
Solution to Problems 8.6, 8.21 and 8.48

8.6. X ∼ Binom(n, p), so the likelihood function is

L(p) =

(
n
x

)
px(1− p)n−x for 0 < p < 1,

and the log-likelihood function is

l(p) = log

(
n
x

)
+ x log p+ (n− x) log(1− p) for 0 < p < 1.

a) Evaluating the derivative

l′(p) =
x

p
− n− x

1− p
.

⇒ l′(p) > 0 ⇔ p <
x

n
,

so it is clear that the root p = x/n corresponds to a maximum of l(p) and hence of L(p); that is,

p̂ML =
X

n
.

Alternately,

l′′(p) = − x

p2
− n− x

(1− p)2
,

so l′′(p) < 0 for all permitted values of p, leading to the same conclusion.

b) The Fisher information for p in the observation X is given by:

⇒ −E(l′′(p)) =
E(X)
p2

+
n− E(X)
(1− p)2

=
n

p
+

n

(1− p)

=
n

p(1− p)

⇒ CRLB =
p(1− p)

n
.

Direct calculation yields

Var(p̂ML) =
Var(X)
n2

=
np(1− p)

n2
=
p(1− p)

n
.

Thus, in this example, the MLE achieves the Cramer-Rao lower bound exactly (no matter what
the value of n) and not just asymptotically (as is always the case).
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c) With n = 10 and X = 5, the likelihood function becomes

L(p) = 252 p5(1− p)5 for 0 < p < 1,

which is easy to plot using R. In particular, L(p) is symmetric around p = 1/2, achieves its maxi-
mum at p = 1/2 and L(p)→ 0 as p→ 0, 1.

The log likelihood is

l(p) = log(252) + 5 log[p(1− p)] for 0 < p < 1,

which is also symmetric around p = 1/2, achieves its maximum at p = 1/2 and → −∞ as p→ 0, 1.

8.21. a) We need to evaluate the first population moment:

µ1 = E(X) =
∫ ∞
θ

xe−(x−θ) dx.

This is easy to integrate directly, but let’s evaluate the integral by relating it to a familiar density
function. If we use the transformation y = x − θ, the limits of integration will become 0 and ∞
and the integral will be related to a gamma density function. Let y = x− θ ⇒ dy = dx, to obtain

µ1 =
∫ ∞

0
(y + θ)e−y dy =

∫ ∞
0

ye−y dy + θ

∫ ∞
0

e−y dy = Γ(2) + θ = 1 + θ.

Re-expressing this, we have θ = µ1 − 1, so we obtain θ̂MM = X̄ − 1.

Although not requested, you might want to show E(θ̂MM ) = E(X̄) − 1 = E(X) − 1 = θ (so
θ̂MM is unbiased) and Var(θ̂MM ) = Var(X̄) = Var(X)/n = 1/n, so that MSE(θ̂MM ) = 1/n.
To get Var(X), you can evaluate E(X2) along the lines above or (more easily) by noting that
X − θ ∼ exp(1) = gamma(1, 1), from which you immediately get that Var(X) = Var(X − θ) = 1,
leading to the desired results. (Of course, you could have used the same device to evaluate
E(X) = θ + 1.)

b) Care is required here because the support of the density function depends on the parameter θ.
In such cases — just like the U(0, θ) case done in class — you need to maximize the likelihood
function directly; differentiating and setting to 0 to find roots — of either the likelihood function
or the log likelihood function — is not going to work! The main point then is to make sure you
get the likelihood function correct.

The likelihood function is given by

L(θ) =

{ ∏n
i=1 e

−(xi−θ) provided xi ≥ θ for all i,
0 otherwise.

If we set xmin = Min(x1, x2, . . . , xn), then

L(θ) =

{
e−n(x̄−θ) provided θ ≤ xmin,

0 otherwise.
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In particular, L(θ) = 0 for θ > xmin. On the other hand, for θ ≤ xmin, L(θ) increases as θ increases
(L(θ)→ 0 as θ → −∞). It follows immediately that:

θ̂ML = Xmin.

Although not requested, you might want to evaluate the exact Bias and MSE of θ̂ML so you can
compare the performance of the θ̂MM and θ̂ML for any fixed value of n. To do this, you first need
to determine the distribution of Xmin. Of course, the values of Xmin are limited to values greater
than θ. For x > θ, we have

P (Xmin > x) = P (X1 > x,X2 > x, . . . ,Xn > x) =
n∏
i=1

P (Xi > x) by independence.

So, if F (·) denotes the cumulative distribution function of Xmin, we have

1− F (x) =
n∏
i=1

∫ ∞
x

e−(u−θ) du =
[
e−(x−θ)

]n
= e−n(x−θ),

which yields the density function for Xmin as:

f(x) =

{
ne−n(x−θ) for x ≥ θ,

0 otherwise.

Now you can evaluate E(Xmin) and E(X2
min) directly along the lines in a). Alternately, the

density evaluated for Xmin implies that Xmin − θ ∼ gamma(1, n), so you can immediately obtain
E(Xmin−θ) = 1/n or E(Xmin) = θ+1/n (so Bias(θ̂ML) = 1/n) and Var(Xmin) = Var(Xmin−θ) =
1/n2.

In summary, for this problem,

MSE(θ̂ML) = 2/n2 and MSE(θ̂MM ) = 1/n,

so
MSE(θ̂ML) ≤ MSE(θ̂MM )⇔ n ≥ 2.

Note that in this problem, the variance of the MLE equals 1/n2, whereas in typical problems the
variance of the MLE behaves like 1/n. This is directly related to the fact that the support of
the density function of the Xi’s depends on the parameter θ. In this problem, the “standard”
asymptotic results for the MLE do not hold because the support of the density depends on the
parameter which implies that one cannot interchange differentiation and integration the way we
did when we derived those results.

8.48. Note that the method of estimating λ (using the proportion of 0’s to estimate P (X = 0))
corresponds to using the method of moments when the only aspect of the data that is observed is
whether the Poisson observations are 0 or not. We are interested in

λ̃ = − log
(
Y

n

)
= g(Y ) say,
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where g(y) = − log(y/n) = − log(y) + log(n). Recall the second order Taylor series expansion

g(Y ) ≈ g(µY ) + (Y − µY )g′(µY ) +
1
2

(Y − µY )2g′′(µY )

yields

E[g(Y )] ∼= g(µY ) +
1
2

Var(Y ) g′′(µY ).

Now Y ∼ Binom(n, p0) ⇒ µY = E(Y ) = np0 and Var(Y ) = np0(1− p0). Since

g′(y) = −1
y

and g′′(y) =
1
y2
,

the second order approximation yields

E(λ̃) ∼= − log
(
np0

n

)
+

1
2
np0(1− p0)× 1

(np0)2
= − log(p0) +

1− p0

2np0
.

Substituting p0 = e−λ yields

E(λ̃) ∼= λ+ (eλ − 1)/2n ⇒ Bias(λ̃) ∼= (eλ − 1)/2n,

so the estimator λ̃ is asymptotically unbiased.

Similarly, we evaluate the asymptotic variance of λ̃ using the first order approximation:

A.Var(λ̃) = Var(Y ) [g′(µY )]2 = np0(1− p0)
(
− 1
np0

)2

=
eλ − 1
n

.

The MLE of λ is given by X̄ (see page 282) which has expectation λ (so is unbiased for any value
of n) and variance λ/n. Since the contribution of the bias of λ̃ to its MSE is negligible for large
values of n (relative to the magnitude of the variance), we focus on comparing the variances:

A.Var(λ̃)
Var(λ̂ML)

=
(eλ − 1)/n

λ/n
=
eλ − 1
λ

> 1 for λ > 0.

Note that (eλ − 1)/λ ≈ 1 + λ/2 as λ → 0, so the advantage of the MLE is not large when λ is
small (which makes intuitive sense: when λ is small, many of the Poisson observations will be 0’s,
so estimating λ based simply on the proportion of 0’s should work pretty well). However, when λ
is larger, eλ − 1 is much larger than λ and the MLE yields a much more precise estimate than λ̃
(which also makes intuitive sense: if only a small proportion of the Poisson observations are 0’s,
estimating λ based simply on the proportion of 0’s is not going to lead to a very precise estimate).
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