Delta Method: The Importance of Var(X)

This simple example was discussed in the February 13, 2007 class: Consider a random variable X, with mean given by $E(X) = \mu_X$ and variance given by $Var(X) = \sigma_X^2$, and suppose we are interested in the moments of the new random variable $Y = -\log(X)$. Then the delta method yields:

- a) $E(Y) \cong -\log(\mu_x)$ as a first order approximation,
- b) $E(Y) \cong -\log(\mu_X) + \sigma_X^2 / 2\mu_X^2$ as a second order approximation,
- c) $Var(Y) \cong \sigma_X^2 / \mu_X^2$ as a first order approximation.

Now consider the specific example of X having density function $f_X(x) = (\theta + 1)x^{\theta}$ for 0 < x < 1 (with $\theta \ge 0$). It is easy to calculate $\mu_X = (\theta + 1)/(\theta + 2)$ and $\sigma_X^2 = (\theta + 1)/(\theta + 2)^2(\theta + 3)$. Note, in particular, that as θ gets larger, μ_X gets closer and closer to 1 and σ_X^2 gets smaller and smaller.

For this specific example, the delta method approximations become:

a)
$$E(Y) \cong -\log((\theta+1)/(\theta+2))$$
,

- b) $E(Y) \cong -\log((\theta+1)/(\theta+2)) + 1/2(\theta+1)(\theta+3)$,
- c) $Var(Y) \cong 1/(\theta + 1)(\theta + 3)$

But, for this specific example, it is also easy to calculate the exact values of E(Y) and Var(Y). To evaluate $E(Y^k) = \int_0^1 (-\log x)^k f_X(x) dx$, transform to $y = -\log x$ so the integrand becomes a Gamma density. You find $E(Y^k) = \Gamma(k+1)/(\theta+1)^k \Rightarrow E(Y) = 1/(\theta+1)$ and $Var(Y) = 1/(\theta+1)^2$.

Comparing the exact values and delta method approximations (RE = relative error, expressed as %):

θ	$\sigma_{\scriptscriptstyle X}^2$	E(Y)	a) (RE)	b) (RE)	Var(Y)	c) (RE)	SD(Y)	c) (RE)
0	0.083	1.000	0.693 (-31)	0.859 (-14)	1.000	0.333 (-67)	1.000	0.577 (-42)
1	0.056	0.500	0.406 (-19)	0.468 (-6.4)	0.250	0.125 (-50)	0.500	0.354 (-29)
2	0.038	0.333	0.288 (-14)	0.321 (-3.7)	0.111	0.067 (-40)	0.333	0.258 (-23)
3	0.027	0.250	0.223 (-11)	0.244 (-2.4)	0.063	0.042 (-33)	0.250	0.204 (-18)
4	0.020	0.200	0.182 (-8.8)	0.197 (-1.7)	0.040	0.029 (-29)	0.200	0.169 (-16)
5	0.015	0.167	0.154 (-7.5)	0.165 (-1.3)	0.028	0.021 (-25)	0.167	0.144 (-13)
10	0.006	0.091	0.087 (-4.3)	0.091 (-0.4)	0.008	0.007 (-15)	0.091	0.084 (-8.0)
100	9x10 ⁻⁵	0.00990	0.00985 (-0.5)	0.00990 (-0.006)	9.8x10 ⁻⁵	9.6x10 ⁻⁵ (-1.9)	9.9x10 ⁻³	$9.8 \times 10^{-3} (-1.0)$

Note how the RE in each approximation decreases as θ increases (i.e., as σ_X^2 increases). Also note the substantial improvement provided by the 2nd order approximation to E(Y) even for smaller values of θ . For this example, the value of θ has to get pretty large (the value of σ_X^2 has to get pretty small) before the approximations to Var(Y) and SD(Y) become reasonably accurate. You might want to plot the density functions $f_X(x)$ for different values of θ to see how much those distributions change as θ changes.