
Solution to Problem 8.50

8.50. See Lab # 6 for Reza’s alternate solution to parts a), b) and c).

a) We need to evaluate the first population moment:

µ1 = E(X) =
∫ ∞

0
xf(x) dx =

∫ ∞
0

x2

θ2
e−

x2

2θ2 dx.

It is probably easiest (as almost always) to evaluate this integral by relating it to a familiar density
function. The limits of integration are from 0 to∞ and the integrand is of the form x2e−cx

2
(where

c > 0), so if we use the transformation y = x2, this will be related to a gamma density function.
Let y = x2 ⇒ x =

√
y ⇒ dx = 1

2y
− 1

2dy, to obtain

µ1 =
∫ ∞

0

y

θ2
e−

y

2θ2 × 1
2
y−

1
2 dy =

1
2θ2

∫ ∞
0

y
1
2 e−

y

2θ2 dy =
1

2θ2

Γ
(

3
2

)
(

1
2θ2

) 3
2

∫ ∞
0

(
1

2θ2

) 3
2

Γ
(

3
2

) y 3
2
−1e−

1
2θ2

y dy

where we have included the constants required inside the integral sign to make the integrand exactly
equal to a gamma density function (with α = 3/2 and λ = 1/2θ2). This yields

µ1 =
√

2θ2 Γ
(

3
2

)
=
√

2θ2
1
2

Γ
(

1
2

)
=
√

2θ2
1
2
√
π =

√
π/2 θ.

Re-expressing this, we have θ =
√

2/π µ1, so we obtain θ̂MM =
√

2/π X̄.

Alternatively, you could express the integral in terms of the normal density:

µ1 =
∫ ∞

0

x2

θ2
e−

x2

2θ2 dx =
1
2

∫ ∞
−∞

x2

θ2
e−

x2

2θ2 dx,

where the second step is allowed because the integrand is an even function of x. So we obtain

µ1 =
1
2θ

√
2π
∫ ∞
−∞

x2

√
2π θ

e−
x2

2θ2 dx =
1
2θ

√
2π E(X2),

where X ∼ N(0, θ2). This yields

µ1 =
1
2θ

√
2π θ2 =

√
π/2 θ,

as above.
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b) The likelihood function is given by

L(θ) =
n∏
i=1

xi
θ2
e−

x2
i

2θ2

⇒ l(θ) =
n∑
i=1

log xi − 2n log θ − 1
2θ2

n∑
i=1

x2
i

⇒ l′(θ) = −2n
θ

+
1
θ3

n∑
i=1

x2
i

It follows that

l′(θ) > 0⇔ θ2 <
1

2n

n∑
i=1

x2
i ,

so the maximum likelihood estimator (MLE) is given by θ̂ML =

√√√√ 1
2n

n∑
i=1

X2
i .

c) We have

l′′(θ) =
2n
θ2
− 3
θ4

n∑
i=1

x2
i

⇒ E(l′′(θ)) =
2n
θ2
− 3n
θ4
E(X2).

So we need to calculate

E(X2) =
∫ ∞

0

x3

θ2
e−

x2

2θ2 dx.

Transform by letting y = x2 (as above) to obtain

E(X2) =
∫ ∞

0

y
3
2

θ2
e−

y

2θ2
1
2
y−

1
2 dy =

1
2θ2

Γ (2)(
1

2θ2

)2

∫ ∞
0

(
1

2θ2

)2

Γ (2)
y2−1e−

1
2θ2

y dy =
1

2θ2
× (2θ2)2 = 2θ2.

So
E(l′′(θ)) =

2n
θ2
− 3n
θ4

2θ2 = −4n
θ2
,

and the asymptotic variance of the MLE is given by

A.Var(θ̂ML) = − 1
E(l′′(θ))

=
θ2

4n
.

d) We have

Var(θ̂MM ) =
2
π

Var(X̄) =
2
π

1
n

Var(X) =
2
nπ

[E(X2)− (E(X))2].

Substituting the values for E(X) and E(X2) from above, we obtain

Var(θ̂MM ) =
2
nπ

[
2θ2 − 2π

4
θ2
]

=
θ2

n

[
4
π
− 1

]
.
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e)
A.Var(θ̂ML)
Var(θ̂MM )

=
1

4
(

4
π − 1

) ∼= 0.915 < 1.

Because A.Var(θ̂ML) < Var(θ̂MM ), the MLE is more precise than the MME — at least for large
values of n — so prefer to use the MLE. But, it is important to realize that this comparison is
not complete because we have compared the asymptotic variance of the MLE to the exact
variance of the MME and, further, we have ignored that fact that the MME is unbiased whereas
the MLE is only asymptotically unbiased. (You might want to use the second order approximation
provided by the delta method to evaluate E(θ̂ML) ∼= θ − θ/8n ⇒ Bias(θ̂ML) ∼= −θ/8n.) For a
more comprehensive comparison, we would need to carry out a simulation study where we simulate
samples from the Rayleigh distribution and compare the performance of the MME and MLE in the
simulated samples. We would simulate lots of samples – at least 1000, maybe more – from each
combination of θ and n to be investigated. This would allow us to describe how the MSEs of the
estimators compare as n increases (for fixed values of θ) and as θ changes (for fixed values of n).
Question: How many samples are necessary to get a good description of the performance?
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