A stochastic space-time model for annual precipation extremes

Audrey Fu, Nhu D Le, Jim Zidek

U Washington, BC Cancer Agency, U British Columbia

Acknowledgements

Francis Zwiers, Environment Canada

Outline

- General perspectives
- Coupled Global Climate Model (CGCM)
- Precipitation extremes
- Review extreme value theory-shortcomings
- Alternate approach: basic theory
- Application: Coupled Global Climate Model
- Conclusions

What's "extreme"?

For dams, hydro electric, water storage or flood control: **1000 year return period**

NOTE: Meaning

P[Dam failure in a given year] = 1/1000

What's "extreme"?

Highway bridges: 100 year return period

NOTE: Not too extreme - 99th percentile

What's "extreme"?

EPA regulations for particulate pollution ($PM_{2.5}$):

- At each monitoring site, compute daily concentration averages
- Compute 98th percentile of these
- Compute T = 3 year average of these
- Requirement: $T \le 65 \ \mu \text{g m}^{-3}$ at each site

Physical vs Statistical Modelling

THEME 1: Statistics can help assess physical (simulation) models (if you must)

- The US EPA says you must!!
- Fuentes, Guttorp, Challenor (2003). NRCSE TR # 076.

Physical vs Statistical Modelling

- THEME 2: Physical and statistical models can produce synergistic benefits by "melding" them.
 - Wikle, Milliff, Nychka, Berliner (2001). JASA.
 - Example: how can simulated (modelled) and real rainfall data be usefully combined?

Physical vs Statistical Modelling

THEME 3: Statistics can help interpret, analyze, understand, exploit outputs of complex physical models.

- Nychka (2003). Workshop presentation
- Example: statistical analysis of CGCM precipitation (precip) extremes gives coherent return values over space for design

- ocean and atmosphere models run separately
 - over centuries
 - then coupled thru 14 yr "integration" periods
- output forced by input of greenhouse gas scenarios
 - eg as observed up to 1990 and 1% per yr increase in CO_2 to 2100

- ocean and atmosphere models run separately
 - over centuries
 - then coupled thru 14 yr "integration" periods
- output forced by input of greenhouse gas scenarios
 - eg as observed up to 1990 and 1% per yr increase in CO_2 to 2100

- ocean and atmosphere models run separately
 - over centuries
 - then coupled thru 14 yr "integration" periods
- output forced by input of greenhouse gas scenarios
 - eg as observed up to 1990 and 1% per yr increase in CO_2 to 2100
- precipitation & latent heat released when local rel humidity hi enough
 - liquid water falls to the surface as precipitation

"Confirmation" Run: modelled & observed global annual average surface temperature, 1900 - 1990. Scenario: like that above.

Looking ahead under various scenarios

Precipitation extremes

EG: The 100 year rain!

- return values for annual max precipitation levels important but Canada little monitored
- solution: simulate precipitation extreme fields using CGCM: 312 Canadian grid cells.
- **B** Required:
 - spatially coherent cell return values!
 - joint 312 dimensional distribution to
 - enable prediction of T = number of 312 return value exceedances with E(T), SD(T), etc

CGMC Data

- 3 independent simulation runs of hourly precipitation (mm/day)
 - in 21-year windows (to look for trends)
 - 1975-1995 2040-2060 2080-2100
- 26×12 grid covers Canada, cell size = $(3.75^{\circ})^2$
- gives $21 \times 3 = 63$ annual precipitation maxima per cell \times time window

Modelling extreme fields

E.G.: annual precip maxima. Assume no autocorrelation

- Approach 1: multivariate extreme value theory
- Approach 2: use hierarchical Bayes

Assume X_1, X_2, \dots, X_n *iid*. Let $M_n = max\{X_1, X_2, \dots, X_n\}$. Fisher-Tippett (1928)showed:

$$P(\frac{M_n - b_n}{a_n} \le x) \to H(x), \text{ as } n \to \infty$$

where H has **GEV** distribution

$$H(x) = \begin{cases} \exp\left[-\left\{1 + \xi\left(\frac{x-\mu}{\sigma}\right)\right\}^{-1/\xi}\right], & 1 + \xi\left(\frac{x-\mu}{\sigma}\right) > 0, \xi \neq 0\\ \exp\left[-\exp\left(-\frac{x-\mu}{\sigma}\right)\right] & \xi = 0 \end{cases}$$

Alternatives: Generalized Pareto (GPD) model: Cumulative distribution's right hand tail approximated by:

$$H(x) = 1 - \lambda \left[1 + \xi \left(\frac{x - u}{\sigma} \right) \right]_{+}^{-1/\xi}, \quad x > u$$

for parameters, $\lambda > 0$, $\sigma > 0$, and $\xi \in (-\infty, \infty)$.

NOTE: Assuming number of exceedances over time Poisson yields the Poisson–GPM method

Alternatives:

Peak over Threshold (POT) model: Only values above a "threshold" are modelled:

$$P[X \le x + u \mid X > u]$$

approximated the GPD model.

- Good idea since only extremes of interest
- However:
 - for large threshold "u" little data
 - for small "u" poor tail approximation
- \checkmark tail model parameters depend on "u"
- results sensitive to the choice of "u"

Alternatives:

Probability Weighted Moment (PWM) model: unduly complex for certain purposes

Approaches:

Extend Fisher-Tippett

Problems: leads to a big class of possible limit distributions. Moreover, extremes must be asymptotically dependent for large return periods.

An example: Small inter - site correlations Inter-site

dependence declines with increasing extreme's "range" for many (not all!) site pairs [London and Vancouver analyses]

raw data, daily, weekly, monthly (30 days) (please look at points 1, 2, 3, and 4 only)

Inter-site correlations for Vancouver's PM_{10} decline with max range.

Approaches:

Specify individual cell (parametric) distributions. Put a joint distribution over their parameters

Problems: *ah hoc* and complex. No compelling dependence structure

Point process (PP) approach:

Space-time points where threshold exceedance occurs is non-homogeneous Poisson process, intensity function:

$$\Lambda(A) = (t_2 - t_1)\Psi(y; \mu, \psi, \xi)$$

where

$$A = (t_1, t_2) \times (y, \infty)$$

$$\Psi(y;\mu,\psi,\xi) = \left[1 + \xi\left(\frac{y-\mu}{\psi}\right)\right]^{-1/\xi}, \ 1 + \xi\left(\frac{y-\mu}{\psi}\right) > 0$$

Problems: Complicated distribution; unclear how to extend to _multivariate responses; what about fixed site monitors? _____

Approaches:

Our hierarchical Bayesian method:

- Approximate transformed cell max precip data by joint multivariate t distribution
- Very flexible & lots of available theory

Problems:

- may not work for "extreme extremes".
- asymptotically independent sites

Our method: Assumptions

 $\mathbf{Y}_j : p \times 1$ annual precipitation maxima; p cells, years $j = 1, \dots, n$.

Sampling Distribution:

Conditional on $(\boldsymbol{\mu}, \Sigma)$ $\mathbf{X}_j \doteq \log \mathbf{Y}_j \stackrel{iid}{\sim} MVN_p(\boldsymbol{\mu}, \Sigma)$

Our method: Assumptions

 $\mathbf{Y}_j : p \times 1$ annual precipitation maxima; p cells, years $j = 1, \dots, n$.

Prior distribution:

- $\boldsymbol{\mu}|\boldsymbol{\Sigma} \sim MVN(\boldsymbol{\nu}, F^{-1}\boldsymbol{\Sigma})$
- Ψ and m called *hyperparameters*
- F^{-1} re-scales Σ to mean's level of uncertainty

Implications

Posterior distribution (of precip max field):

•
$$\mathbf{X}_{p \times 1} | D \sim t\left(\tilde{\mathbf{x}}, \tilde{\Sigma}, l\right)$$
 with
• $\tilde{\mathbf{x}} = \boldsymbol{\nu} + (\bar{\mathbf{x}} - \boldsymbol{\nu})\hat{E}$
• $\tilde{\Sigma} = \frac{1+nF^{-1}-n\hat{E}F^{-1}}{l}\hat{\Psi}$ and
• $l = m + n - p + 1,$
 $\hat{\Psi} = \Psi + (n - 1)S + (\bar{\mathbf{x}} - \boldsymbol{\nu})(n^{-1} + F^{-1})^{-1}(\bar{\mathbf{x}} - \boldsymbol{\nu})'$

The Hyperparameters

- ν : estimated by **smoothing spline** over all cells
- $\Psi = c \times \Phi$, Φ a **covariance matrix** estimated by *semivariogram*

•
$$\Phi_{ij} = Cov(X_i, X_j) = \sigma^2 - \gamma(h_{ij})$$

- σ^2 = common sample variance
- h_{ij} = Euclidean distance between sites i, j
- $\gamma(h)$ = isotropic semivariogram model fitted to data
- **• EM algorithm** estimates c & degrees of freedom, m
- F^{-1} estimated by method of moments

The Hyperparameters

Justifying empirical Bayes:

- Posterior must be well-calibrated w.r.t. real max precip fields. Hence prior must be *fitted* to enable good match
- simplicity
- equates with using diffuse prior

Diagnostic tool

Validating joint normality assumption

Method For any given year:

- delete data from selected sites
- predict them by $\hat{\mathbf{x}}_{\mathbf{u}} = \boldsymbol{\nu}_u + (\hat{\mathbf{x}}_g \boldsymbol{\nu}_g)' \Psi_{gg}^{-1} \Psi_{gu}$ where
 - u means ungauged (missing) and g, gauged
 - (ν_u, ν_g) partitioned *prior mean* conformably
 - $\ \, {\rm \ \, likewise \ \, for \ \, } \Psi_{gg} \ \, {\rm \ and \ \, } \Psi_{gu} \ \,$

Diagnostic tool

Validating joint normality assumption

Method

Now see if vector of missing values falls into 95% credibility interval:

• {
$$\mathbf{X}_{\mathbf{u}} : (\mathbf{X}_{\mathbf{u}} - \hat{\mathbf{x}}_{\mathbf{u}})' \Psi_{u|g}^{-1} (\mathbf{X}_{\mathbf{u}} - \hat{\mathbf{x}}_{\mathbf{u}}) < b$$
} where
• $b = (u \times P_{u|g} \times F_{1-\alpha,u,m-u+1}) \times (m-u+1)^{-1}$
• $\Psi_{u|g} = \Psi_{uu} - \Psi_{ug} \Psi_{gg}^{-1} \Psi_{gu}$ and
• $P_{u|g} = 1 + F^{-1} + (\mathbf{x}_{\mathbf{g}} - \boldsymbol{\nu}_{g})' \Psi_{gg}^{-1} (\mathbf{x}_{\mathbf{g}} - \boldsymbol{\nu}_{g})$

Diagnostic tool

Validating joint normality assumption

Method

- Joint the second stress of the second stress of
- compute the relative coverage frequency it should be around 95%!! Offers check on the validity of the model.

Estimating Return Values

Definition: T year return value, X_T

 $P(X > X_T) = \frac{1}{T}$

- can be estimated for each cell from the joint posterior t distribution
- approximation: use log normal instead of log t distribution, $x_{1-T,i} = \tilde{x}_i + \Phi(1-T) \times \tilde{\sigma}_i$

CGCM Analysis

- BEFORE ANALYSIS: log transform, de-trend
- RESIDUALS:
 - symmetric empirical marginal distribution
 - slightly heavier than normal tails
 - no significant autocorrelation
- AFTER ANALYSIS: re-trend, antilog-transform

CGCM Statistical Model

- HIERARCHICAL BAYES: Normal Inverted Wishart model for residuals
 - estimated variogram for 312*312 dimensional hypercovariance
- RESULTING POSTERIOR: 312 dimens'l, multivariate t-distribution, m = 355, c = 49 (for Ψ estimate) Posterior:
 - yields estimates of 312 marginal return values
 - enables simulation of 312 dim'l annual max precip field and
 - distribution of *stat's* computed from it
 - · EG: T = # of (312) cells above return values, E(T), predictive interval for T

Results

Contour, perspective plots of estimated 10-year return values (mm/day).

CGGM Stats Model Assessment

CROSS VALIDATION:

- randomly omit 30 of 312 cells repeatedly
- predict their values from rest from the joint t distribution.
- CONCLUSION: The joint t distribution fits the simulated data quite well

Credibility Level	Mean	Median
30%	35	35
95%	96	97
99.9%	99.9	99.9

Table 1: SUMMARY: cred'y ellips'd coverage probs

Discussion

- Joint distribution fits well. Also worked in another study on real air pollution data.
- Allows answers to complex question like chances of say 10 simultaneous exceedances of cell return values
- Suggests model could be used to design extreme precip monitoring networks
- the return value index reveals reasonable joint fit but needs further study

Concluding Remarks

- multivariate t distribution promising model for extreme space-time fields. Data needs to be transformable. But wealth of existing theory for multinormal makes pursuit worth it!
- empirical checking/diagnostics vital before using the method
- general theory allows extension to multivariate responses in each site & covariates too!
- Can posterior be trusted for extreme-extremes? Can any distribution?

References & Contact Info

- email: jim@stat.ubc.ca
- internet: http://www.stat.ubc.ca/<LINK Faculty Members>
- tech reports: http://www.stat.ubc.ca/<LINK Research Activities>
- R-based software: http://enviro.stat.ubc.ca
- Companion to Nhu D Le & James V Zidek (2006) Statistics analysis of environmental space-time processes. Springer. To Appear May 12.

NOTE: Chap 14 gives a tutorial on its use.