MIDTERM EXAMINATION # 2

Statistics 305

Term 1, 2006-2007

Thursday, November 9, 2006

Time: 9:30am - 10:50am

Student Name (Please print in caps):

Student Number: _____

Notes:

- This midterm has 5 problems on the 6 following pages, plus 3 pages of statistical tables. Check to ensure that you have a complete paper.
- The amount each part of each question is worth is shown in [] on the left-hand side of the page.
- Where appropriate, record your answers in the blanks provided on the right-hand side of the page.
- Your solutions must be justified; show all the work and state all the reason(s) leading to your answer for each question in the space provided immediately under the question.
- Clear and complete solutions are essential; little partial credit will be given.
- This is a closed book exam.
- A single one-sided 8.5 x 11 page of notes is allowed.
- Calculators are allowed (but not for symbolic differentiation or integration).
- No devices (including calculators) that can store text or send/receive messages are allowed.

Problem	Total Available	Score
1.	7	
2.	7	
3	9	
4.	21	
5.	6	
Total	50	

- 1. Suppose $X_1, X_2, ..., X_n$ is a simple random sample from a normal population with a mean of μ and variance of σ^2 , where both parameters are unknown. Derive the forms of the *exact* 1α confidence intervals for:
- [3] a) the population mean μ .
- [4] b) the population standard deviation σ .
- 2. Suppose a simple random sample of n = 9 from a normal population leads to a sample average of $\overline{x} = 22$ and a sample standard deviation of s = 6. Evaluate *exact* 90% confidence intervals for:
- [3] a) the population mean μ .
- [4] b) the population standard deviation σ .
- 3. Suppose $X_1, X_2, ..., X_n$ is a simple random sample from the distribution:

$$f_{\theta}(x) = \theta x^{\theta - 1}$$
 for $0 \le x \le 1$.

Note that this is a density function provided that $\theta > 0$.

- [3] a) Evaluate the Fisher Information in a single observation X.
- [3] b) Find $\hat{\theta}_{\scriptscriptstyle ML}$, the maximum likelihood estimator (MLE) of θ .
- [3] c) Derive the form of the approximate 1α confidence interval for θ based on the MLE $\hat{\theta}_{ML}$.

4. Suppose $X_1, X_2, ..., X_n$ is a simple random sample from the Rayleigh distribution:

$$f_{\theta}(x) = (x/\theta^2) \exp(-x^2/2\theta^2)$$
 for $x \ge 0$,

where $\theta > 0$.

- [4] a) Find $\hat{\theta}_{_{MM}}$, the method of moments estimator (MME) of θ .
- [5] b) Find the exact variance of $\hat{\theta}_{_{MM}}$, the MME of θ .
- [4] c) Find $\hat{\theta}_{\scriptscriptstyle ML}$, the maximum likelihood estimator of θ .
- [4] d) Find the asymptotic variance of $\hat{\theta}_{ML}$, the MLE of θ .
- [4] e) Evaluate the asymptotic relative efficiency of the MME relative to the MLE. What is the practical interpretation of this result?
- 5. Suppose $X_1, X_2, ..., X_n$ is a simple random sample from a normal population with mean μ and (known) variance = 1.
- [4] a) Show that \overline{X} is a sufficient statistic for μ .
- [2] b) What is the practical interpretation of this result?