QUIZ # 4

Statistics 305

Term 2, 2006-2007

Tuesday, March 13, 2007

Time: 2:00pm - 2:30pm

Student Name (**Please print in caps**):

Student Number:

Notes:

- This quiz has 3 problems on the 5 following pages, plus 1 page of statistical tables. Check to ensure that you have a complete paper.
- The amount each part of each question is worth is shown in [] on the left-hand side of the page.
- Where appropriate, record your answers in the blanks provided on the right-hand side of the page.
- Your solutions **must be justified**; show **all the work** and state **all the reasons** leading to your answer for each question in the space provided immediately under the question.
- Clear and complete solutions are essential; little partial credit will be given.
- This is a closed book exam.
- A single one-sided 8.5 x 11 page of notes is allowed.
- Calculators are allowed (but not for symbolic differentiation or integration).
- No devices (including calculators) that can store text or send/receive messages are allowed.

Problem	Total Available	Score
1.	6	
2.	11	
3.	8	
Total	25	

- 1. Suppose X and Y are bivariate normally distributed random variables with means $\mu_x = 1$, $\mu_y = 2$, standard deviations $\sigma_x = 2$, $\sigma_y = 3$, and correlation $\rho_{xy} = 0.5$.
- [6] Evaluate P(3X Y > 9) =

Note: Be sure to indicate clearly all the steps in your evaluation.

2. Consider the exponential distribution with rate $\theta(\theta > 0)$; that is, the density function:

 $f_{\theta}(x) = \theta \exp(-\theta x)$ for x > 0.

- [3] a) Find the expression for the Fisher Information for θ in a single observation X from this distribution.
- [3] b) Find the expression for $\hat{\theta}_{ML}$, the maximum likelihood estimator (MLE) of θ based on the simple random sample X_1, X_2, \dots, X_n .
- [2] c) What is the asymptotic distribution of the MLE $\hat{\theta}_{ML}$?
- [3] d) What is the form of the approximate 90% confidence interval for the parameter θ based on the MLE $\hat{\theta}_{ML}$?
- 3. Suppose $X_1, X_2, ..., X_n$ is a simple random sample from a $N(\theta, 1)$ population. Suppose that the target of inference is not θ but the new parameter $\psi = P(X > 0)$, where X is a single observation from this population.
- [2] a) Find an expression for the new parameter ψ in terms of the parameter θ .
- [2] b) Find $\hat{\psi}_{ML}$, the maximum likelihood estimator (MLE) of ψ based on the simple random sample X_1, X_2, \dots, X_n .

Note: You may take as given that $\hat{\theta}_{ML} = \overline{X}$.

[4] c) Find an expression for the asymptotic standard error of $\hat{\psi}_{ML}$.

THE END