
Solutions to Problems 8.2 and 8.4 (a-d)

8.2. To fit a Poisson distribution, we first have to estimate the parameter λ. With a Poisson
model for the number of right turns during the 300 3-min intervals, we model the 300 counts as the
observed values of 300 independent and identical Poisson random variables X1, . . . , X300. Using
either MM or ML, we estimate the value of the parameter λ by the average of those 300 realizations:

λ̂ =
(0× 14) + (1× 30) + · · ·+ (12× 1) + (13× 0)

300
=

1168
300

= 3.893.

We then have p̂i = λ̂i exp(−λ̂)/i! as the estimated probability that the number of right turns in
any of the 300 3-min intervals is i, so the expected frequency is 300× p̂i:

Observed Estimated Expected
n Frequency Probability Frequency
0 14 0.0204 6.1
1 30 0.0793 23.8
2 36 0.1544 46.3
3 68 0.2004 60.1
4 43 0.1951 58.5
5 43 0.1519 45.6
6 30 0.0986 29.6
7 14 0.0548 16.4
8 10 0.0267 8.0
9 6 0.0115 3.5

10 4 0.0045 1.3
11 1 0.0016 0.5
12 1 0.0005 0.2

13+ 0 0.0002 0.1
300 1.0000 300

As you can see, the observed and expected counts do not agree particularly well. A formal method
for assessing the adequacy of the fit of the model to the data (Do the data provide convincing
evidence that the Poisson model is inadequate?) can be based on Pearson’s chi-square statistic
(Section 9.5) or the Poisson dispersion test (Section 9.6).

8.4. We have P (X = i) = 2θ/3, θ/3, 2(1− θ)/3, and (1− θ)/3 for i = 0, 1, 2, and 3, respectively.

a) The expected value of X, the first population moment, is given by

E(X) =
3∑
i=0

i P (X = i)

= 0× 2θ/3 + 1× θ/3 + 2× 2(1− θ)/3 + 3× (1− θ)/3

=
7
3
− 2θ.
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Solving for θ yields

θ =
7
6
− E(X)

2
.

Therefore, the method of moments estimator of θ is

θ̂MM =
7
6
− µ̂1

2
=

7
6
− X̄

2
.

The observed value of the sample mean is x̄ = 15/10 = 1.5, so for this data set the value of the
method of moments estimate is θ̂MM = 5

12
∼= 0.417.

b) We can find the exact expression for SE(θ̂MM ), the standard error of the estimator θ̂MM . We
have

Var(θ̂MM ) = Var

(
7
6
− X̄

2

)
=

1
4

Var(X̄) =
1

4n
Var(X).

From

E(X2) =
3∑
i=0

i2 P (X = i)

= 02 × 2θ/3 + 12 × θ/3 + 22 × 2(1− θ)/3 + 32 × (1− θ)/3

=
17
3
− 16

3
θ,

we obtain

Var(X) =
17
3
− 16

3
θ −

(
7
3
− 2θ

)2

=
2
9

+ 4θ − 4θ2,

and hence
SE2(θ̂) =

(
θ(1− θ) +

1
18

)
/n.

For this data set, we have θ̂MM = 5
12 , so the estimated standard error of θ̂MM for this data set is

given by

ŜE
2
(θ̂MM ) =

(
(

5
12

)(1− 5
12

) +
1
18

)
/10 ∼= 0.2986/10 = 0.02986,

or ŜE(θ̂MM ) ∼= 0.173.

c) If xi denotes the observed value of Xi, then the likelihood function is

L(θ) =
n∏
i=1

P (Xi = xi),

and the log-likelihood function is

l(θ) =
n∑
i=1

logP (Xi = xi).
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Now each xi is either 0, 1, 2, or 3. Let nj be the number of times the value j is observed (
∑3
j=0 nj =

n). Then the log-likelihood function becomes

l(θ) =
3∑
j=0

nj logP (X = j)

= n0 log
2
3
θ + n1 log

1
3
θ + n2 log

2
3

(1− θ) + n3 log
1
3

(1− θ)

= c+ (n0 + n1) log θ + (n2 + n3) log(1− θ),

where c does not depend upon θ. Differentiating once with respect to θ yields

l′(θ) =
n0 + n1

θ
− n2 + n3

(1− θ)
=

(n0 + n1)(1− θ)− (n2 + n3)θ
θ(1− θ)

.

It follows that
l′(θ) > 0⇔ θ < (n0 + n1)/n,

so it is clear that the (unique) solution of l′(θ) = 0 given by θ = (n0 + n1)/n corresponds to a
maximum; that is,

θ̂ML = (N0 +N1)/n.

(Alternately, it is easy to show that l′′(θ) < 0 for all values of θ leading to the same conclusion.)

For this data set, we have n0 = 2, n1 = 3, n2 = 3 and n3 = 2, so we obtain the value of the ML
estimator (that is, the ML estimate for this data set) to be θ̂ML = 5/10 = 0.5.

Note: In the above we started with the likelihood of the original X1, . . . , Xn. As the Xi’s take on
only 4 possible values, this is a multinomial situation (Section 8.5.1) and you could equally well start
with the likelihood of the derived random variables N0, N1, N2, and N3 (N0 +N1 +N2 +N3 = n).
You should check that you get the same expression for θ̂ML either way.

d) The variance of the MLE is given by

Var(θ̂ML) = Var
(
N0 +N1

n

)
=

1
n2

Var(N0 +N1).

But N0 +N1 ∼ Binom(n, p0 + p1), where p0 + p1 = θ/3 + 2θ/3 = θ, so

Var(θML) = nθ(1− θ)/n2 = θ(1− θ)/n

and hence
SE(θ̂ML) =

√
θ(1− θ)/n .

Subsituting in θ̂ML = 0.5 yields the estimated standard error as

ŜE(θ̂ML) =
√

0.025 ∼= 0.158.

Note: You could instead evaluate Var(N0 + N1) = Var(N0) + Var(N1) + 2Cov(N0, N1). Var(N0)
and Var(N1) are immediate as N0 ∼ Binom(n, p0) and N1 ∼ Binom(n, p1), but you also need to
know more about the properties of the multinomial distribution to complete this evaluation; namely
that Cov(N0, N1) = −np0p1.
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