QUIZ # 1

Statistics 305

Term 2, 2006-2007

Tuesday, January 23, 2007

Time: 2:00pm - 2:30pm

Student Name (Please print in caps):

Student Number:

Notes:

- This quiz has 3 problems on the 4 following pages, plus 1 page of statistical tables. Check to ensure that you have a complete paper.
- The amount each part of each question is worth is shown in [] on the left-hand side of the page.
- Where appropriate, record your answers in the blanks provided on the right-hand side of the page.
- Your solutions **must be justified**; show **all the work** and state **all the reasons** leading to your answer for each question in the space provided immediately under the question.
- Clear and complete solutions are essential; little partial credit will be given.
- This is a closed book exam.
- A single one-sided 8.5 x 11 page of notes is allowed.
- Calculators are allowed (but not for symbolic differentiation or integration).
- No devices (including calculators) that can store text or send/receive messages are allowed.

Problem	Total Available	Score
1.	7	
2.	7	
3.	11	
Total	25	

1. Suppose the random variables *X* and *Y* have:

$$E(X) = 1,$$
 $E(Y) = 2,$
SD(X) = 3, SD(Y)= 4,
and Corr(X, Y) = 0.5.

- [2] a) E(2X Y + 5) =
- [5] b) SD(2X Y + 5) =
- 2. Suppose $M_X(t)$, the moment generating function of the random variable X, is given by:

$$M_{x}(t) = \exp\{\theta \left[\exp(t) - 1\right]\}.$$

where $\theta > 0$ is an unknown parameter. By direct calculation, evaluate: **Note:** Even if you recognize the distribution of X from the form of $M_X(t)$, you are to do the following evaluations using only $M_X(t)$.

- [3] a) E(X) =
- [4] b) Var(X) =
- 3. Suppose X is a random variable with density function $f_X(x)$ given by:

 $f_x(x) = 2x$ for $0 \le x \le 1$.

- [2] a) E(X) =
- [3] b) Var(X) =
- [6] c) Now suppose $X_1, X_2, ..., X_{90}$ are independent random variables, each having the same distribution as X (as given above) and let $T = X_1 + X_2 + ... + X_{90}$. The approximate value of P(T > 65) =