
Solutions to Some Problems on “Delta Method”

4.100. We use the delta method for the approximation. We have

Y = g(X) ≈ g(µX) + (X − µX)g′(µX)

for the first order, and

Y = g(X) ≈ g(µX) + (X − µX)g′(µX) +
1
2

(X − µX)2g′′(µX)

for the second order. The first order approximation is a linear function of X so leads immediately
to

E(Y ) ≈ g(µX) and Var(Y ) ≈ [g′(µX)]2 Var(X).

The second order approximation is a quadratic function of X that yields the approximation:

E(Y ) ≈ g(µX) +
1
2
g′′(µX) Var(X).

For the case g(x) = 1/x, we have g′(x) = −1/x2 and g′′(x) = 2/x3, so the first order approximation
becomes:

E(Y ) ≈ 1/µX and Var(Y ) ≈ σ2
X/µ

4
X .

Similarly, the second order approximation yields:

E(Y ) ≈ 1/µX + σ2
X/µ

3
X .

With X ∼ U [10, 20], we have E(X) = µX = 15 and Var(X) = σ2
X = 25/3, so the first order

approximations become:

E(Y ) ≈ 1/15 ≈ 0.0667 and Var(Y ) ≈ 25/(3)(154) = 1/6075 ≈ 0.000165.

while the second order approximation yields

E(Y ) ≈ 1/15 + 25/(3)(153) ≈ 0.0691.

To find the exact values of E(Y ) and Var(Y ), we can either calculate the mean and the variance of
Y = 1/X by evaluating E(X−1) and E(X−2) directly from the distribution of X, or we can first
find the density of Y and then use that density to evaluate the mean and the variance of Y . The
former approach is easier but, for purposes of illustration, we use the latter. The change-of-variable
formula (or, as an alternative, see Example D on p. 62) yields

fY (y) =
1

10y2
for y ∈

[
1
20
,

1
10

]
.

Then we obtain

E(Y ) =
∫ 1

10

1
20

1
10y

dy =
1
10

ln y
∣∣∣∣ 1

10

1
20

≈ 0.0693,
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and

E(Y 2) =
∫ 1

10

1
20

1
10
dy =

1
10
y

∣∣∣∣ 1
10

1
20

=
1

200
,

from which we obtain Var(Y ) = 1/200− (0.0693)2 = 0.000195.

Thus, the first and second order approximations to E(Y ) have relative errors of −3.8% and −0.3%,
respectively, so going to the second order approximation provides considerable improvement. The
first order approximation to Var(Y ) has a relative error of about −15.8% but if expressed on the
more relevant standard deviation (SD) scale, the relative error is about −8.2%. Still not a great
approximation, but maybe adequate for some purposes. The approximation to the variance could
be improved by using the second order approximation instead of the first order approximation, but
that leads to a complicated expression also involving the 3rd and 4th moments of X.

4.103. We have the relationship V = πD3/6, that is, V = g(D), where g(d) = πd3/6. We are
also given E(D) = µD = 2 mm and SD(D) = σD = 0.01 mm. Using the first-order approximation
provided by the delta method, since g′(d) = πd2/2, we obtain

Var(V ) ∼= [g′(µD)]2 σ2
D = [πµ2

D/2]2 σ2
D,

or
SD(V ) ∼= πµ2

DσD/2.

Thus,
SD(V ) ≈ 2π σD = 0.02π mm.

4.104. Let our measurements be given by R and Θ, with means given by the (unknown) true
values r and θ, respectively. That is, we can think of the measurements arising as R = r + εR
and Θ = θ + εΘ, where εR and εΘ are the measurement errors. We are told that R and Θ are
independent; that is, the two measurement errors are independent. Then the estimated altitude is
a function of the two measurements, Y = g(R,Θ) = R sin Θ. Set µ = (r, θ).

a) Using the first-order delta method approximation,

Var(Y ) ∼= σ2
R

[
∂g(µ)
∂R

]2

+ σ2
Θ

[
∂g(µ)
∂Θ

]2

+ 2σRΘ

[
∂g(µ)
∂R

] [
∂g(µ)
∂Θ

]
,

where
∂g(R,Θ)
∂R

= sin Θ and
∂g(R,Θ)
∂Θ

= R cos Θ.

So
∂g(µ)
∂R

= sin θ and
∂g(µ)
∂Θ

= r cos θ.

Further, σRΘ = 0 as R and Θ are independent. Substituting yields

Var(Y ) ∼= σ2
R (sin θ)2 + σ2

Θ (r cos θ)2 .
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b) If R is held fixed (at the value r), then Y is a function of only one random variable Θ. Applying
the delta method (or, more directly, substituting σ2

R = 0 into the expression above), we then have

Var(Y ) ∼= σ2
Θ (r cos θ)2 .

This function of θ takes on its largest value when | cos θ | is maximized; that is, when θ is either 0
or π.
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