
BIOMETRICS 55, 117-128 
March 1999 

A General Maximum Likelihood Analysis of 
Variance Components in Generalized Linear Models 

Murray Aitkin 

Department of Statistics, University of Newcastle, U.K. 
email: Murray.Aitkin@newcastle.ac.uk 

SUMMARY. This paper describes an EM algorithm for nonparametric maximum likelihood (ML) estimation 
in generalized linear models with variance component structure. The algorithm provides an alternative 
analysis to approximate MQL and PQL analyses (McGilchrist and Aisbett, 1991, Biometrical Journal 33, 
131-141; Breslow and Clayton, 1993; Journal of the American Statistical Association 88, 9-25; McGilchrist, 
1994, Journal of the Royal Statistical Society, Series B 56, 61-69; Goldstein, 1995, Mtultilevel Statistical 
Models) and to GEE analyses (Liang and Zeger, 1986, Biometrika 73, 13-22). The algorithm, first given by 
Hinde and Wood (1987, in Longitudinal Data Analysis, 110-126), is a generalization of that for random effect 
models for overdispersion in generalized linear models, described in Aitkin (1996, Statistics and Computing 
6, 251-262). The algorithm is initially derived as a form of Gaussian quadrature assuming a normal mixing 
distribution, but with only slight variation it can be used for a completely unknown mixing distribution, 
giving a straightforward method for the fully nonparametric ML estimation of this distribution. This is of 
value because the ML estimates of the GLM parameters can be sensitive to the specification of a parametric 
form for the mixing distribution. The nonparametric analysis can be extended straightforwardly to general 
random parameter models, with full NPML estimation of the joint distribution of the random parameters. 
This can produce substantial computational saving compared with full numerical integration over a specified 
parametric distribution for the random parameters. A simple method is described for obtaining correct 
standard errors for parameter estimates when using the EM algorithm. Several examples are discussed 
involving simple variance component and longitudinal models, and small-area estimation. 
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1. Introduction 
The literature on random effects in generalized linear models 
(GLMs) is now extensive (a small subset of relevant refer- 
ences is given later). Our concern in this paper is nonpara- 
metric maximum likelihood (NPML) in these models with 
shared random effects arising through variance component 
or repeated-measures structure, e.g., from longitudinal data. 
Several NPML algorithms have been proposed and used for 
these models, as noted here. The purpose of this paper is to set 
out the finite mixture algorithm, which can be readily imple- 
mented in standard GLM software (our implementation was 
in GLIM4). NPML in models with a unique random effect for 
each observation, leading to overdispersion, was discussed by 
Aitkin (1996), and this paper follows a similar development. 

For simplicity of exposition, we begin with the simple two- 
level variance component model for a structure with upper- or 
second-level sampling units indexed by j = 1, .. ., r and lower- 
or first-level sampling units indexed by i sampled within each 
upper-level unit, where i = 1, ..., nj . On each first-level unit, 
we measure or record a response Yij, and we have explanatory 
variables x, which can be measured at both upper (xj) and 
lower (xij) levels. We want to represent the distribution of 
the response y by an exponential family member, with a link 

function and linear predictor involving the explanatory vari- 
ables at both levels and perhaps their cross-level interactions. 

The nested structure of the responses Yij induces an in- 
traclass correlation between the lower-level responses on the 
same upper-level unit. A natural way (familiar from normal 
variance component modeling) of representing this common 
variation is by adding a common unobserved random effect 
to the linear predictor for each lower-level unit in the same 
upper-level unit. Thus, the common variation is modeled as 
an extra unobserved variable on the same scale as the linear 
predictor. 

If the distribution of this random effect is conjugate to 
the exponential family distribution, then maximum likelihood 
(ML) is straightforward in principle from the marginal distri- 
bution of the observed data, as, e.g., in the negative bino- 
mial and beta-binomial distributions (Lee and Nelder, 1996). 
However, the conjugate approach lacks generality because a 
different conjugate distribution must be assumed for each 
exponential family distribution. A more appealing approach 
would be to assume a common distribution for the random 
effects across the exponential family; an obvious choice is 
the normal N(O, a2) distribution (Breslow and Clayton, 1993; 
McGilchrist, 1994). This is especially natural for link func- 
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tions giving an unbounded parameter space for the linear pre- 
dictor. 

However, exponential family models other than the normal 
with a normal random effect have been difficult and slow to fit 
by ML because the resulting likelihood does not have a closed 
form. A number of different approaches have been followed to 
deal with this problem. 

First, the likelihood can be integrated numerically using 
some form of Gaussian quadrature (Anderson and Aitkin, 
1985) to6 give full ML estimation. This approach is widely 
regarded as computationally intensive. Current quadrature 
methods use the EM algorithm (Hinde, 1982; Anderson and 
Hinde, 1988) for fitting the finite mixture distribution result- 
ing from the discretization of the normal into K probability 
masses -Irk at known mass points zk. The EM algorithm can 
be slow to converge in mixture models and does not provide 
the correct (asymptotic) information-based standard errors 
for the ML estimates without additional computation. 

Second, the log-likelihood function can be approximated by 
a quadratic, and standard computational methods for the nor- 
mal variance component model can then be used, giving ap- 
proximate ML or REML estimation (Laird and Ware, 1982). 
This approach has been implemented generally in slightly 
different forms by Breslow and Clayton (1993), McGilchrist 
(1994), Goldstein (1995), and Longford (1993), giving penal- 
ized quasi-likelihood (PQL) analyses. The success of the ap- 
proximation depends on the closeness to normality of the ob- 
served data likelihood and might fail badly, e.g., for binary 
response data (Rodriguez and Goldman, 1995). 

Third, the integrals required in the E-step of the EM al- 
gorithm can be avoided by Laplace approximations (Steele, 
1996) or by Monte Carlo integration (Walker, 1996; McCul- 
loch, 1997). 

Fourth, the problem can be circumvented by the general- 
ized estimating equation approach (Liang and Zeger, 1986; 
Diggle, Liang, and Zeger, 1994). Here the marginal distri- 
bution of y is assumed to be exponential family, and the 
repeated-measures structure is represented by a covariance 
matrix model whose parameters are estimated by a form of 
quasi-likelihood (marginal quasi-likelihood, or MQL), which 
does not require a full parametric specification for the random 
effect distribution. This approach is widely used. 

Fifth, a fully Bayes approach can be followed, with the 
additional structure of a prior distribution on all the model 
parameters, and Markov chain Monte Carlo methods can be 
used to obtain marginal posterior distributions of the param- 
eters. Gelman et al. (1995) give a detailed exposition of this 
approach, which is becoming increasingly popular with the 
widespread dissemination of Bayesian software. 

A disadvantage of any approach using a specified para- 
metric form for the mixing distribution of the unobserved 
random effects is the possible sensitivity of the conclusions 
to this specification. The influential paper by Heckman and 
Singer (1984) showed substantial changes in parameter esti- 
mates with quite small changes in mixing distribution speci- 
fication; Davies (1987) showed similar effects. This difficulty 
can be avoided by NPML estimation of the mixing distribu- 
tion concurrently with the structural model parameters; the 
NPML estimate is well known to be a discrete distribution on 
a finite number of mass points (Kiefer and Wolfowitz, 1956; 

Laird, 1978; Lindsay, 1983). Clayton and Kaldor (1987) gave 
an example of this approach, in the simpler framework of a 
single-level overdispersion model. The present paper gives a 
detailed discussion of this approach. 

Finding the NPML estimate is widely regarded as com- 
putationally intensive, the particular difficulty being the lo- 
cation of the mass points. Current approaches use Gateaux 
or directional derivatives (Ezzet and Davies, 1988; Follmann 
and Lambert, 1989; Bohning, Schlattman, and Lindsay, 1992; 
Lesperance and Kalbfleisch, 1992) or optimal design algo- 
rithms (Mallet, 1986). Zackin, de Gruttola, and Laird (1996) 
gave an ECM (Gauss-Seidel) algorithm, alternately estimat- 
ing the fixed effects and the mixture parameters. Schumitzky 
(1991) gave a general EM algorithm, but it is restricted to 
purely random models. Barry, Francis, and Davies (1989) re- 
marked that "[NPML] is not a simplification of the paramet- 
ric approach as the identification of the number, location and 
masses of these points of support present formidable compu- 
tational problems." 

The important paper by Hinde and Wood (1987) addressed 
the computational issues of NPML estimation in the frame- 
work of two-level variance component models. They showed 
that, quite generally, both the mass-point locations zk and 
the masses 7Trk could be estimated very straightforwardly by 
ML within the framework of a finite mixture of GLMs, allow- 
ing the straightforward full NPML estimation of the mixing 
distribution. Convergence of the EM algorithm can then be- 
come very slow, as information in the data about the mixing 
distribution might be very limited, but the algorithm is easily 
programmed, e.g., in GLIM4 or S-plus. 

In this paper, we give a simple exposition of this approach, 
extend it to general random coefficient regression models, and 
discuss a range of applications that make clear the value of 
the nonparametric approach. The computational approach we 
follow using GLIM4 is closely related to that of Dietz (1992) 
for finite mixtures of GLMs. 

In Section 2 we describe the variance component GLM with 
a normal error term and in Section 3 the EM algorithm. A sim- 
ple method due to Dietz and Bohning (1995) is given for ob- 
taining correct standard errors for parameter estimates when 
using the EM algorithm. Section 4 relaxes the specification of 
the zk and irk and presents the EM algorithm for the more 
general case; it is especially simple. Section 5 extends the ap- 
proach to general random coefficient regression models. Sec- 
tion 6 discusses three examples. Section 7 concludes. General 
GLIM4 macros for the simpler exponential family dispersion 
model were presented by Aitkin and Francis (1995), and cor- 
responding macros for the variance component model were 
developed by Aitkin and Francis (1998). These are adapta- 
tions of the Hinde and Wood (1987) algorithm. 

2. The Two-Level Variance Component GLM 
We adopt the standard notation for GLMs (Aitkin et al., 1989; 
McCullagh and Nelder, 1989), and generalize the development 
in Anderson and Hinde (1988). We have a two-stage random 
sample Yij with i = 1,... , nj, j 1,... ,r and EnZi = n, from 
an exponential family distribution f(y I 0) with canonical pa- 
rameter 0 and mean ,t and explanatory variables X = (x-j) 
related to jt through a link function r71i = goQij) with linear 
predictor r1i ='xi . Here the X matrix is understood to in- 
clude both upper- and lower-level explanatory variables (and 
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their interactions if any), with xij = xj for all i for an upper- 
level variable. Thus, the upper-level variable xj is replicated 
nri times for the nj lower-level units in the jth upper-level 
unit. 

In the extension to random effect models, we have an un- 
observed common random effect zj for each lower-level unit 
in the jth upper-level unit, the zj being initially assumed 
independently normally distributed zj - N(O, 1), and condi- 
tionally on zj, the Yij have independent GLMs with linear 
predictor r1ij = /'xij + uzj. The random effect is modeled as 
acting on the same scale as the linear predictor. 

The likelihood is then 

L(/,u) F IJ 17 j I d a, zj)1r(zj)fdz 
J 2 

where 7r(z) is the standard normal density function. 
Because the integral does not have a closed form except 

for y normal, we approximate it by Gaussian quadrature: we 
replace the integral over the normal zj by a finite sum over 
K Gaussian quadrature mass points zk with masses 1rk; the 
zk and 1rk are given in standard references (e.g., Abramowitz 
and Stegun, 1964). The likelihood is then 

n K nr 

L(/,ua) - jJZrk J f(Yij 3,a,zk)Z 
j=1 k=1 il 

The likelihood is thus (approximately) the likelihood of a fi- 
nite mixture of exponential family densities with known mix- 
ture proportions 1rk at known mass points zk, with the linear 
predictor for the ijth observation in the kth mixture compo- 
nent being 

71ijk = /3'Xi + JZk. 

We can also regard this as the exact likelihood for this dis- 
crete mixing distribution for z. This is inherently of interest 
because the NPML estimate of the mixing distribution is well 
known (e.g., Laird, 1978; Lindsay, 1983) to be a discrete dis- 
tribution on a finite number of mass points. In Section 4, we 
consider the joint estimation of /3, the 1Trk and the mass points 
zk, but for the moment consider the latter quantities as fixed. 

3. ML Estimation for the Finite Mixture Model 

We proceed as in Bock and Aitkin (1981), Hinde (1982), An- 
derson and Aitkin (1985), Anderson (1988), and Anderson 
and Hinde (1988). The log likelihood is 

( a,) =ElogE7rkfjk, 
j k 

where for compactness we write 

fjk = ]7ijk, 

fijk = f(Yij I 2, C, ZO 

exp{Oijkyij - b(O'jk) + C(Yij)} 

with 

I1ijk b'(Oijk), 

Vij k b (O i k)v 

r1ijk =9(ijk) = /'Xij + JZk, 

9i3k = 9 (ijk)- 

Then 

& 
& lo 

fjk10fjk e 
_ y ~EkdkJkt &- WLZkWSijk(/), 

3/3 E7 k 7Tkfjk j3 i k 

where Wik is the posterior probability that observation Yij 
comes from component k, 

Wj 
rk fj k Wjk = 
TfJ 

ZE ire fie' 

and sijk (/) is the : component of the score (the log-likelihood 
derivative with respect to ,3) for observation (ij) in compo- 
nent k: 

Sijk(O) = (Yij -Aijk)Xij/Vijk9gjk 

(Aitkin et al., 1989, p. 323; McCullagh and Nelder, 1989). 
Similarly, 

Sij k (f) = (Yij - 
[lijk) Zk /Vijkg9 - k 

Thus, zk becomes another observable variable in the regres- 
sion, with regression coefficient a. 

Equating the score to zero gives likelihood equations that 
are simple weighted sums of those for an ordinary GLM with 
weights wjk; alternately solving these equations for given 
weights Wjk and updating these weights from the current 
parameter estimates is an EM algorithm (Dempster, Laird, 
and Rubin 1977; Aitkin and Tunnicliffe Wilson, 1980). The 
triple summation over (ij) and k is conveniently (if ineffi- 
ciently) handled by expanding the data vectors to length Kn 
by replicating y and X K times and the Gaussian quadrature 
variable z n times (Hinde, 1982; Anderson and Aitkin, 1985). 
Model fitting is then identical to that of a single sample of 
Kn observations with prior weight vector w. Initial estimates 
for the first E-step for a are conveniently obtained from the 
ordinary GLM fit and for a by arbitrary specification other 
than zero (e.g., = 1). 

To obtain correct standard errors for the parameter esti- 
mates in the final model, we use the property (Dietz and 
B6hning, 1995) that in large samples from regular models for 
which the log likelihood is quadratic in the parameters, the 
likelihood ratio and Wald tests for the significance of an indi- 
vidual parameter are equivalent, so that the deviance change 
on omitting the variable is equal to the square of the t-statistic 
(parameter estimate/SE). Thus, the standard error can be 
calculated as the absolute value of the parameter estimate 
divided by the square root of the deviance change. This re- 
quires fitting a set of reduced models in which each variable 
in turn is omitted from the final model (these reduced models 
would often be fitted in any case to assess the significance of 
each variable by its deviance change). This property of regu- 
lar models might not hold in small samples with skewed log 
likelihoods, but in the latter case the proposed standard error 
estimate is a more appropriate reflection of the significance of 
the variable than that based on the inverse information ma- 
trix, because it gives a squared t-statistic equal to the LR test 
statistic for each variable rather than the misleading Wald test 
statistic. 

Standard errors based on the observed information could be 
calculated using the approach of Louis (1982), as described for 
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two-component normal mixtures by Aitkin and Aitkin (1996), 
at the cost of substantially more computation or by numer- 
ical differentiation within the EM algorithm, using the SEM 
algorithm of Meng and Rubin (1991). 

4. NPML Estimation of the Masses and Mass Points 

A particular disadvantage of the modeling approach described 
above is the lack of information in the data about the mixing 
distribution (as this can come only from the marginal distri- 
bution of the data) and the possible sensitivity of conclusions 
to choice of a particular distributional form. A second disad- 
vantage is the need to expand the data vector to length Kn; if 
K is large for accurate Gaussian quadrature, the time required 
for model fitting increases substantially. (In GLIM4 the data 
storage requirement can be obviated because the variables can 
be indexed instead of being expanded explicitly.) A third dis- 
advantage is the possible inaccuracy of Gaussian quadrature, 
where even 20-point integration might not give high accuracy 
for the logistic/normal model when the variance component 
is large (Crouch and Spiegelman, 1990). 

Because the model assumption for unobservable random 
variables cannot be directly assessed, we consider as a prefer- 
able modeling strategy the NPML estimation of the mixing 
distribution, together with the GLM parameters. Our aim is 
not to estimate this distribution-indeed the NPML estimate 
of it might be very poor, though consistent but to avoid 
possibly misleading inferences from an inappropriate and un- 
verifiable model assumption. Thus, the mixing distribution is 
a nuisance parameter or function and not the parameter of 
interest. 

We now treat the masses and mass points as unknown pa- 
rameters; the number K of mass points is also unknown but is 
treated as fixed and sequentially increased until the likelihood 
is maximized. Because the variance of the mixing distribution 
is a function of the unknown parameters, we drop the scale 
parameter a and define the mass-point parameters as ak, with 
linear predictor 

r7ijk = d/X3j + ak 

Thus, ak functions as an intercept parameter for the kth com- 
ponent: It can immediately be estimated simply by including 
a component factor in the model with K levels instead of the 
variable zk (Hinde and Wood, 1987). One of the ak parame- 
ters will be aliased with the intercept term /3o; alternatively, 
the intercept can be removed from the model. 

Differentiating the log likelihood with respect to 7rk and 
using 7rK = 1 1 7 k, we have directly 

& 3S fJk-JjK E{Wjk WjK} 

O'Trk Ef 7?e efje i 1rk 7rK 
3 3 

Equating this to zero gives simply 

*tk = Wjk/n, 

a standard mixture ML result. The same EM algorithm ap- 
plies with the additional calculation in each M-step of the 
estimate of Trk from the weights. A distinctive feature of the 
weights is that they are calculated for each upper-level unit in 
the B step but applied to all lower-level units in this upper- 

level unit in the M-step. Initial estimates of the ak can be 
taken as the standard normal values zk. 

A GLIM4 implementation of the EM algorithm for the sim- 
pler overdispersion model is given in Aitkin and Francis (1995) 
and the implementation for the very similar variance compo- 
nent model in Aitkin and Francis (1998). 

Hypothesis testing or model comparisons can be carried out 
through the likelihood ratio test using differences of deviances 
(-2 log Lmax) in the usual way. Theoretical justifications of 
this approach seem to be lacking, though simulation studies 
by Davies (1987) support the usual asymptotic null x2 distri- 
bution for nested model comparisons. Presumably, AIC and 
other penalized likelihood ratio criteria could also be used for 
model comparisons in the usual way. 

5. Random Coefficient Models 
The analysis can be extended to general random coefficient 
models. The usual case of interest is when lower-level vari- 
ables have slopes that vary across upper-level units. Consider 
a simple example with a lower-level variable, xlij, whose co- 
efficient /31 varies across upper-level units. We index it by 
/3l = /3i + uj, where uj represents variation about a mean 
/31. The remaining regression coefficients /02 are fixed. Then, 
conditional on u3 and zj, the regression model is 

ij = jlXlij + /23X2ij + Zj + U[jxli, 

while marginally zj and uj have an unknown joint distribution 
7r(z, u). The likelihood is then 

L(/3) 7 f IJf(yij I zj, uj)7r(zj, uj)dz3duj. 
J 2 

If the distribution 7r(z, u) were assumed Gaussian with un- 
known covariance matrix, we would need to numerically in- 
tegrate over both parameters, at least doubling the compu- 
tational load and rendering this approach unusable for many 
random parameters. However, by estimating the joint distri- 
bution of zj and u; nonparametrically, we again obtain the 
NPML as a discrete distribution on a finite number of points 
in the (z, u) plane, with an estimated mass 7Trk and estimated 
mass points zk and uk in the kth component. The likelihood 
is again that of a finite mixture, this time of regressions on 
x1 with a different slope and intercept in each component of 
the mixture, and on X2 with the same regression coefficient in 
each component. Because the components are indexed in the 
model by the component factor, the random coefficients can 
be handled in the computational implementation by includ- 
ing in the regression model, in addition to the main effect of 
the factor zk, the interaction of this factor with the explana- 
tory variable x1ij Again, the number of mass points must 
be determined by sequential increase from 1, and in general 
more mass points might be required than for the case of fixed 
/31. This process is quite general, and in the GLIM macro im- 
plementation the user provides both a FIXED macro of the 
fixed-effect terms in the model and a RANDOM macro of 
terms with random regression coefficients (the intercept term 
is always included). 

Upper-level variable slopes can also be allowed to vary over 
upper-level units by including them in interactions with the 
random factor in the same way. Thus, the single-level overdis- 
persion models considered in Aitkin (1996) can be general- 
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ized to random coefficient models in exactly the same way, 
using the same FIXED and RANDOM model macros. How- 
ever, incorporating both overdispersion and variance compo- 
nent structure requires two sets of random effects that are 
both modeled nonparametrically. This is beyond the scope of 
the present paper. 

6. Examples 
6.1 Example 1 
The first example is a small-area estimation study by 
Tsutakawa (1985) of cancer mortality rates in the 84 largest 
cities in Missouri for males aged 45-54 over the period 1972- 
1981. The data are shown in Tables 1-3. 

Most of the cities are small and several have no lung cancer 
deaths at all over the 10-year period. There are three large 
cities. Tsutakawa gave both full Bayes and empirical Bayes 
analyses based on a logistic model with an added normal 
city random effect. The sample design is two level, with 
men nested in cities. As there are no explanatory variables 
at the lower (man) level, the two-level model collapses to a 
single-level binomial logit model with the city random effect 
acting as an overdispersion variable. Tsutakawa gave posterior 
distributions for the individual city mortality rates using 
Gaussian quadrature to evaluate the likelihood. The Bayes 
and empirical Bayes posteriors are very similar, apart from 
slightly more concentrated empirical Bayes posteriors for the 
small cities. Posterior means by these two approaches are also 
shown in the tables. 

Fitting the null logit model to all 84 cities gives a deviance 
of 176.18 on 83 d.f. Successively increasing the number of mass 
points gives deviances of 93.10 for K = 2 and 92.38 for K = 3, 
which is the NPML estimate. Mass points (and masses) on 
the logit scale are -4.215 (.140), -4.757 (.436), and -4.886 
(.424), giving a mean of -4.736 and standard deviation 0.214, 
close to the ML estimates for the normal distribution of 
-4.733 and 0.238 quoted by Tsutakawa. The two-component 
solution is very little inferior to the NPML estimate; this has 
mass points and (masses) of -4.217 (.155) and -4.836 (.845). 
We base our interpretation for simplicity on this model. The 
first mass point corresponds to a probability of .0145 and is 
identified by the third-largest city (84) with a population of 
22,514 and an observed death rate of .0153. The second mass 
point corresponds to a probability of .0079 and is identified by 
four cities (4, 8, 13, and 44) with populations of 54,155, 5756, 
7137, and 28,937 and corresponding observed rates of .0074, 
.0073, .0077, and .0087. The posterior mean rates for the 
other cities are weighted means of these two rates, weighted 
by the posterior probabilities of the city belonging to these 
components. 

The posterior probability of component 1 and the NPML 
estimates based on the two-point model are also given in the 
tables. Also shown are the posterior means based on four- 
point Gaussian quadrature; these differ somewhat from the 
corresponding values in Tsutakawa, presumably because of 
different numbers of mass points in the quadrature (they differ 

Table 1 
Lung cancer mortality in 84 Missouri cities, males 45-54, 1972-1981 

Raw Bayes NPML Gauss Posterior 
City Size Deaths rate estimate estimate estimate probability 

1 1019 2 20 67 79 73 .001 
2 1512 8 53 74 79 78 .001 
3 1424 8 56 76 79 79 .002 
4 54,155 402 74 75 79 77 0.0 
5 447 1 22 77 80 82 .017 
6 1907 12 63 77 79 79 .001 
7 1755 11 63 77 79 80 .001 
8 5756 42 73 77 79 78 0.0 
9 509 2 39 79 80 83 .020 

10 350 1 29 80 81 84 .031 
11 473 2 42 80 80 84 .026 
12 329 1 30 81 81 85 .036 
13 7137 55 77 80 79 79 0.0 
14 430 2 47 82 81 85 .034 
15 304 1 33 82 82 86 .042 
16 163 0 0 83 83 87 .058 
17 163 0 0 83 83 87 .058 
18 159 0 0 83 83 87 .059 
19 281 1 36 83 82 86 .049 
20 154 0 0 83 83 87 .061 
21 889 6 68 82 80 85 .019 
22 260 1 38 83 82 87 .056 
23 371 2 54 84 82 87 .050 
24 232 1 43 85 83 88 .067 
25 228 1 44 85 83 88 .069 
26 343 2 58 85 83 88 .059 
27 454 3 66 85 82 88 .053 
28 323 2 62 85 83 88 .067 
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Table 2 
Lung cancer mortality in 84 Missouri cities, males 45-54, 1972-1981 

Raw Bayes NPML Gauss Posterior 
City Size Deaths rate estimate estimate estimate probability 

29 311 2 64 86 84 89 .072 
30 784 6 77 85 81 88 .037 
31 426 3 71 86 83 89 .063 
32 184 1 55 87 85 89 .090 
33 181 1 55 87 85 89 .092 
34 177 1 56 87 85 90 .094 
35 177 1 56 87 85 90 .094 
36 291 2 69 87 84 89 .082 
37 170 1 59 87 85 90 .098 
38 158 1 63 88 86 90 .105 
39 274 2 73 87 85 90 .091 
40 150 1 67 88 86 91 .111 
41 265 2 76 88 85 90 .096 
42 257 2 78 88 85 91 .101 
43 254 2 79 88 86 91 .103 
44 28,937 251 87 87 79 78 0.00 
45 445 4 90 89 85 91 .099 
46 447 4 90 89 85 91 .098 
47 329 3 91 90 86 92 .114 
48 206 2 97 90 88 92 .137 
49 313 3 96 90 87 92 .125 
50 314 3 96 90 87 92 .125 
51 314 3 96 90 87 92 .125 
52 202 2 99 91 88 92 .140 
53 198 2 101 91 88 93 .143 
54 183 2 109 91 89 93 .156 
55 292 3 103 91 88 93 .142 
56 178 2 112 92 89 93 .161 

also by a scale factor, as Tables 1-3 give the annual rates 
per 105 population at risk, whereas Tsutakawa gave rates per 
106 population). Qualitatively, all the posterior means imply 
heavy smoothing of the highly variable sample rates nearly 
all of which are based on small city sizes. The smoothing is 
greatest for the two-point NPML estimate. Figure 1 shows the 
observed and posterior mean NPML rates in increasing order 
of the latter (so the city numbers do not correspond to those 
in Tables 1-3). The heavy smoothing is strikingly evident. 

6.2 Example 2 
The second example is the 22-center clinical trial of beta- 
blockers for reducing mortality after myocardial infarction, 
described by Yusuf et al. (1985) and analyzed in detail in 
Gelman et al. (1995) by MCMC. The data are given in Table 
4, adapted from Gelman et al. (p. 149), and are represented by 
a two-level model, with centers at the upper level and patients 
at the lower level. There is only one explanatory variable, the 
treatment assignment at the lower level. This is coded as 0 
for control and as 1 for the beta-blocker treatment. 

Fitting the logit regression model with treatment as a fixed 
effect, ignoring the center classification, gives a deviance of 
305.76 with 42 d.f., indicating large variations in intercept 
(response under the standard treatment) among the centers. 
The treatment effect estimate is -0.257 with standard error 
0.049. Adding a 22-level center fixed factor to the model 
reduces the deviance to 23.62 with 21 d.f. The treatment 

effect estimate changes slightly, to -0.261, with standard 
error 0.050. Fitting the fixed treatment model with a random 
intercept term and successively more mass points, and 
estimating the mixing distribution nonparametrically gives 
deviances of 145.23 (K = 2), 101.29 (K = 3), and 101.29 
(K = 4). (These deviances are not comparable with that 
for the center fixed-factor model.) The NPML is a nearly 
symmetric three-point distribution located at the points 
-1.610, -2.250, and -2.834, with respective masses 0.249, 
0.512, and 0.239. The fixed treatment effect estimate is -0.258 
with standard error 0.050. The standard deviation of the 
mixing distribution is 0.43, representing substantial variation 
on the logit scale. This distribution is very close to normal- 
the mass points are located similarly to those in the three- 
point Gaussian quadrature analysis (which are at 0 and +x/'Y 
relative to the intercept), though the probability masses 
are somewhat different-2/3, 1/6, and 1/6 for the Gaussian 
model. The deviance for the three-point Gaussian quadrature 
analysis is 103.55, very close to that for the NPML analysis; 
the treatment effect and standard error are identical to those 
from the NPML analysis. The ML estimate of the standard 
deviation of the random effect using three-point Gaussian 
quadrature is 0.36. 

Including the treatment effect in the random part of the 
model i.e., fitting a full random slope and intercept model- 
gives a deviance of 99.12, which is a reduction of only 2.10 
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Table 3 
Lung cancer mortality in 84 Missouri cities, males 45-54, 1972-1981 

Raw Bayes NPML Gauss Posterior 
City Size Deaths rate estimate estimate estimate probability 

57 287 3 105 92 88 93 .146 
58 282 3 106 92 89 93 .150 
59 164 2 122 92 90 94 .174 
60 164 2 122 92 90 94 .174 
61 1923 18 94 91 81 93 .030 
62 3672 34 93 91 79 93 .005 
63 261 3 115 93 90 94 .169 
64 581 6 103 93 87 94 .131 
65 550 6 109 94 89 95 .157 
66 431 5 116 94 91 95 .183 
67 399 5 125 96 93 96 .217 
68 286 4 140 96 95 97 .242 
69 592 7 118 96 93 97 .207 
70 246 4 163 99 98 98 .295 
71 547 7 128 98 96 98 .261 
72 438 6 137 99 98 99 .284 
73 202 4 198 101 103 100 .360 
74 790 10 127 100 99 100 .306 
75 648 9 139 102 104 102 .382 
76 354 6 169 103 106 102 .411 
77 730 10 137 103 105 102 .398 
78 144 4 277 105 109 102 .453 
79 1093 14 128 104 106 103 .406 
80 384 7 182 107 113 104 .514 
81 278 6 216 107 114 105 .537 
82 596 10 168 110 120 107 .619 
83 1889 28 148 120 142 117 .949 
84 22,514 334 153 148 145 146 1.00 

relative to the fixed treatment model. The NPML estimate 
is a three-point distribution again, as in the fixed treatment 
model, located at the (intercept, slope) mass points (-1.580, 
-0.325), (-2.248, -0.263), and (-2.916, -0.081) with respec- 
tive masses 0.249, 0.511, and 0.240. Although there is no satis- 
factory formal test for the degeneracy of the two-dimensional 
distribution of slope and intercept to a one-dimensional distri- 
bution of the intercept, it is clear that the deviance change of 
2.10 for the two additional slope parameters cannot constitute 
evidence of real treatment effect variations over the centers, 
and we conclude that a fixed treatment effect over the centers 
is well supported. The intercept variation is consistent with a 
normal distribution with standard deviation about 0.4. This 
result is consistent with the fixed-effect model conclusions, 
though the distribution of the residual deviance might not be 
accurately represented by Xi21 

Similar results are given by Gelman et al., who give a pos- 
terior median for the treatment effect of -0.25 with an ap- 
proximate posterior standard deviation of about 0.07, though 
the posterior median of the standard deviation for their Gaus- 
sian random effect model is substantially smaller, 0.13, than 
the standard deviation 0.36 of the NPML-estimated random 
effect distribution. This might be a consequence of the ad- 
ditional information in the prior or of the use of a normal 
approximation for the likelihood contributions of the individ- 
ual centers. 

6.3 Example 3 
The third example is the longitudinal study of childhood 
obesity of Woolson and Clarke (1984), reanalyzed by 
Fitzmaurice, Laird, and Lipsitz (1994). The data come from 
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Figure 1. Observed and posterior mean rate. 
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Table 4 
Results of 22 clinical trials of beta-blockers 

Center Control Treated 
deaths Total deaths Total 

1 3 39 3 38 
2 14 116 7 114 
3 11 93 5 69 
4 127 1520 102 1533 
5 27 365 28 355 
6 6 52 4 59 
7 152 939 98 945 
8 48 471 60 632 
9 37 282 25 278 

10 188 1921 138 1916 
11 52 583 64 873 
12 47 266 45 263 
13 16 293 9 291 
14 45 883 57 858 
15 31 147 25 154 
16 38 213 33 207 
17 12 122 28 251 
18 6 154 8 151 
19 3 134 6 174 
20 40 218 32 209 
21 43 364 27 391 
22 39 674 22 680 

the Muscatine, Iowa, study of 1,014 children who were 7-9 
years old in 1977 and were followed up in 1979 and 1981. 
Children were classified as obese if their weight was more 
than 110% of the median weight for their gender and height; 
about 20% of children were classified as obese. The repeated 
binary response of interest is whether the child is obese (1) 
or not (0) at each occasion. Data on many children are 
incomplete, and only 460 children had complete data from 
all three occasions. Tables 5 and 6, adapted from Fitzmaurice 
et al., give the child's obesity status at all three occasions for 
the 1014 children with complete or incomplete data. 

Fitzmaurice et al. modeled the marginal probability of 
response by a logistic model with linear and quadratic age 
terms and their interactions with gender, and saturated 
the covariance matrix between occasions. This is similar to 
the GEE approach of Liang and Zeger, but the parameters 
are estimated by full maximum likelihood. They analyzed 
both the subset of children with complete data and the full 
sample with both complete and incomplete data and found 
substantial changes in the conclusions, demonstrating the 
need for inclusion of all the data in the analysis. 

We repeat their analysis with the random effect model, 
with the two-level structure of children and occasions within 
child. The intraclass correlation structure on the logit scale 
is simple, though on the probability scale this corresponds 
to a complex correlation structure because of the nonlinear 
transformation. The linear and quadratic age effects are 
defined by AGE(L) = (AGE-10)/2, AGE(Q) = 3*AGE(L)2 
- 2, and the GENDER variable is defined as 0 for males, 1 
for females. Interactions are defined as direct products of the 
GENDER and AGE(L), AGE(Q) effects. 

Table 5 
Muscatine study: all data, males 

Child's obesity status at Age 8 Age 10 Age 12 Count 

No missing 1 1 1 20 
1 1 0 7 
1 0 1 9 
1 0 0 8 
0 1 1 8 
0 1 0 8 
0 0 1 15 
0 0 0 150 

Missing time 1 * 1 1 13 
* 1 0 3 
* 0 1 2 
* 0 0 42 

Missing time 2 1 * 1 3 
1 * 0 1 
0 * 1 6 
0 * 0 16 

Missing time 3 1 1 * 11 
1 0 * 1 
0 1 * 3 
0 0 * 38 

Missing times 1, 2 * * 1 14 
* * 0 55 

Missing times 1, 3 * 1 * 4 
* 0 * 33 

Missing times 2, 3 1 * * 7 
0 * * 45 

Table 6 
Muscatine study: all data, females 

Child's obesity status at Age 8 Age 10 Age 12 Count 

No missing 1 1 1 21 
1 1 0 6 
1 0 1 6 
1 0 0 2 
0 1 1 19 
0 1 0 13 
0 0 1 14 
0 0 0 154 

Missing time1 * 1 1 8 
* 1 0 1 
* 0 1 4 
* 0 0 47 

Missing time 2 1 * 1 4 
1 * 0 0 
0 * 1 16 
0 * 0 3 

Missing time 3 1 1 * 11 
1 0 * 1 
0 1 * 3 
0 0 * 25 

Missing times 1, 2 * * 1 13 
* * 0 39 

Missing times 1, 3 * 1 * 5 
* 0 * 23 

Missing times 2, 3 1 * * 7 
0 * * 47 
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Table 7 
Parameter estimates from full model for complete data only 

Marginal ML NPML 
Parameter estimate SE estimate SE 

Intercept -1.353 0.113 0.954 
GENDER 0.051 0.190 0.035 0.334 
AGE(L) 0.106 0.077 0.228 0.168 
AGE(Q) 0.045 0.047 0.095 0.098 
GENDER.AGE(L) 0.230 0.119 0.442 0.236 
GENDER.AGE(Q) -0.149 0.065 -0.301 0.136 

Table 7 gives the parameter estimates and standard er- 
rors for the full interaction model AGE(L) + AGE(Q) + 
GENDER + GENDER.AGE(L) + GENDER.AGE(Q), from 
both the Fitzmaurice et al. and the random effect model ap- 
proaches, for the subset of complete data. For the random 
effect model, the NPML estimate of the mixing distribution 
is a symmetric three-point distribution, with masses of 0.251, 
0.510, and 0.239 at +3.582, -0.162, and -3.414, respectively. 
This distribution has a standard deviation of 2.45 but has 
shorter tails than the three-point Gaussian quadrature distri- 
bution. Standard errors for the parameter estimates for this 
model are obtained by omitting each effect in turn from the 
full model, as described in Section 3. 

Both approaches show a significant gender x quadratic age 
interaction, so the model cannot be further reduced. Table 8 
gives the corresponding estimates for the full sample. Neither 
interaction term is now important, and the model can be re- 
duced to the main effect model, also shown. The gender effect 
is clearly irrelevant, and the model can be reduced to a main 
effect age model, also shown, and further reduced to a linear 
age model. (Fitzmaurice et al. did not give estimates for this 
model.) 

It is of interest that both ML analyses lead to the same 
models with nearly proportional parameter estimates and 
standard errors, though the models being fitted are different: a 
marginal logit model in the first case and a conditional model 
in the second. The inflation of estimates and standard errors 
for the NPML analysis is a consequence of its much greater 
variance on the logit scale, 7r2/3 + U2 = 9.29 compared with 
7r2/3 = 3.29 for the marginal logit model. The corresponding 
intraclass correlation is 0.65. Neuhaus and Jewell (1990) re- 
port similar inflation in a paired study, and Neuhaus (1992) 
gives a general discussion of the relation between parameter 
estimates by these and other approaches. 

7. Discussion 

7.1 Theoretical Issues 

The approach described here is very general. The emphasis is 
on model fitting while allowing for the random effect rather 
than on testing for a nonzero variance component. Because 
the mixing distribution is treated as a nuisance function and 
estimated nonparametrically, the distribution of the change in 
deviance on fitting the variance component model compared 
to an independence model is not of direct interest: the 
regression model parameters are the parameters of interest. 
(The distribution of this change is, however, of considerable 
theoretical interest, especially in random parameter models.) 

It appears that deviance changes on omitting explanatory 
variables from the model can be treated as asymptotic x2 in 
the usual LRT framework even without conditioning on the 
number of mass points as in Follmann and Lambert (1989). 

A limitation of the NPML analysis in the first example, 
and generally in single-level random effect models, is that 
it does not allow spatial dependence between neighboring 
units, as used, e.g., in Clayton and Kaldor (1987), Breslow 
and Clayton (1993), and other authors. A popular extension 
(e.g., Besag, York, and Mollie, 1991) of the simple random 
effect model for disease mapping is to include an additional 
spatial random effect for each area whose (conditional) mean 
is set equal to the mean of the random effects for neighboring 
areas (appropriately defined). Care is needed in such models 
as the joint distribution of all the random effects is likely 
to be singular unless it incorporates a regression parameter 
to reduce the very high intra-area correlation implied by 
the construction of the conditional means. Initial spatial 
examination of the posterior means from the model without 
spatial dependence should be carried out to establish whether 
such dependence actually exists; as Clayton and Kaldor 
(1987) note, "There is no a priori reason why geographic 
proximity should be reflected in correlated cancer rates." 
It should be noted that the simple variance component 
model provides consistent estimates of the regression model 
parameters, but these are inefficient if real spatial dependence 
exists, and extensions of the NPML approach to spatial 
modeling would be very useful. 

In the second example, we establish that treatment effect 
variation over centers is negligible, an important practical 
issue, whereas variation in the standard treatment response 
is substantial. The ML estimate of this variation is somewhat 

Table 8 
Parameter estimates from full model for full data 

Marginal ML NPML 
Parameter estimate SE estimate SE 

Intercept -1.356 0.098 1.194 
GENDER 0.043 0.138 0.025 0.288 
AGE(L) 0.142 0.063 0.339 0.150 
AGE(Q) 0.014 0.035 0.032 0.088 
GENDER.AGE(L) 0.162 0.096 0.345 0.209 
GENDER.AGE(Q) -0.089 0.049 -0.192 0.119 
Deviance 1892.06 

Intercept -1.370 0.097 1.151 
GENDER 0.073 0.137 0.002 * 

AGE(L) 0.223 0.048 0.507 0.105 
AGE(Q) -0.032 0.025 -0.065 0.056 
Deviance 1897.27 

Intercept -1.321 0.094 1.151 
AGE(L) 0.220 0.059 0.507 0.105 
AGE(Q) -0.033 0.032 -0.065 0.059 
Deviance 1897.27 

Intercept 1.165 
AGE(L) 0.507 0.105 
Deviance 1898.50 

* No SE as the deviance change was 0.00. 
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different from the posterior median in the Bayes analysis, 
presumably a consequence of the additional information in 
the prior for this parameter, though it might also be a 
consequence of the normal distribution assumption in the 
Bayes analysis. 

In the third example, we obtain essentially the same results 
as Fitzmaurice et al., though with a conditional rather than 
a marginal model. 

7.2 Computational Issues 
The EM algorithm for these variance component models is 
very stable and converged rapidly in every case. For the 
Tsutakawa data, the EM algorithm required 20 iterations 
for the two-point model and 81 for the three-point, using 
a convergence criterion of successive deviance change less 
than 0.001. The example from Gelman et al. required 8 
iterations for the two-point, 11 for the three-point, and 24 
for the four-point (fixed treatment) model and 11, 9, and 13 
iterations, respectively, for the two-, three-, and four-mass- 
point random treatment models, with the same convergence 
criterion. The Muscatine obesity data required 40 iterations 
for the two-point model and 25 for the three-point, with the 
full regression model for the subset of complete data, and 
49 and 26 iterations, respectively, for the full data, again 
with the same convergence criterion. The convergence rate is 
much faster than for the overdispersion models considered in 
Aitkin (1996) because there is much more information about 
the random effects when these are shared between multiple 
lower-level units. In overdispersion models, each observation 
has its own unique random effect. The NPML estimate was 
impressively stable and required at most three mass points 
in the small examples considered. This is a consequence of 
the small (upper-level) sample sizes in these examples; in 
large samples, substantially larger numbers of mass points 
are frequently required. 

The discrete nature of the NPML estimate might 
be found unattractive if one believes a priori in the 
existence of a continuous mixing distribution. An alternative 
approach that assumed a smooth mixing density was 
described by Davidian and Gallant (1993). This approach 
requires numerical quadrature with library optimization 
algorithms. Magder and Zeger (1996) took as a mixing 
distribution a finite mixture of normals, guaranteeing 
a continuous mixing distribution estimate. They found 
that the likelihood for the model with equal variances 
approaches a maximum as the common variance tends to 
zero (reflecting the optimality of the NPML estimate over all 
mixing distributions) and is very flat in the variance 
parameter away from zero, so the information about 
distributional shape of the mixing distribution is inherently 
limited. 

Local maxima of the likelihood are a possibility but were 
not found in the previous examples, though they have been in 
others. Local maxima may require variations in starting values 
for the EM algorithm to locate all the local maxima. In the 
GLIM4 macro used, this is most easily achieved by scaling 
the mass-point locations in the initial mass-point macros. In 
other examples not reported here, a considerable difference in 
local maxima sometimes occurred, depending on whether the 
number of mass points was odd or even. Reliable estimation 
of the true maximum in these cases was found by overfitting 

the number of mass points and identifying the location of the 
reduced number of points actually required for the NPML 
estimate. 

A further computational issue in GLIM is that only six- 
figure accuracy can be obtained in the deviance, and this 
might require relaxing or changing the convergence criterion 
(of successive deviance changes) in large data sets to prevent 
roundoff error fluctuations in the value of the deviance. 

Particular advantages of this approach compared to 
other approaches to NPML estimation are that no special 
computational effort is required to locate new mass points 
when K is increased and that the mass points need not be 
restricted to a grid. 

Past experience (Hinde, 1982; Anderson and Aitkin, 1985) 
with mixture modeling for overdispersion and variance 
component analysis might have left the discouraging 
impression that the problem is computationally intensive. 
Although the Gauss-Newton algorithm might give more 
efficient model fitting (Aitkin and Aitkin, 1996, report 
a modest improvement with a hybrid EM/Gauss-Newton 
algorithm for normal mixtures), with present and projected 
future CPU speeds on personal computers this no longer 
seems such a serious issue, and the simplicity and generality 
of the random effect model and of the EM algorithm for full 
NPML estimation in exponential family variance component 
models make them powerful modeling tools. The lack of 
standard errors for the EM estimates can be rectified by a 
modest amount of further modeling or by explicit calculation 
of the observed information. 
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RE'SUMEP 

Cet article decrit un algorithme EM pour une estimation 
non parametrique du maximum de vraisemblance dans 
le cadre des modeles lineaires generalises avec structure 
sur les composantes de la variance. L'algorithme fournit 
une alternative aux analyses MQL et PQL (Goldstein 
1995, McGilchrist et Aisbett 1991, Breslow et Clayton 
1993, McGilchrist 1994), et aux GEE (Liang et Zeger 
1986). L'algorithme, donne par Hinde et Wood (1987), est 
generalise aux modeles de surdispersion 'a effets aleatoires 
dans les modeles lineaires generalises, decrit par Aikin (1996). 
L'algorithme est initialement derive comme une forme de 
quadrature de Gauss supposant une distribution melangeante 
de lois normales, avec une faible variation il peut etre 
utilise pour une distribution melangeante de lois totalement 
inconnues, donnant une methode directe de l'estimation 
non parametrique complete du maximum de vraisemblance 
de cette distribution. Ceci est utile car les estimations du 
maximum de vraisemblance des parametres des GLM peuvent 
etre sensibles 'a la specification de la forme parametrique de 
la distribution melangeante. L'analyse non parametrique peut 
etre etendue directement aux modeles 'a parametres aleatoires, 
avec une estimation complete NPML de la distribution 
jointe des parametres aleatoires. Ceci peut produire un 
gain de temps machine considerable comparer 'a l'integration 
numerique complete pour une distribution parametrique 
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specifiee des parametres aleatoires. Une methode simple est 
decrite pour obtenir des ecarts type exactes des estimations 
des parametres quand on utilise l'algorithme EM. Plusieurs 
exemples sont discutes, comportant des modeles simples pour 
les composants de variance, des modeles longitudinaux, et des 
estimations dans des petites zones. 
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