Solution to Problem 8.16

8.16. a) For the double exponential probability density function
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the first population moment, the expected value of X, is given by
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because the integrand is an odd function (g(—z) = —g(z)). The first population moment does
not depend on the unknown parameter o, so it cannot be used to develop a method of moments
estimator of 0. We go on to consider the second population moment:
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Re-expressing the last integral as the integral of a gamma density function leads to
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Therefore, the method of moments estimator of ¢ is given by
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b) The likelihood function is given by
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To simplify, consider the log-likelihood function
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It follows that
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so it is clear that the (unique) solution to I'(¢) = 0 corresponds to a maximum and we obtain
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c) If we let Y; = X2, we can write
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where g(y) = v/y/2. The second order approximation to the expected value of s/ is then is given
by
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But Y1,...,Y, are independent and identically distributed (because Xi,..., X, are), so uy =
E(Y)=E(Y) and Var(Y) = Var(Y)/n, leading to the simplified expression

E(Gyr) = g(py) + %g”(uy)Var(Y).

From a), we obtain

Also
Var(Y) = Var(X?) = E(X?) — [E(X?))?,
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after evaluating the integral by re-expressing it as a gamma density function. So
Var(Y) = 240 — (20°%)% = 200",

and the expression becomes
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Finally, we evaluate the derivatives
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As is typical for reasonable estimators, the bias is of order 1/n. So, for large values of n, the MSE
of 6 will be dominated by the variance (because MSE = Variance + BiasZ).
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d) Because X1, ..., X, are independent and identically distributed,

E(6nmL) = < Z\X I> E(X]).
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after evaluating the integral by re-expressing it as a gamma density function. Therefore, this ML
estimator, s, is unbiased.

But

e) From the delta method and c), we have
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Substituting from expressions obtained above
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f) Because Xji,..., X, are independent and identically distributed,
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But E(|X|?) = E(X?) = 202 from c¢) and E(]X|) = o from d), so we obtain
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g) From the above results,

and

MSE(Opar) = ey + 6z = to leading order (in n).

h) For this problem, we prefer the ML estimator because both:
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e the bias of the MLE is smaller (in magnitude) than that of the MME (in fact, the MLE is
unbiased).

e the variance of the MLE is smaller than that of the MME.



