MIDTERM EXAMINATION #1

Statistics 305

Term 1, 2005-2006

Thursday, October 13, 2005

Time: 9:30am – 10:45am

Student Name (Please print in caps):

Student Number: _____

Notes:

- This midterm has 6 problems on the 6 following pages, plus a final page containing a table of the standard normal distribution. Check to ensure that you have a complete paper.
- The amount each part of each question is worth is shown in [] on the left-hand side of the page.
- Where appropriate, record your answers in the blanks provided on the right-hand side of the page.
- Your solutions must be justified; show the work and state the reason(s) leading to your answer for each question in the space provided immediately under the question.
- Clear and complete solutions are essential; little partial credit will be given.
- This is a closed book exam.
- A single one-sided 8.5 x 11 page of notes is allowed.
- Calculators are allowed (but not for symbolic differentiation or integration).
- No devices (including calculators) that can store text or send/receive messages are allowed.

Problem	Total Available	Score
1.	7	
2.	7	
3	15	
4.	5	
5.	10	
6.	6	
Total	50	

1. Suppose the moment generating function (mgf) of the random variable *X* is given by:

 $M_X(t) = [\exp(t) + 2 \exp(2t) + 3 \exp(3t)] / 6.$

- [2] a) E(X) =
- [3] b) SD(X) =
- [2] c) What is the distribution of the random variable X?
- 2. Suppose *X* is a binomial random variable with parameters *n* and *p*.
- [2] a) Show that $M_X(t)$, the mgf of *X*, is given by

$$M_X(t) = [1 - p + p \exp(t)]^n$$
.

For what values of t does $M_X(t)$ exist?

- [3] b) Show that if $n \to \infty$ and $p \to 0$ in such a way that $np \to \lambda$, then $M_X(t) \to \exp\{\lambda [\exp(t) - 1]\}.$
- [2] c) Explain the practical importance of the result in b).
- 3. Suppose *X*, the lifetime for an electronic device, is an exponential random variable with a mean of 2 years; that is, $f_x(x) = \frac{1}{2} \exp(-\frac{x}{2})$ for x > 0. Suppose 100 of these electronic devices are operating independently.

Provide an accurate numerical approximation to the probability that:

- [6] a) at least 50 of these 100 devices are still operating after 2 years.
- [5] b) less than 3 of these 100 devices are still operating after 8 years.
- [4] c) the average value of the 100 lifetimes is at least 2.3 years.

- 4. Suppose *X* is a positive random variable with mean μ_X and variance σ_X^2 . If $Y = \ln(X)$, where $\ln = \log_e$, use the delta method to obtain expressions (in terms of μ_X and σ_X) for:
- [1] a) a "first-order" approximation to E(Y).
- [2] b) a "first-order" approximation to SD(*Y*).
- [2] c) a "second-order" approximation to E(Y).
- 5. Suppose *X* and *Y* are bivariate normally distributed random variables with means μ_X , μ_Y and variances σ_X^2 , σ_Y^2 , respectively, and correlation ρ . Then, as given in class, $M_{X,Y}(s,t)$, the joint mgf of *X* and *Y* evaluated at *s* and *t*, is given by:

 $M_{X,Y}(s,t) = \exp\{ s \,\mu_X + t \,\mu_Y + [s^2 \sigma_X^2 + 2 \, st \,\rho \,\sigma_X \,\sigma_Y + t^2 \,\sigma_Y^2] /2 \}.$

Let W = a X + b Y + c, where a, b and c are constants.

a) Give the expressions for:

[1] i) E(W)

[2] ii) Var(W)

- [5] b) Evaluate the mgf of W.
- [2] c) What is the distribution of W?
- 6. Suppose *X* and *Y* are independent normally distributed random variables with:

 $\mu_X = 8$, $\sigma_X^2 = 9$ and $\mu_Y = 3$, $\sigma_Y^2 = 16$.

[6] Evaluate P(X > Y).