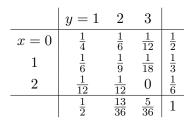
Midterm I

Thursday October 7^{th} , 2004. 12:30 – 13:50.

Authorized material :

- One letter-size cheat sheet.
- One scientific calculator without wireless communication feature.

Instructions :


- The exam has 5 pages inlcuding this one.
- Answer all 4 questions; the total number of points is 100.
- Write legibly; give complete solutions.
- You can use the back side of the sheets as drafts. If you use it for writing answers, indicate it clearly.

Last Name :		
First Name :		
Student Number :		

Signature :

[25 pts] Are each of the following statements true or false. Justify your answers.

(a) The bivariate mass function of the discrete variables X and Y is given in the following table; X and Y are independent.

- (b) Consider two disjoint events A and B such that P(A) > 0 and P(B) > 0. Then A and B are independent.
- (c) Consider events A and B such that $A \subset B$ and $P(B^C) > 0$. Then P(A|B) = P(A).
- (d) The following function is a density function

$$f(x) = \begin{cases} 6x^2 - 1 & \text{if } x \in [0, 1] \\ 0 & \text{otherwise} \end{cases}$$

(e) Consider $X \sim unif(0, Y)$ with $Y \sim exp(\lambda)$, then $E(X) = 1/2\lambda$.

- (a) [15 pts] Consider the three independent variables X, Y and Z, with variance σ_X^2 , σ_Y^2 and σ_Z^2 respectively. Evaluate cor(U, V) where U = Z + X and V = Z Y.
- (b) [10 pts] Use the moment generating function to show that if X follows a gamma distribution with parameters α and λ , then $Y = \beta X$, with $\beta > 0$ follows a gamma with parameters α and λ/β .

[25 pts] The annual number of hurricanes striking an island in the Atlantic ocean follows a Poisson distribution with parameter λ . Every time a hurricane strikes, the hospital on the island has probability p of being damaged. Whether the hospital is damaged or not is independent from a storm to another. What is the probability that the hospital will not suffer hurricane damage next year.

 $[25~{\rm pts}]$ Consider X and Y two independent exponential random variables having the same expectation. Find the distribution of

$$U = \frac{X}{X+Y} \; .$$