned” response measurements
detect spatial or temporal gradients or trends

e o o o

to understand environmental processes (“heuristics”)
» test model hypotheses, current beliefs

o -
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Why Models Needed?
. B

0.

# optimize location of monitoring stations to be added or
deleted

generate inputs for environmental impact models

°

# smooth noisy data
s disease mapping

® facilitate REGULATION, CONTROL,PREDICTION OF
“HOTSPOTS”

o -
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Phys Modeller’s Perspectives (PMPs)
-

Phys model classification T

® Analytic Models:

s Vvariables in tractable math equations represent
measurable attributes of the real thing

® Physical Scale Models

» physical behavior of their measurable properties
analogous to that of the real thing

®» Numerical Models

» Vvariables obtained by numerical solution thought to

be analogous to measurable attributes of the real
thing

L s Example: next slide J
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Canadian Global Coupled Model

o .

# ocean and atmosphere models run separately

s over centuries
s then coupled thru 14 yr “integration” periods

# output forced by input of greenhouse gas scenarios

s eg as observed up to 1990 and 1% per yr increase Iin
C'O5 to 2100

o -
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Canadian Global Coupled Model

o .

# ocean and atmosphere models run separately

s over centuries
s then coupled thru 14 yr “integration” periods

# output forced by input of greenhouse gas scenarios

s eg as observed up to 1990 and 1% per yr increase Iin
C'O5 to 2100

CGCM1 Land Sea Mask

-
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Canadian Global Coupled Model

o .

# ocean and atmosphere models run separately

s over centuries
s then coupled thru 14 yr “integration” periods

# output forced by input of greenhouse gas scenarios
s eg as observed up to 1990 and 1% per yr increase Iin
C'O5 to 2100
# precipitation & latent heat released when local rel
humidity hi enough
s liquid water falls to the surface as precipitation

o -
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Canadian Global Coupled Model

. .

‘Confirmation” Run: modelled & observed global annual
average surface temperature, 1900 - 1990. Scenario: like
that above.
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Canadian Global Coupled Model

ooking ahead under various scenarios
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Controversy! The Oreskes Paper

fThe paper (OSB) . Oreskes, Schrader-Frechette & Belitz (1994) T
Science, 263, 641-646

# highly influential

s says physical models cannot be shown to represent
reality - validation meaningless/pointless

o still cited over 40 times per yr
s used to justify not validating!

o -
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Controversy! The Oreskes Paper

fThe paper (OSB) . Oreskes, Schrader-Frechette & Belitz (1994) T
Science, 263, 641-646

# dismisses common assessment practices

verification

validation

verifying numerical solutions
calibration

confirmation

e o o o ©

o -
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e o o ©o

Oreskes Arguments

# Verification Meaningless - models cannot be “true”

model parameters unknown
nonscalability of nonlinear properties
measurement error

need for auxiliary hypothesis leaves uncertainty
about exactly not true if model fails

-
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Oreskes Arguments
f ® Validation: T

s not restricted to truth
» could mean mere internal consistency

» has two common meanings neither valid: (1)
verification & (2) accurate portrait of reality -
agreement with measurements demonstrates
consistency of two systems that time but maybe two
bad assumptions neutralized each other

o -
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Oreskes Arguments

o .

® \Verification of Numerical Solutions: ~ checking computer
code against analytic solutions where derivable

s needed, but no implications where not
s not relevant to the main issue

o -
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Oreskes Arguments

o .

# Calibration: model tuning

s Mmanipulation of parameters to match measurements

s can be done by splitting sample - 1/2 for calibration,
1/2 for evaluation - usually fails leading to further
iteration

s NO guarantees for future measurements

o -

Spruce 2004 — p. 12/:



Oreskes Arguments

o -

# Confirmation: concluding that simulated - real data match
= truth Is logical fallacy : “affirming the consequence”

EXAMPLE: Hypothesis H : “It is raining.” Model: “If
H, | will stay home and revise the paper." You find
me at home and conclude H valid since data
matches prediction under model hypothesis!

# poor predictions = bad model!
#® good predictions = good model!

» many good models possible
s bad hypotheses could cancel each other

o -
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Oreskes Arguments

-

Summary:

“The primary purpose of models in heuristic...useful
for guiding further study but not susceptible to

proof... [Any model is] a work of fiction. ... A model,
like a novel may resonate with nature, but is not the

‘real thing'.

o -
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Steyn & Galmarini Counterattack!
f.o reject alternative: pure empiricism T

# (o for an compromise between pure empiricism models
and “true” models:

» models have predictive & heuristic value

o but define “success” before assessment to avoid
“gradualism”

» they provide evidence of predictive value of models
# current hot topic in phys modelling & other communities

o -
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Phys - Stat Modelling Themes
=

THEME 1: Statistics can help assess physical (phys)
(simulation) models (if you must)

=

#® The US EPA says you must!!
#® Fuentes, Guttorp, Challenor (2003). NRCSE TR # 076.

o -
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Phys - Stat Modelling Themes

fTHEME 2. Statistics can help interpret, analyze, understand, T
exploit outputs of complex phys models.

# Nychka (2003). Workshop presentation

# Example: statistics on modelled precipitation (precip)
extremes gives coherent return values over space for

design

o -
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Phys - Stat Modelling Themes

o .

# THEME 3: Physical (phys) and statistical (stat) models
can produce synergistic benefits by "melding” them.

s Wikle, Milliff, Nychka, Berliner (2001). JASA.

s Example: how can simulated (modelled) and real
ozone data be usefully combined?

o -
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On Theme 2: Precip Extremes

=

return values for annual max precip levels important -
but Canada little monitored

solution : simulate precip extreme fields using CGCM:
312 Canadian grid cells.

Required:

» spatially coherent cell return values!

s joint 312 dimensional distribution to
s enable prediction of T = number of 312 return
value exceedances with E(T), SD(T), etc

Reference: Fu, Le, Zidek (2003). UBC Stats TR 209.

-
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CGMC Data
L o

# 3 independent simulation runs of hourly precip
(mm/day)

s In 21-year windows (to look for trends)
s 1975-1995 2040-2060 2080-2100

® 26 x 12 grid covers Canada, cell size = (3.75°)?

# gives 21 x 3 = 63 annual precip maxima per cell x time
window

o -
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CGCM Analysis
-

# BEFORE ANALYSIS: log - transform, de-trend
# RESIDUALS:

» symmetric empirical marginal distribution
» slightly heavier than normal tails
» Nno significant autocorrelation

® AFTER ANALYSIS: re-trend, antilog-transform

o -
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CGCM Statistical Model

o .

® HIERARCHICAL BAYES : Normal - Inverted Wishart
model for residuals

» estimated variogram for 312*312 dimensional
hypercovariance

® RESULTING POSTERIOR: 312 dimensional,
multivariate students - t distribution enables:

s estimation of 312 marginal return values

» simulation of 312 dim’l annual max precip field plus:

s distribution of “statistics” computed from it
. eg T =# of (312) cells above their return value
- E(T)
. prediction interval for T

o -
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CGGM Stats Model Assessment

fCROSS VALIDATION: T

# randomly omit 30 of 312 cells repeatedly
# predict their values from rest from the joint t distribution.

® CONCLUSION: The joint t distribution fits the simulated
data quite well

Credibility Level Mean Median

30% 35 35
95% 96 97
99.9% 99.9 99.9

LTabIe 1. SUMMARY: cred’y ellips’d coverage prost

Spruce 2004 — p. 19/:



1eme 3: Combining Simulated & Real D:

o .

Does this make sense?

# Example:
(2 + 1 )/2=1.5

Seems correct. But its actually nonsensical.



1eme 3: Combining Simulated & Real D:

o .

Does this make sense?

# Example:
(2 + 1 )/2=1.5

Seems correct. But its actually nonsensical.

(2cm + 1 apple)/2 =1.5

Phys model data scales differ from real data

o -
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Model Dynamic Scales

-

The problem (Steyn & Galmarini 2003): T
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Continuous real data monitors: scale just 1 m?x few
minutes - lower left hand corner!!

o -
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Time Scale (s)

Model Dispersion Scales
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Model Chemical Scales
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lime Scale (3)

Model Human Scales
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Phys vs Stat Models

hysical models:

® desirable

e o o o

=

prior knowledge expressed by math equations (de’s)
can lead to big computer models

yield deterministic response predictions
can encounter difficulty:

$

o
o
£

butterfly effect

nonlinear dynamics

lack: background knowledge
lack: computing power

-
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Phys vs Stat Models
-

Statistical models:

® also desirable

prior knowledge expressed thru statistical models
often lead to big computer models

yield predictive distributions

can encounter difficulty:

s off the shelf models unduly simplistic
s lack of relevant background knowledge
s lack of sufficient computing power

e o o @

o -
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Phys vs Stat Models
o -

ay be strength in unity but:

# Dbig gulf between two cultural “attitudes”
& communication between camps strained
#® approaches very different

# route to reconciliation unclear

o -
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Phys vs Stat Models
-

® General framework:

» Mmeasurement model
s process model
s parameter model

# Berliner (2003) Workshop presentation
# fits with hierarchical Bayesian modelling

o -
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Phys vs Stat Models
-

Strategies for combining depend on:

® purpose
& context
# # of mathematical equations involved



Phys vs Stat Models
-

With many mathematical (differential) equations eg 100:

=

# construct better predictive density:

s f(real|lsimulated) eg input simulated value as prior
mean

s Mayer Alvo (19907?7?)

# view simulated data as real - build joint density
(“melding”):

s f(real, simulated) =

[ f(real|truth) f(simulated|truth) x m(truth)d(truth)
s Fuentes & Raftery (2004). To appear? JASA

o -
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Phys vs Stat Models
-

With only a few de’s:
Example: dX (t)/dt = Af(t).

® solve it and make constants random:
X(t) = prexp At + Bo

(Wikle et al 2001)

# discretize the de and add noise to get a state space
model: X(t+ 1) = (1 4+ X\)X(t) + ¢ (Wikle et al 2001)

# use functional data analytic approach - incorporate de’s
via penalty term (as in splines; Ramsey & Silverman
19987?)

S (Y — X2+ [(DX(t) — N)2dt
a J N
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The Ozone Project

-

Alir pollution “simulation” models:

# mathematical - computer models:
» capture nonlinear photochemical interactions
s predict/simulate air pollution
s URM 1994, UAM-V 1995, CAMx 1997, SAQM 1997,
MAQSIP 1996, MODELS-3 1998
# developed for variety of purposes:
» assessing success of abatement strategies
s regulation & control

o -
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Focus of Ozone Study
-

# hourly concentrations of ground level O3 (ozone) over
eastern US for 120 days from May 15 - Sept 11 1995.

® simulated concentrations from the MULTISCALE AIR
QUALITY SIMULATION PLATFORM (MAQSIP) model

# measured concentrations from > 200 monitoring sites
from US EPA’s AIRS database.

® QUESTIONS:
» Is comparison of simulated and real data
meaningful?
s How do they compare?
» What do they say about each other?
s How might they be combined?

o -
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Simulated Data (MAQSIP) cells

e,

<
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Real Data Ozone Sites




Comparisons

-

fTS plots of 3 real & 1 simulated data series. Simulated
more variable than real!
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Comparisons

r

# little randomly missing data

ootnotes:

# marked daily cycles
# amplitude varies dynamically over season

o -
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Comparisons

-

Periodic (hourly) means - all sites and cells.

real data
E‘SE 4;113a°i10§iisiiiiiiﬁii‘
%j: :L:_i: : :QQ$E|:|E|?II;”:” “ IEEEEEEE
e E R R E RN
simulated data
§a-iiiﬁiaﬁ iﬁ‘.iiiiiliiii
E - - EEu'.“.".".'MEEE
gm— ‘:H:I ll,_lEIEEE' EEE’E
O E'?%t?titgggggtgsg!gggg???

I I I I I I I I I I I I I I I
X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 X11 X13 X15 X17 X19 X21 X23

o -
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Comparisons

-

Comparison: variograms for simulated and real data fields.

=

GLS Exponential model for hourly real and simulated data
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Modelling Real Data Fields
-

Dynamic state space modelling.
“Measurement model”:

=

Xit = B/ + Siair + e?t, Time = t, Site = ¢

St 1 2 x 1 has sine’s and cosine’s to model 24hr cycles
« captures their amplitudes
e/, = whitened error models spatial correlation

© o o @

References:
o Harrison and West

s Huerta, Sanso & Stroud (2004). App Statist (to
appear)

o -
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Modelling Real Data Fields
=

The parameter/process model lets the parameters change
dynamically:

=

Resulting model: hierarchical Bayes.



Modelling Real Data Fields
o

# Intuitive, flexible and powerful

=

odel Advantages:

# allows for the incorporation of physical/prior knowledge

# leads to optimal designs that change from time to time -
but value unclear

o -
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Modelling Real Data Fields

- .

# computationally intensive - may not yield practical
design objective functions

otential Model Disadvantages:

# non - unigue model specification - finding good one can
be difficult

Isotropic covariance assumption hard to avoid

°

# unclear if space - time non-separability iIs overcome
with the approach above

® unclear how In insure model well calibrated

o -
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Modelling Real Data Fields
-

fBlow - up: Huerta et al plot . Predictive values and 95%
for an omitted site. The coverage % around 30 -40%!!
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Modelling Real Data Fields
-

Application to ozone field. Cell 1. Shows simulated and T

real data along with predicted values and 95% prediction
Intervals.

Predictive v.s. simulated sqgrt(ozone) at cell 1 : (43.415544, —70.19764)

K& —+— predline atcell 1
—r— simu ling at cell 1
-+ pred lower 95% CI bound
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Modelling Real Data Fields

Cell 2. Shows simulated and real data along with predicted
values and 95% prediction intervals.

predictive v.s. simulated sqrt(ozone) at cell 3:(45.393065,-69.496345), burn.in=20, total iter=500
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0] 50 100 150

Time
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C

sqrt(Ozone)

Modelling Real Data Fields

ell 2. Exploded view of previous graph.
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Concluding Remarks
- -

#® Results of using the state space models not
encouraging.

# Too early to report on our synthesis of model and real
data

#® Physical statistical modelling part of a larger trend from
“*normal science” to “post - normal science”

o -
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Concluding Remarks

-

Funtowicz, Ispra Ravetz (2004?) Nusap.net:

"...key properties of complex systems, radical
uncertainty and plurality of legitimate
perspectives....When facts are uncertain, values in
dispute, stakes high, and decisions urgent the
...guiding principle of research science, the goal of
achievement of truth,...must be modified. In
post-normal conditions, such products may be ...an
Irrelevance.”

o -
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Concluding Remarks
o

rom Funtowicz et al:
higzh

Diecision Stakes

o - high
Systems Uncertainty
LExtended version of this talk to be posted. Follow links fromJ
http://www.stat.ubc.ca/<faculty members LINK>
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Concluding Remarks

-

Extended version of this talk to be posted. Follow links from
http://www.stat.ubc.ca/<faculty members LINK>

=

o -
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