
Solution to Problem 8.58

8.58. If we refer to AA,Aa and aa as categories 1, 2 and 3, then

p1(θ) = (1− θ)2

p2(θ) = 2θ(1− θ)
p3(θ) = θ2.

Note that p1(θ) + p2(θ) + p3(θ) = 1 and all are legitimate probabilities (0 ≤ pi(θ) ≤ 1) provided
0 ≤ θ ≤ 1.

a) This is a multinomial sampling situation where the probabilities depend upon the unknown
parameter θ. If the observed frequencies for the categories are denoted x1, x2 and x3 (x1 +x2 +x3 =
n), the log-likelihood is given by (see page 273)

l(θ) = logL(θ) = log n!−
m∑
i=1

log xi! +
m∑
i=1

xi log pi(θ).

Substituting in the above expressions for the probabilities pi(θ), we obtain

l(θ) = log n!−
3∑
i=1

log xi! + x1 log((1− θ)2) + x2 log(2θ(1− θ)) + x3 log(θ2),

and, after a bit of simplification, this becomes

l(θ) ∝ (2x1 + x2) log(1− θ) + (2x3 + x2) log θ.

Taking the derivative with respect to θ yields

l′(θ) = −2x1 + x2

(1− θ)
+
x2 + 2x3

θ
.

Setting l′(θ) to zero, and solving for θ gives

θ =
1
2

x2 + 2x3

x1 + x2 + x3
=
x2 + 2x3

2n
.

Because l′′(θ) < 0 at this value of θ (in fact, at all permitted values of θ), this root corresponds to a
local maximum of the log-likelihood. But L(θ) > 0 for 0 < θ < 1 and L(θ)→ 0 as θ → 0 (provided
x2 > 0 or x3 > 0) and as θ → 1 (provided x1 > 0 or x2 > 0), so this is a global maximum; that is,

θ̂ML =
X2 + 2X3

2n
.

Alternately, you could check that l′(θ) > 0⇔ θ < (x2 + 2x3)/2n, leading to the same conclusion.
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Substituting in the observed values, the maximum likelihood estimate for this data set (the value
of the ML estimator) becomes θ̂ML = (68 + 2× 112)/(2× 190) ∼= 0.768.

b) The asymptotic variance of θ̂ML is given by 1/nI(θ), where nI(θ), the Fisher Information for θ
in the sample, can be evaluated as

nI(θ) = −E
[
∂2

∂θ2
logL(θ)

]
.

The second derivative is given by

l′′(θ) = −
(

2x1 + x2

(1− θ)2
+
x2 + 2x3

θ2

)
⇒ nI(θ) =

2EX1 + EX2

(1− θ)2
+
EX2 + 2EX3

θ2

But each Xi is binomial with probability pi(θ), so we have

EX1 = n(1− θ)2

EX2 = 2nθ(1− θ)
EX3 = nθ2

⇒ nI(θ) =
2n

θ(1− θ)
.

Of course, the true value of θ is unknown, so we plug-in the value of θ̂ML
∼= 0.768 to obtain

the estimated asymptotic variance of V̂ar(θ̂ML) = 1/nI(θ̂ML) ≈ 0.00047. Alternately, we have
ŜE(θ̂ML) ∼=

√
0.00047 ∼= 0.0216 ≈ 0.022.

Note: As in problem 8.4, you can determine the exact expression for the variance of θ̂ML using
the properties of the multinomial distribution. You should check that you get exactly the same
expression as above; that is, Var(θ̂ML) = θ(1− θ)/2n.

c) Recall that, for large values of n,
√
nI(θ)(θ̂ML− θ) has approximately a standard normal distri-

bution. Putting this another way, for large values of n,

θ̂ML ≈ N
(
θ, SE2(θ̂ML)

)
,

where SE2(θ̂ML) = 1/nI(θ). So the form of the approximate 1 − α confidence interval (CI) for θ
is given by

θ̂ML ± z(α/2) ŜE
2
(θ̂ML),

where we plugged θ̂ML into the expression for SE2(θ̂ML) to obtain ŜE
2
(θ̂ML). As z(0.01/2) ∼= 2.58,

the approximate 99% CI for θ becomes 0.768 ± 2.58 × 0.0216, or the interval (0.7126, 0.8243) ≈
(0.71, 0.82).
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d) We generate bootstrap samples (of size n = 190) from a multinomial distribution with proba-
bilities:

p1 = (1− θ̂ML)2

p2 = 2θ̂ML(1− θ̂ML)
p3 = θ̂2

ML

or 0.0536, 0.3559 and 0.5905, respectively. For each of these bootstrap samples, we calculate the
MLE. Doing this B = 1000 times, and taking the standard deviation of these 1000 bootstrap MLE’s
gives ŜE(θ̂ML) ∼= 0.02088 ≈ 0.021, essentially the same value obtained for ŜE(θ̂ML) in part b).
Of course, you will get a slightly different answer because your bootstrap samples will be different
(you would also get a different answer if you generated a different number of bootstrap samples)
but your answer should be pretty close to the value obtained in part b) as long as you use a fairly
large value of B (B > 200 say).

A piece of R code to do this is:

mlOuts <- rep(NA, 1000)
for (i in 1:1000){

x <- rmultinom(1, 190, prob=c(0.0536, 0.3559, 0.5905))
mlOuts[i] <- 0.5*(x[2]+2*x[3])/190)

}
sd(mlOuts)

e) Using the notation on page 284 of the text, we have θ̂ = 0.768, and we use the bootstrap samples
as in d) to generate estimates θ∗. The distribution of θ̂− θ is then approximated by the histogram
of θ∗ − θ̂ to obtain estimates of the desired quantiles of the distribution of θ̂ − θ. Carrying this
out leads to an approximate 99% CI for θ of (0.714, 0.827). This interval is very similar to the
approximate 99% CI obtained in c).

A piece of R code to do this is:

mlDiffs <- rep(NA, 1000)
for (i in 1:1000){

x <- rmultinom(1, 190, prob=c(0.0536, 0.3559, 0.5905))
mlOuts <- 0.5*(x[2]+2*x[3])/190)
mlDiffs[i] <- mlOuts - 0.768

}
0.768 - quantile(mlDiffs, c(0.005, 0.995))
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