
Solution to Problem 8.16

8.16. a) For the double exponential probability density function

f(x|σ) =
1

2σ
exp

(
−|x|
σ

)
,

the first population moment, the expected value of X, is given by

E(X) =
∫ ∞
−∞

x

2σ
exp

(
−|x|
σ

)
dx = 0

because the integrand is an odd function (g(−x) = −g(x)). The first population moment does
not depend on the unknown parameter σ, so it cannot be used to develop a method of moments
estimator of σ. We go on to consider the second population moment:

E(X2) =
∫ ∞
−∞

x2

2σ
exp

(
−|x|
σ

)
dx = 2

∫ ∞
0

x2

2σ
exp

(
−x
σ

)
dx.

Re-expressing the last integral as the integral of a gamma density function leads to

E(X2) = 2σ2

as
∫ ∞

0

(
1
σ

)3

Γ(3)
x3−1 exp

(
−x
σ

)
dx = 1. Solving for σ in terms of µ2 = E(X2) leads to

σ =
√

1
2
µ2.

Therefore, the method of moments estimator of σ is given by

σ̂MM =
√

1
2
µ̂2 =

√√√√ 1
2n

n∑
i=1

X2
i .

b) The likelihood function is given by

L(σ) =
n∏
i=1

f(xi|σ) =
n∏
i=1

1
2σ

exp
(
−|xi|

σ

)
.

To simplify, consider the log-likelihood function

l(σ) =
n∑
i=1

[
− log(2σ)− |xi|

σ

]

= −n log 2− n log σ − 1
σ

n∑
i=1

|xi|

⇒ l′(σ) = −n
σ

+
1
σ2

n∑
i=1

|xi|.
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It follows that

l′(σ) > 0⇔ σ <
1
n

n∑
i=1

|xi|

so it is clear that the (unique) solution to l′(σ) = 0 corresponds to a maximum and we obtain

σ̂ML =
1
n

n∑
i=1

|Xi|.

c) If we let Yi = X2
i , we can write

σ̂MM =

√√√√ 1
2n

n∑
i=1

X2
i =

√
Ȳ /2 = g(Ȳ ),

where g(y) =
√
y/2. The second order approximation to the expected value of σ̂MM is then is given

by

E(σ̂MM ) ∼= g(µȲ ) +
1
2
g′′(µȲ )Var(Ȳ )

But Y1, . . . , Yn are independent and identically distributed (because X1, . . . , Xn are), so µȲ =
E(Ȳ ) = E(Y ) and Var(Ȳ ) = Var(Y )/n, leading to the simplified expression

E(σ̂MM ) ∼= g(µY ) +
1

2n
g′′(µY )Var(Y ).

From a), we obtain
µY = E(Y ) = E(X2) = 2σ2.

Also
Var(Y ) = Var(X2) = E(X4)− [E(X2)]2,

and
E(X4) =

∫ ∞
−∞

x4 1
2σ

exp
(
−|x|
σ

)
dx =

2
2σ

∫ ∞
0

x4e−
x
σ dx = 24σ4,

after evaluating the integral by re-expressing it as a gamma density function. So

Var(Y ) = 24σ4 − (2σ2)2 = 20σ4,

and the expression becomes

E(σ̂MM ) ∼= σ +
10σ4

n
g′′(2σ2).

Finally, we evaluate the derivatives

g′(y) =
1

2
√

2
y−

1
2 and g′′(y) = − 1

4
√

2
y−

3
2 ,

to obtain
E(σ̂MM ) ∼= σ − 5σ

8n
,
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and
Bias(σ̂MM ) ∼= −

5σ
8n
.

As is typical for reasonable estimators, the bias is of order 1/n. So, for large values of n, the MSE
of σ̂MM will be dominated by the variance (because MSE = Variance + Bias2).

d) Because X1, . . . , Xn are independent and identically distributed,

E(σ̂ML) = E

(
1
n

n∑
i=1

|Xi|
)

= E (|X|) .

But
E (|X|) =

∫ ∞
−∞

|x|
2σ

exp
(
−|x|
σ

)
dx = 2

∫ ∞
0

x

2σ
exp

(
−x
σ

)
dx = σ,

after evaluating the integral by re-expressing it as a gamma density function. Therefore, this ML
estimator, σ̂ML, is unbiased.

e) From the delta method and c), we have

Var(σ̂MM ) ∼=
[
g′(µȲ )

]2 Var(Ȳ ) =
[
g′(µY )

]2 Var(Y )
n

.

Substituting from expressions obtained above

Var(σ̂MM ) ∼=
{

1
2
√

2
(2σ2)−

1
2

}2 20σ4

n
=

5σ2

4n
.

f) Because X1, . . . , Xn are independent and identically distributed,

Var(σ̂ML) = Var

(
1
n

n∑
i=1

|Xi|
)

=
1
n

Var (|X|) .

But E(|X|2) = E(X2) = 2σ2 from c) and E(|X|) = σ from d), so we obtain

Var(σ̂ML) =
σ2

n
.

g) From the above results,

MSE(θ̂ML) =
σ2

n
+ 0 =

σ2

n
,

and

MSE(θ̂MM ) ∼=
5σ2

4n
+
[
−5σ

8n

]2

=
5σ2

4n
+

25σ2

64n2
=

5σ2

4n
to leading order (in n).

h) For this problem, we prefer the ML estimator because both:

• the bias of the MLE is smaller (in magnitude) than that of the MME (in fact, the MLE is
unbiased).

• the variance of the MLE is smaller than that of the MME.
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