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SUMMARY

In randomized clinical trials, a pre-treatment measurement is often taken at baseline, and post-treatment
effects are measured at several time points post-baseline, say t=1, . . . ,T . At the end of the trial, it is of
interest to assess the treatment effect based on the mean change from baseline at the last time point T .
We consider statistical methods for (i) a point estimate and 95 per cent confidence interval for the mean
change from baseline at time T for each treatment group, and (ii) a p-value and 95 per cent confidence
interval for the between-group difference in the mean change from baseline. The manner in which the
baseline responses are used in the analysis influences both the accuracy and the efficiency of items (i)
and (ii). In this paper, we will consider the ANCOVA approach with change from baseline as a dependent
variable and compare that with a constrained longitudinal data analysis (cLDA) model proposed by Liang
and Zeger (Sankhya: Indian J. Stat. (Ser B) 2000; 62:134–148), in which the baseline is modeled as a
dependent variable in conjunction with the constraint of a common baseline mean across the treatment
groups. Some drawbacks of the ANCOVA model and potential advantages of the cLDA approach are
discussed and illustrated using numerical simulations. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Baseline values are commonly measured in clinical trials to help the assess drug effects after
randomization. The baseline measurement can potentially be used for several purposes, including
subject selection in studies targeting a study population with a certain disease condition, and
serving as a basis to measure the treatment effect in terms of the change from the baseline. When
there is only one post-randomization measurement, treatment effects on mean change from baseline
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are typically assessed using an analysis of covariance (ANCOVA) model with either the post-
randomization value or the calculated change from baseline value as the dependent variable and
baseline as a covariate [1–5]. Note that in this ANCOVA model the treatment comparison would
be the same with either the post-baseline value or the change from baseline value as the dependent
variable; for simplicity, we use the latter in the discussions of this paper and recognize that there
are some philosophical differences among these two endpoints discussed in the literature [5]. This
ANCOVA model is one of the most commonly used statistical methods for the analysis of change
from baseline data in clinical trials. Under the assumption of bivariate normality for baseline and
post-baseline measurements, estimates and statistical tests from the ANCOVA model conditional
on baseline values are unbiased and valid even when the baseline is a random variable [1].
When baseline measurements are correlated to post-baseline measurements, adjusting for baseline
using ANCOVA has been shown to remove conditional bias in treatment group comparisons
due to chance imbalances [2] and improve efficiency over unadjusted comparisons [1–3]. Many
discussions can be found in the literature on this topic and on the adjustment for baseline with
measurement error (see e.g. Chambless and Roeback [6], Yanez et al. [7], Chan et al. [8], and
Senn [9, 10]).

When there are repeated measurements post-randomization, a longitudinal data analysis (LDA)
model may be used for the treatment comparison. Conventionally, the change from baseline values
at each time point after baseline are calculated and the baseline is included in the LDA model as
a covariate. This model will hereafter be referred as the longitudinal ANCOVA model or simply
called ANCOVA model.

Alternatively, Liang and Zeger [11] proposed a constrained full likelihood approach in which
the baseline value as well as the post-randomization values are modeled as dependent variables;
the ‘constraint’ is that the baseline mean responses for the treatment groups are assumed equal,
which is reasonable due to randomization. Because of this constraint, the baseline mean in this
model is independent of treatment (i.e. baseline is not an ‘outcome’ of treatment in the analysis
model). This model will be referred as the constrained longitudinal data analysis (cLDA) model
in this paper. When there are no missing data in a pre–post design with one post-randomization
measurement, Liang and Zeger showed that both models produce identical point estimates for the
treatment difference.

In this paper, we compare the ANCOVA model with the cLDA model with respect to (i) the
point estimate and 95 per cent confidence interval for the mean change from baseline at a give
time point (e.g. last time point in the study) for each treatment group, and (ii) the p-value and
95 per cent confidence interval for the between-group difference at a given time point in terms
of the mean change from baseline. To reflect the real clinical trial situation in which every new
trial will enroll different patients and therefore will have different baseline values, we assume
throughout this paper that the baseline values are random. The statistical properties will be evaluated
under this assumption across trials for the ANCOVA and cLDA models. We acknowledge the
broad discussions on the role of baseline measurements, and whether the randomness of baseline
measurements should be taken into account in clinical trials, found in the literature (e.g. [6–9, 12]).
However, the philosophical perspective on the role of baseline measurements in clinical trials is
beyond the scope of this paper.

The paper is organized as follows. The two competing statistical models are briefly described in
Section 2. The characteristics with respect to the estimate and test of treatment group differences
and model adjusted group mean changes, as well as distributional assumptions, are discussed in
Section 3. Simulation results to illustrate the findings are provided in Section 4. The methods

Copyright q 2009 John Wiley & Sons, Ltd. Statist. Med. 2009; 28:2509–2530
DOI: 10.1002/sim



ANALYSES OF CHANGE FROM BASELINE IN CLINICAL TRIALS 2511

are applied to a real clinical trial data set in Section 5, followed by a discussion and concluding
remarks in Section 6.

2. METHODS FOR ANALYSIS OF LONGITUDINAL DATA IN TERMS
OF CHANGE FROM BASELINE

2.1. Longitudinal ANCOVA model

Suppose responses for a study endpoint are measured at baseline (t=0) and at T post-baseline
time points in a clinical trial. Let Yi jt be the response for subject i , with treatment assignment j ,
at time t . The marginal mean at time t conditional on baseline Yi j0 can be modeled as:

E(Yi jt |Yi j0)=�t Yi j0+� j t I (treatment= j)I (time= t), t=1, 2, . . . , T (1)

The slope, �t , can be different for each time t but is the same across treatment groups, and
� j t is the effect for treatment j at time t after adjusting for the baseline effect. Because the
baseline is a covariate, the model can also be written in terms of the change from baseline,
E(Yi jt −Yi j0|Yi j0)=(�t −1)Yi j0+� j t I (treatment= j)I (time= t). The standard analysis for this
model assumes that conditional on baseline, the post-baseline values or the change from baseline
values are multivariate normally distributed. The baseline is treated as fixed in this analysis model.
Both subjects who have missing baseline values and subjects who have only baseline values are
excluded from the model fit. When T =1, this model corresponds to the commonly used ANCOVA
model for a pre–post study design.

With repeated measures (i.e. T>1), we will call this model a longitudinal ANCOVA model.
An unstructured covariance matrix can be used to account for within subject correlation at times
t>0. A separate covariance matrix can be specified for each treatment group; however because
the baseline value is not a part of the response vector, the covariance between baseline and post-
baseline responses in the ANCOVA model are specified by the coefficients of {�t , t=1, . . . ,T } and
are the same across the treatment groups. For convenience, we focus on the last time point (t=T )

and assume that the study has two treatment arms, a test drug ( j= A) and a control ( j= B).
The comparison of interest is the treatment effect on the mean change from baseline at the last
time point:

�T =�AT −�BT

For the ANCOVA model, this parameter can also be interpreted as the mean treatment difference
at last time point.

Suppose �̂T , �̂AT , and �̂BT are the maximum likelihood estimates for the parameters at time T
from model (1). Then the treatment effect is estimated as

�̂T = �̂AT − �̂BT

The model adjusted group mean changes from baseline at the last time point are defined as the
estimated group mean changes at the overall mean baseline level

�̂AT = (�̂T −1)Ỹ••0+ �̂AT

�̂BT = (�̂T −1)Ỹ••0+ �̂BT
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for test drug and control, respectively, where Ỹ••0 is the overall baseline mean for subjects included
in the model fit from both treatment groups. These estimates are the best-linear unbiased estimates
of the marginal mean changes for each treatment group at Ỹ••0 from model (1). Note that the
treatment difference can also be estimated as the difference of the model adjusted group mean
changes, �̂T = �̂AT − �̂BT .

2.2. cLDA model

A cLDA model was proposed by Liang and Zeger [11]. Utilizing the same notation as above,
the cLDA model includes the baseline value as part of the response vector. The marginal mean
response can be modeled as:

E(Yi jt )=�0+� j t I (treatment= j)I (time= t and t>0), t=0, 1, 2, . . . , T (2)

where �0 is the mean response at t=0, which is constrained to be the same for both treatment
groups due to randomization, � j t is the effect for treatment j at time t after adjusting for the
baseline value and can be interpreted as the mean change from baseline for a given treatment
group. The cLDA model assumes that the baseline and post-baseline values are jointly multivariate
normally distributed. An unstructured covariance matrix can be used in this model to account for
within subject correlation at times t�0 (including baseline). This allows more flexibility than the
ANCOVA model because a separate covariance matrix can be specified for each treatment group,
therefore, the covariance between baseline and post-baseline measurements are not necessary the
same among the treatment groups.

Let �AT =�AT +�0 and �BT =�BT +�0 be the marginal group means at time T for treatment A
and B, respectively. Suppose �̂0, �̂AT , and �̂BT are maximum likelihood estimates for the parameters
at baseline and time T from model (2). Then the treatment effect on the mean change from baseline
at time T is estimated as:

�̂T = �̂AT − �̂BT =(�̂AT + �̂0)−(�̂BT + �̂0)= �̂AT − �̂BT

Here, the �̂AT and �̂BT are the model adjusted group mean change estimates for test drug and
control at time T , respectively. Under the constraint, the baseline term cancels out because the
estimated baseline mean is the same for both treatment groups.

3. COMPARISONS BETWEEN ANCOVA AND CONSTRAINED LDA MODELS

3.1. Treatment difference between groups

We first show that the treatment difference parameters are the same between the ANCOVA and
cLDAmodels defined above. Under the ANCOVAmodel, the treatment difference is the conditional
mean difference on responses between treatment groups. Let Y jT be the random variable of
outcome at time T for treatment j , and Y0 be the baseline variable. The treatment difference from
the ANCOVA model is

E(Yi AT |Yi A0= x)−E(Yi BT |Yi B0= x)=(�T x+�AT )−(�T x+�BT )=�AT −�BT (3)

which is the conditional mean difference of responses between treatment groups at time T and is
independent of any specific value, x , for the baseline.
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Let

�=

⎛
⎜⎜⎜⎝

�00 · · · �0T

...
. . .

...

�0T · · · �T T

⎞
⎟⎟⎟⎠

denote the unconditional covariance matrix for the repeated measurements including baseline.
Using the conditional expectation formula, we can associate the parameters in Model (2) with that
in Model (1)

�T = �0T
�00

, � jT =(�0+� jT )− �0T
�00

�0 for j = A, B

It follows that �T =�AT −�BT =�AT −�BT =�T ; that is, the conditional mean difference
between treatment groups in the ANCOVA model is the same as the unconditional mean difference
between treatment groups in the cLDA model.

The maximum likelihood estimates for the parameters are consistent from both models when
there are no missing data. In fact, the point estimates are shown to be the same analytically (see
Appendix A):

�̂T = �̂T =(ȳ·AT − ȳ·BT )− �̂T (ȳ·A0− ȳ·B0)

where �̂T = �̂0T /�̂00.
For the ANCOVA model, the variance estimate for �̂T is based on the conditional distribution

given baseline values. Specifically, let Y 0 denote the collection of baseline values, we have

vârANCOVA(�̂T |Y 0)=vâr(ȳ·AT − ȳ·BT |Y 0)+vâr(�̂T |Y 0)(ȳ·A0− ȳ·B0)2

where we used the fact that côv(ȳ·AT − ȳ·BT , �̂T |Y 0)=0. The first term becomes(
1

nA
+ 1

nB

)
�̂T T ·0

which does not depend on Y 0. Note

vâr(�̂T |Y 0)=
1

(nA+nB)S00
�̂T T ·0

where

S00= 1

nA+nB

B∑
j=A

nJ∑
i=1

(yi j0− ȳ· j0)2

Consequently,

vârANCOVA(�̂T |Y 0)=
{

1

nA
+ 1

nB
+ (ȳ·A0− ȳ·B0)2

(nA+nB)S00

}
�̂T T ·0

The last term inside the bracket measures the difference of the observed baseline mean between
the two treatment groups.
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For the cLDA model, the variance estimate for �̂T is based on model (2) in which baseline
values are part of the responses. As shown in Appendix A (cf. (A10)), the variance estimate is

vârcLDA(�̂T )=
(

1

nA
+ 1

nB

)
�̂T T ·0

Therefore, the estimated variance from the ANCOVA model is always greater than or equal to
that from the cLDA model for any given data set:

vâr(�̂T )�vâr(�̂T |Y 0) (4)

An analytic proof of this inequality for the general case with missing post-baseline data is given in
Appendix A (cf. (A1) and (A6)). This result is also confirmed in the simulation study in Section 4.

Therefore, when there are no missing data the point estimates of the treatment differences are
identical for both models. The variance estimates, however, are different because the variance
estimate from the ANCOVA model is a conditional variance. Because of (4), the cLDA model will
be at least as powerful as the ANCOVA model. The equality of (4) is true only if the observed
baseline means are the same for both treatment groups. In practice, the difference of the variance
estimates from the two models is fairly small because randomization will typically result in very
similar observed baseline means. Therefore, the power gain from the cLDA over the ANCOVA
model is generally small. This is also confirmed in the simulations in Section 4.

When there are missing data, it is known that the methods based on maximum likelihood are
consistent under the missing at random (MAR) assumption. Therefore, the parameter estimates and
statistical inference under cLDA, which is based on a full likelihood function, are asymptotically
unbiased when data are from multivariate normal distribution. However, the analysis based on
the ANCOVA model may be biased if there are subjects with either missing data at baseline or
missing data at all post-baseline measurements. When missing data occur at baseline, it is generally
unrelated to treatment or any observed outcome, and therefore likely to be missing completely at
random. As such, excluding these subjects from the analysis will not generally cause any bias.
However, the ANCOVA model can produce biased estimates when subjects with missing data at all
post-baseline time points are excluded from the analysis. This is because the missing data at post-
baseline may depend on observed baseline value. The baseline mean after excluding those subjects
may be different from the baseline mean of all subjects in the study. For the treatment difference,
the impact is small because the estimated difference may be asymptotically independent of baseline
values as shown in (3). In fact, when T =1, the estimated treatment difference is still the same from
ANCOVA and cLDA models as shown in Appendix A. However, the impact on the model adjusted
group mean estimates can be significant. We explore the details in the following subsections.

3.2. Model adjusted group mean estimates

Under the ANCOVA model, the model adjusted group mean estimate is obtained as

�̂ jT =(�̂T −1)Ỹ••0+ �̂ jT

where �̂T , �̂AT , and �̂BT are maximum likelihood estimates for the parameters at time T from
model (1). In general, the parameter estimates for �T ,�AT , and �BT are asymptotically unbiased
conditional on baseline values. For the model adjusted group mean change at time T , we have

E(�̂ jT )=E[E((�̂T −1)Ỹ••0+ �̂ jT |Y 0)]=(�T −1)E(Ỹ••0)+� jT

Copyright q 2009 John Wiley & Sons, Ltd. Statist. Med. 2009; 28:2509–2530
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When there are no missing data, we have Ỹ••0= Ȳ••0 and E(Ȳ••0)=E(Yi j0). Therefore,

E(�̂ jT )=(�T −1)E(Yi j0)+� jT =E(Yi jT −Yi j0)=� jT

That is, the model adjusted group mean change estimate is unbiased. However, this may not be
true when there are missing data. Specifically, when the missing data depend on the observed
baseline values under MAR, subjects included in the analysis model may have a different base-
line distribution from that of all the subjects randomized, therefore, E(Ỹ••0) �=E(Ȳ••0)=E(Yi j0).

Consequently, the estimate �̂ jT can be biased. This is confirmed in the simulations in Section 4.

When there are no missing data, the conditional variance of �̂ jT ,var(�̂ jT |Y 0), obtained from the

ANCOVA model also underestimates the overall variance of �̂ jT if Y 0 is a random vector rather
than a constant vector. In fact, when there are no missing data, the model adjusted group mean
change from the ANCOVA model is �̂ jT =(ȳ· jT − �̂T ȳ· j0)+(�̂T −1)ȳ··0. As shown in Appendix A

(cf. (A14)), the estimated variance for �̂ jT is

vârANCOVA(�̂ jT |Y 0)=
{

1

n j
+ (ȳ· j0− ȳ··0)2

(nA+nB)S00

}
�̂T T ·0

The unconditional variance estimate for �̂ jT can be obtained from the cLDA model because

�̂ jT = �̂ jT when there are no missing data (cf., (A12)). The model adjusted group mean change
estimate �̂ jT is unbiased under MAR missing mechanism. Its variance estimate (as shown in
Appendix A, cf. (A13)) is

vârcLDA(�̂ jT )= 1

n j
�̂T T ·0+ 1

nA+nB
(�̂T −1)2�̂00

Because the observed baseline means will be very similar between treatment groups due to
randomization,

vârANCOVA(�̂ jT |Y 0)
∼= 1

n j
�̂T T ·0

Consequently, we see that the ANCOVA model underestimates the variance of model adjusted
group mean changes. The relative underestimation can be defined as

vârcLDA(�̂ jT )−vârANCOVA(�̂ jT |Y 0)

vârcLDA(�̂ jT )

∼=
1

nA+nB
(�̂T −1)2�̂00

1

n j
�̂T T ·0+ 1

nA+nB
(�̂T −1)2�̂00

which is equal to (1−�0T )/(3+�0T ) when �T =�0 and nA=nB , where �0T is the correlation
coefficient between baseline and response at time T . The underestimation is more severe when
the correlation coefficient between baseline and post-baseline values becomes smaller.

Note that the above discussion is also true asymptotically when there are missing data. The
proof for the general case in the presence of missing post-baseline data is given in Appendix A
(cf. (A2) and (A8)).
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3.3. Distributional assumption

There are some differences with respect to the distributional assumption between the ANCOVA
and cLDA models. The ANCOVA model assumes that conditional on baseline the post-baseline
measurements are multivariate normally distributed, while the cLDA model assumes that both the
baseline and post-baseline measurements are jointly multivariate normally distributed since the
baseline value is treated as part of the response vector. Therefore, intuitively the cLDA model
has a stronger assumption with respect to the baseline measurement. However, the ANCOVA
model assumes that the baseline values are fixed for each trial, which may cause restriction for
generalizing the results to replicated trials.

When the baseline value is used as part of the inclusion/exclusion criteria for clinical trials,
the distribution of baseline values can be skewed. The normality assumption may be violated. We
investigate the impact of this non-normality problem for both models via simulations in Section 4.

Table I summarizes the differences between the ANCOVA model and cLDA model with respect
to the assumption and properties of estimates for treatment difference and model adjusted group
mean changes.

4. SIMULATIONS

Simulation studies were undertaken to assess the performance of the ANCOVA and the cLDA
models under a variety of scenarios. Treatment difference and individual treatment group mean
estimates were compared with respect to bias, confidence interval coverage, Type I error rate
and power. To reflect the real clinical trial situation in which every new trial will enroll different
patients with different baseline values, the baseline values in the simulations were generated at
random in each replication.

Without loss of generality, we simulated data from two treatment groups (test drug and control)
and four repeated measures per subject (including baseline). We first generate repeated measures
from multivariate normal with given means and a covariance matrix as follows:

�=�2

⎡
⎢⎢⎢⎢⎣

1 0.7 0.4 0.2

0.7 1 0.7 0.4

0.4 0.7 1 0.7

0.2 0.4 0.7 1

⎤
⎥⎥⎥⎥⎦

To study the impact of the normality assumption at baseline, the study data were generated
under three different scenarios for the baseline variable:

(i) from a normal distribution;
(ii) from a truncated normal distribution; and
(iii) from a truncated t-distribution with 3 degrees of freedom.

For all cases, we set the control group mean vector 	=(3.0 2.5 2.3 2.0). For scenario (ii), the
baseline value was left-truncated at 2, that is, the vector of repeated measures was taken if the
baseline value was greater than 2. This corresponds to a situation where only subjects with baseline
values >2 are enrolled in a study. For scenario (iii), the baseline value was calculated as that from
(ii) divided by an independently generated chi-square random variable with 3 degrees of freedom.
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Table I. Properties of estimates for treatment difference and model adjusted group mean changes between
the longitudinal ANCOVA and cLDA models.

ANCOVA cLDA

Assumption Conditional on baseline, Baseline and
post-baseline measures post-baseline measures
are multivariate are jointly multivariate
normal variables normal variables

Baseline Is treated as fixed and Is random
modeled as a covariate and modeled as a

dependent variable with same
means across treatment groups

Missing data Excludes subjects with Includes subjects
handling missing baseline with either

or missing all baseline or any of
post-baseline measures of the post-baseline measures

Treatment difference �T =E(YAT −YBT |Y0)
at time T =E(YAT −YBT ) �T =E(YAT −YBT )

Both parameters are the mean
difference of measurement
at time T between groups;
Point estimates from
both models are the
same when there are no missing
data or for T =1
with monotone missing data,
but can be different with
missing data for T>1;
In general, vâr(�̂T )�vâr(�̂T |Y 0)
This inequality is also true for estimated
variances obtained from
maximum likelihood approaches

Model adjusted �̂ jT =(�̂T −1)Ỹ••0+�̂ jT �̂ jT
group mean changes is an estimate for the

conditional mean change,
E(Y jT −Y j0|Y 0), at Ỹ••0; is an estimate for mean change,

�̂ jT is asymptotically unbiased E(Y jT −Y j0);
when there are no missing data; but �̂ jT is asymptotically unbiased;

can be biased �̂ jT = �̂ jT
after excluding subjects when there are
with missing data; no missing data;
Estimated variance for �̂ jT Estimated variance for �̂ jT
always under estimates the is asymptotically unbiased
unconditional variance

Copyright q 2009 John Wiley & Sons, Ltd. Statist. Med. 2009; 28:2509–2530
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To study the impact of variability, two values of variances, �2=1 and 4, were considered. With
a larger variance the resulting distribution from the left-truncation on baseline is more severely
deviated from a normal distribution. The mean vectors under the alternative were chosen as
	=(3.0 2.2 1.9 1.3) and 	=(3.0 2.0 1.5 0.7) for �2=1 and 4, respectively. For scenarios (ii) and
(iii), the truncation would change the mean vectors as well as the correlation between baseline and
post-baseline measures. The post-baseline means under the truncation would be different from the
means without truncation. In general, the impact from the truncation on post-baseline means would
be less severe than that on the baseline means because of a regression-to-the mean effect. To ensure
that the appropriate parameters were used in calculating bias and confidence interval coverage in
the simulations, the true parameter values for treatment difference and group means at last time
point were obtained numerically from simulated data from all replications for each scenario. Data
for a sample size of 50 subjects per treatment group were generated, so there was approximately
80–90 per cent power under each scenario when no data were missing. Therefore, with a replication
of 5000 simulations the true parameters were obtained from 250 000 observations and should have
very good precision. For all the analyses, an unstructured covariance matrix and the Satterthwaite
approximation for the degrees of freedom were used in both the cLDA and longitudinal ANCOVA
models.

Three missing data scenarios were considered (a) no missing data; (b) low to moderate amount
of missing data; and (c) moderate to high amount of missing data. The percentages of data missing
by time are shown in Table II under different hypotheses. The baseline measurements (time 0) were
missing completely at random. To reflect real clinical trials, the percentage of missing baseline
data was set to be low; about 2–4 per cent. For post-baseline data, a monotone MAR missing data
mechanism was considered. Subjects dropped out of the study when the previous measurement
(observed) was greater than a given cut off value. For each scenario of the simulation studies,
different cut off values were chosen at each time point and treatment group to have approximate
missing data percentages as given in Table II.

In the simulations, all subjects with any available data from baseline to post-baseline were used
in the cLDA model. For the ANCOVA model, subjects who had either missing baseline data or
missing all post-baseline data were excluded. Results under the null hypothesis are provided in
Table III for the treatment difference. Under the alternative hypothesis, the results for treatment
difference as well as for the individual treatment group mean estimates are provided in Tables IV
and V. The conclusions from the simulation results are as follows:

Table II. Summary of data missing percentage in simulation studies.

Baseline Time 1 Time 2 Time 3
(per cent) (per cent) (per cent) (per cent)

(1) No missing data 0 0 0 0
(2) Lower/moderate missing proportion
Placebo/Treatment (under H0) ∼2 ∼3 ∼8 ∼15
Placebo (under H1) ∼2 ∼3 ∼8 ∼15
Treatment (under H1) ∼2 ∼5 ∼15 ∼25
(3) Moderate/high missing proportion
Placebo/Treatment (under H0) ∼4 ∼6 ∼15 ∼25
Placebo (under H1) ∼4 ∼6 ∼15 ∼25
Treatment (under H1) ∼4 ∼9 ∼22 ∼35
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Table III. Bias, coverage and type I error for treatment difference from the cLDA and longitudinal
ANCOVA models under H0 (5000 replications).

Bias Coverage (per cent) Type I Error∗ (per cent)

Var Distribution cLDA ANCOVA LDA ANCOVA cLDA ANCOVA

No missing data
�2=1 Normal 0.000 0.000 94.8 95.1 2.4 2.4

Trunc N 0.000 0.000 94.9 95.1 2.8 2.6
Trunc T 0.000 0.000 94.9 95.1 2.7 2.7

�2=4 Normal −0.001 −0.001 94.8 95.1 2.4 2.4
Trunc N 0.001 0.001 94.5 94.6 2.7 2.7
Trunc T 0.000 0.000 94.7 94.8 2.6 2.6

With low/moderate missing data
�2=1 Normal −0.000 −0.000 94.8 95.0 2.5 2.5

Trunc N −0.000 0.000 95.0 94.9 2.9 2.7
Trunc T −0.000 −0.000 94.8 94.9 2.8 2.8

�2=4 Normal −0.000 −0.000 94.8 95.0 2.5 2.5
Trunc N 0.001 −0.000 94.6 94.8 2.6 2.4
Trunc T 0.002 0.002 94.4 94.7 2.6 2.5

With moderate/high missing data
�2=1 Normal −0.001 −0.002 94.7 94.8 2.6 2.5

Trunc N 0.001 0.001 94.8 94.8 2.8 2.7
Trunc T −0.001 −0.000 94.2 94.5 3.0 2.9

�2=4 Normal −0.002 −0.003 94.5 95.0 2.6 2.4
Trunc N 0.002 −0.000 94.3 95.0 2.7 2.4
Trunc T 0.005 0.003 94.3 94.5 2.8 2.7

∗The type I error was based on a one-sided �=2.5 per cent. With 5000 replications, a value of 3.1 per cent
would be within the 2 times the standard error of the simulation.

For between-treatment difference (Tables III and IV):

• Both the ANCOVA and the cLDA models provide unbiased estimate for the treatment differ-
ence in all scenarios.

• The 95 per cent confidence intervals for the treatment difference are adequately covered in
all cases.

• Under the null hypothesis, both the ANCOVA and the cLDA models control type-I error rate.
• In general, the estimates and statistical tests are robust against deviation from the normality

assumption of the baseline values.
• Under the alternative hypothesis, the cLDA model is consistently more powerful than the

ANCOVA model. In the simulated cases, the power gain is less than 1 per cent without
missing data, about 1–2 per cent for low/moderate amount of missing data, and about 2–4
per cent for moderate/high amount of missing data.

In the simulated cases shown, only about 2–4 per cent of subjects had missing data at baseline
and 3–6 per cent dropped out at time 1. Additional simulations showed that when we increased
the missing data at baseline or time 1, the power gain for the cLDA model increased as expected
(results not shown).
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Table IV. Bias, coverage and power for treatment difference from the cLDA and longitudinal ANCOVA
models under H1 (5000 replications).

Bias Coverage (per cent) Power (per cent)

Var Distribution cLDA ANCOVA cLDA ANCOVA cLDA ANCOVA

No missing data
�2=1 Normal −0.001 −0.001 94.8 95.1 88.4 88.0

Trunc N 0.000 0.000 94.9 95.1 89.7 89.2
Trunc T 0.001 0.001 95.0 95.3 89.3 89.1

�2=4 Normal −0.001 −0.001 94.8 95.1 83.9 83.4
Trunc N 0.001 0.001 94.5 94.6 84.3 83.8
Trunc T −0.000 −0.000 94.4 94.6 84.2 83.8

With low/moderate missing data
�2=1 Normal −0.001 −0.001 94.3 94.8 81.6 79.6

Trunc N 0.001 0.001 94.4 94.6 82.4 81.0
Trunc T 0.001 0.001 94.6 94.7 82.2 80.5

�2=4 Normal −0.003 −0.003 94.3 94.7 75.4 73.6
Trunc N 0.001 0.001 94.6 94.8 76.5 74.6
Trunc T 0.006 0.006 94.6 94.8 75.7 73.8

With moderate/high missing data
�2=1 Normal −0.001 −0.002 94.5 949 77.7 74.1

Trunc N −0.000 0.000 94.6 94.9 78.3 74.9
Trunc T 0.001 0.002 94.5 94.7 78.0 74.5

�2=4 Normal −0.003 −0.004 94.4 94.9 70.4 67.5
Trunc N 0.005 0.003 94.1 94.5 71.2 67.9
Trunc T 0.011 0.010 94.3 95.2 70.1 66.7

For model adjusted group mean estimates (Table V)

• In both missing data and no missing data cases, confidence intervals for the model adjusted
group mean changes are not covered at the appropriate 100(1−�) per cent level in the
ANCOVA model, while the confidence intervals from cLDA models provide appropriate
coverage.

• When there are no missing data, both models are robust against departures from normality in
terms of producing unbiased point estimates. The severity of variance under-estimation in the
ANCOVA model depends on the variability of the baseline values and the correlation between
baseline and post-baseline values. The latter has more impact on the relative underestimation
of variance (in the simulations for the truncated normal or truncated t-distributions, the
correlation coefficient between baseline and post-baseline values for �2=1 is smaller than
that for �2=4, and with the same �2 the correlation coefficient for the truncated t-distribution
is smaller than that of the truncated normal distribution, resulting in a relatively more severe
variance underestimation).

• In the presence of missing data, the cLDA model provides fairly robust results against mild
deviation from normality of the baseline value. The resulting estimates are unbiased and
confidence intervals cover at the appropriate 100(1−�) per cent level.

• With missing data, the estimates from the ANCOVA model are biased. This is because the
baseline mean from the observed data can be biased from the true baseline mean. As such,
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Table V. Bias and coverage for individual treatment group mean estimates from the cLDA and longitudinal
ANCOVA models under H1 (5000 replications).

Treatment means at last time point

Bias Coverage (per cent)

Var Distribution cLDA ANCOVA cLDA ANCOVA

No missing data
�2=1 Normal 0.000 0.000 94.9 92.0

Trunc N −0.000 −0.000 95.1 93.4
Trunc T 0.000 0.000 93.7 60.5

�2=4 Normal 0.001 0.001 95.0 92.3
Trunc N −0.001 −0.001 94.7 93.5
Trunc T 0.000 0.000 94.4 76.5

With low/moderate missing data
�2=1 Normal 0.001 0.072 94.5 90.5

Trunc N −0.001 0.066 94.9 92.3
Trunc T 0.007 0.473 93.1 28.4

�2=4 Normal 0.001 0.147 94.5 90.6
Trunc N −0.000 0.118 94.5 92.4
Trunc T 0.014 0.614 94.2 54.9

With moderate/high missing data
�2=1 Normal −0.000 0.125 94.8 88.1

Trunc N −0.000 0.110 94.4 89.6
Trunc T 0.011 0.685 93.5 9.3

�2=4 Normal 0.001 0.249 94.7 88.1
Trunc N −0.008 0.206 94.3 90.4
Trunc T 0.020 0.889 93.3 34.2

the confidence interval can be misleading. The coverage can be severely impacted as a result
of the biased parameter estimates. In the simulations, we saw more bias for the case with
truncated-t baseline values. This is because the missing data causes more severe baseline
differences from excluding those subjects with missing all post-baseline data.

We also conducted simulations under a moderate/high missing data scenario with ‘large’ sample
sizes to see whether the bias and under-coverage problem of the ANCOVA model can be improved.
Table VI provides results for N =250 subjects per treatment group and �2=1 under the alternative
hypothesis. Clearly, the estimates for the treatment difference are unbiased and the confidence
interval coverage is adequate for both models. For individual treatment means, the cLDA model
shows slight improvement on the bias and confidence interval coverage compared with the results
from N =50. However, the ANCOVAmodel still provides biased parameter estimates. The coverage
of the confidence interval becomes worse because of the smaller variability from a larger sample
size coupled with a biased parameter estimate. In addition, simulations were also done using
different correlation values between baseline and post-baseline measurements. The conclusions are
similar as above (results not shown). In general, the lower the correlation between baseline and
post-baseline values, the worse the under-coverage of the confidence interval for the ANCOVA
model. This is consistent with the analytic results given in Appendix.
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Table VI. Bias and coverage for individual treatment group mean estimates with n=250, �2=1, under
H1 and moderate/high missing data (2000 replications).

Bias Coverage (per cent)

Distribution cLDA ANCOVA cLDA ANCOVA

For treatment difference
Normal −0.000 0.000 95.8 95.8
Trunc N 0.000 0.001 94.3 94.5
Trunc T 0.001 0.002 94.9 95.3

For treatment mean
Normal −0.001 0.124 95.0 68.2
Trunc N −0.001 0.110 93.6 73.5
Trunc T 0.013 0.701 93.2 0.0

5. AN APPLICATION

To illustrate the difference between the ANCOVA and cLDA models, we apply these methods in
a clinical trial for concomitant use of two vaccines. Subjects in the study were randomized into
two groups: one received two vaccines concomitantly at months 2, 4, and 6 of age (concomitant
use group), another received vaccines in a staggered schedule (staggered use group), that is, one
vaccine was given about two to four weeks after another. One of the primary endpoints was the
antibody titers measured at about 42 days after the last dose of the test vaccine. Antibody titers
were also measured at baseline prior to randomization.

A subset of subjects from one country in the study was taken for this example. In this subset, a
total of 366 subjects were randomized, 184 in the concomitant use group, and 182 in the staggered
use group. Table VII summarizes the missing data information for these subjects. No subject had
both baseline and post-randomization data missing. In general, the drop-out rates were low. The
missing data at baseline are mostly due to assay error and are likely missing completely at random.
The missing data post-randomization are mostly due to early discontinuation (the causes include
adverse experience, lost to follow-up, and withdrawal of consent, etc.) and are likely to be either
missing completely at random or missing at random.

The statistical analyses were based on natural log transformed antibody titers measured at
baseline and post-baseline. In the ANCOVA model, only the ‘completers’ were included in the
analysis. In contrast, all subjects with data were included in the cLDA model. The estimated
geometric mean titer (GMT) and 95 per cent confidence interval for each group, and for the
geometric mean ratio between treatment groups are given in Table VIII.

In this example:

• The ANCOVA and cLDA models have similar results for the treatment comparisons in terms
of GMT ratio and confidence interval.

• For the individual group GMT estimates, however, the confidence interval from the ANCOVA
model is clearly shorter than that from the cLDA model. The two treatment group confidence
intervals from the ANCOVA model do not overlap. In contrast, the confidence intervals of
the GMT from the cLDA model do overlap. This result is consistent with the theoretical and
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Table VII. Number (per cent) of subjects with missing data in the analysis data set.

Treatment group Completers Only baseline missing Only post-randomization missing Total N

Concomitant use 172 (93.5 per cent) 9 (4.9 per cent) 3 (1.6 per cent) 184
Staggered use 166 (91.2 per cent) 15 (8.2 per cent) 1 (0.6 per cent) 182

Table VIII. Estimated geometric mean titer (GMT) and 95 per cent confidence
interval from ANCOVA and cLDA models.

Method Concomitant use (95 per cent CI) Staggered use (95 per cent CI) GMT ratio∗ (95 per cent CI)

ANCOVA 1019.5 (823.6, 1261.9) 1611.9 (1297.2, 2002.8) 0.63 (0.47, 0.86)
cLDA 1001.0 (731.7, 1369.5) 1559.6 (1140.0, 2133.6) 0.64 (0.48, 0.86)

∗GMT ratio of the concomitant use group over the staggered use group.

simulation results showing that the ANCOVA model produces an under-estimated variance
for the individual group mean estimate.

6. DISCUSSION

We discuss two different models to fit longitudinal continuous data for clinical trials where the
primary objective is to assess treatments with respect to mean change from baseline. One is the
commonly used longitudinal ANCOVA model in which the baseline measurement is included as a
covariate in the analysis model. Another is a constrained longitudinal data analysis (cLDA) model
in which both baseline and post-baseline measures are considered as dependent variables. In the
latter model, the baseline means are constrained to be the same across the treatment groups due to
randomization. Both analytic assessment and numerical simulations confirm that the cLDA model
is more appropriate for the analysis of this type of data in clinical trials.

One advantage of using cLDA model is that the method provides appropriate variance estimates
for the model adjusted group mean estimates, which is often presented in scientific publications
with the estimated treatment difference. The model adjusted group mean estimates give a ‘best’
prediction of the mean outcome for each treatment group. Although the individual group mean
estimates are not free from systematic selection bias because the patients enrolled in a clinical
trial are, in general, not a random sample from the target population, it provides an estimate of
the mean outcome for the population similar to the patients in the study under the trial condition.
Compared with the ANCOVA model, the cLDA model provides more appropriate confidence
interval estimates for those who choose to present those quantities in scientific research papers.

It is worth noting that the LDA model without the constraint of equal baseline means among
treatment groups can also be used. It has been shown (Liang and Zeger [11]) that the constrained
model can be more efficient in the context of randomized clinical trials where proper randomization
ensures baseline balance (therefore the assumption of equal baseline means is true by design).
A similar property is assumed in the commonly used ANCOVA model with one post-baseline
measurement [4]. Recently, Overall and Tonidandel [13] investigated the methods on comparing
the rate of change with repeated measures when dropouts depend on baseline values.
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In general, under similar modeling conditions, the cLDA model is more efficient than the
longitudinal ANCOVA model. The efficiency loss of the ANCOVA model is partially from treating
the baseline values as fixed. Without accounting for the variability in the baseline values, the Gauss–
Markov theorem does not apply (e.g. Popper [14], Senn et al. [15]) and the longitudinal ANCOVA
model underestimates the variance of the model adjusted group mean estimates by conditioning
on the baseline variables. The severity of the variance under-estimation depends on the amount of
variability in the baseline measurement and the amount of correlation between the baseline and
post-baseline measures. The latter has more of an impact on the relative underestimation. When
the missing data depend on the baseline value, the model adjusted group mean estimates from the
ANCOVA model may also be biased. Simulation results show that when baseline values deviate
from a normal distribution or have lower correlation with post-baseline values, the variability of
the model adjusted group mean estimates is more severely underestimated by the longitudinal
ANCOVA model. The cLDA model can overcome this drawback as it is based on a full likelihood
function that takes the variability of the baseline measures into consideration. Therefore, the cLDA
model provides appropriate variance and confidence interval estimates. The cLDA model also
provides more flexibility in handling missing data by including all observed data, which, in general,
results in more power when testing treatment differences compared with the longitudinal ANCOVA
model. In the cLDA model, it is also possible to model the correlation between baseline and post-
baseline measures differently for different treatment groups. This helps address the differential
baseline-dependent dropout issues as discussed in Overall and Tonidandel [13].

We have assumed that the baseline values are random throughout this paper. It should be
noted that if the baseline values are considered as fixed, then the longitudinal ANCOVA model is
appropriate. This ANCOVA model answers the question of what is the treatment effect for patients
with the baseline values fixed as in the current clinical trial.

In this paper, we have considered the parameter of interest to be the mean change from baseline
effect at a given time point such as the last visit time point T . In clinical trials, this parameter is
often estimated using a full analysis set that includes all subjects randomized and having at least
one measurement during the study. This parameter measures the treatment effect for a subject if
the subject takes the treatment up to time T . This is the scientific question typically of interest to
a sponsor. In reality, some subjects that entered the study may never reach the time point T due to
premature discontinuation or death. There are philosophical and public health debates on whether
this parameter is of interest in a public health setting. These questions are out of the scope for this
paper. Some alternative approaches have been proposed in the literature (e.g. Shih and Quan [16]).

APPENDIX A: PROPERTIES OF TREATMENT DIFFERENCE AND GROUP
MEANS FOR ANCOVA AND cLDA MODELS

Because missing data at baseline are usually missing completely at random, we will consider the
case where the baseline is always observable while some post-baseline values might be missing.
Let g index the observed data pattern for a subject, i.e. g is the set of post-baseline time points at
which the measurement was made on the subject. Let dim(g) denote the number of elements in g.
To define the incidence matrix, Ig , write g={t1, . . . , tdim(g)}, then Ig is a dim(g)×T matrix of
zeros and ones such that Ig[i, ti ]=1 for i=1, . . . ,dim(g). Let n jg denote the number of subjects
in treatment group j with observed data pattern g, Pjg the set of subjects in treatment group
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j with observed data pattern g, and G j the collection of observed data patterns for treatment group
j ( j= A, B).
For the cLDA model, write the mean parameters as 
=(�0,�A1, . . . ,�AT ,�B1, . . . ,�BT )′, then

the design matrix for a subject with observed data pattern g can be written as

XAg =
(
1 0 0

0 Ig 0

)
, XBg =

(
1 0 0

0 0 Ig

)

for treatment groups A and B, respectively, where zero entries have proper dimensions so that
X jg is a (dim(g)+1)×(2T +1) matrix. The observed response vector for a subject with observed
data pattern g is given by

yi jg =
(

yi j0

Ig yi j1

)

where yi j1 denotes the T ×1 vector of post-baseline values. We first assume that the covariance
matrix of yi jg is known. Partition the covariance matrix according to the baseline and post-baseline
time points,

�=
(

�00 �01

�10 �11

)

then the covariance matrix for a subject with observed data pattern g can be written as

Vg =
⎛
⎝ �00 �01 I

′
g

Ig�10 Ig�11 I
′
g

⎞
⎠

It follows that

V−1
g =

⎛
⎝�−1

00 +�−1
00 �01 I

′
g(Ig�11·0 I ′

g)
−1 Ig�10�

−1
00 −�−1

00 �01 I
′
g(Ig�11·0 I ′

g)
−1

−(Ig�11·0 I ′
g)

−1 Ig�10�
−1
00 (Ig�11·0 I ′

g)
−1

⎞
⎠

where �11·0=�11−�10�
−1
00 �01 is the conditional covariance matrix of post-baseline measurements

given the baseline. With some algebra, it can be shown that the covariance matrix for the mean
parameters estimate is given by

var(
̂)=
(

B∑
j=A

∑
g∈G j

n jg X
′
jgV

−1
g X jg

)−1

=

⎛
⎜⎜⎝

z C ′
A C ′

B

CA DA 0

CB 0 DB

⎞
⎟⎟⎠

−1
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where

z =
B∑

j=A

∑
g∈G j

n jg(�
−1
00 +�−1

00 �01Wg�10�
−1
00 )

C j = − ∑
g∈G j

n jgWg�10�
−1
00

Dj = ∑
g∈G j

n jgWg

and Wg = I ′
g(Ig�11·0 I ′

g)
−1 Ig . By the formula for inverting block matrices, we have

var(
̂)=

⎛
⎜⎜⎝

(nA+nB)−1�00 (nA+nB)−1�01 (nA+nB)−1�01

(nA+nB)−1�10 D−1
A +(nA+nB)−1�10�

−1
00 �01 (nA+nB)−1�10�

−1
00 �01

(nA+nB)−1�10 (nA+nB)−1�10�
−1
00 �01 D−1

B +(nA+nB)−1�10�
−1
00 �01

⎞
⎟⎟⎠

Let � j =(� j1, . . . ,� jT )′, then the variances for between-group differences and within-group mean
changes are given by

var(�̂A− �̂B) = D−1
A +D−1

B (A1)

var(�̂ j −1T �̂0) = D−1
j +(nA+nB)−1(1T −�10�

−1
00 )�00(1T −�10�

−1
00 )′ (A2)

For the point estimate, we have

B∑
j=A

∑
g∈G j

∑
i∈Pjg

X ′
jgV

−1
g yi jg =

⎛
⎜⎜⎜⎜⎜⎝

B∑
j=A

{�−1
00 n j ȳ· j0−�−1

00 �01(Fj1−Fj0�10�
−1
00 )}

FA1−FA0�10�
−1
00

FB1−FB0�10�
−1
00

⎞
⎟⎟⎟⎟⎟⎠

where

Fjt = ∑
g∈G j

∑
i∈Pjg

Wg yi j t

for j = A, B and t=0,1. It follows that

�̂0= ȳ··0, �̂ j =(Mj1−Mj0�10�
−1
00 )+�10�

−1
00 ȳ··0

where Mjt =D−1
j Fjt ,Mj0 and Mj1 can be viewed as matrix-weighted averages of baseline and

post-baseline values, respectively. Hence, the estimates for between-group differences and within-
group mean changes are given by

�̂A− �̂B = (MA1−MB1)−(MA0−MB0)�10�
−1
00 (A3)

�̂ j −1T �̂0 = (Mj1−Mj0�10�
−1
00 )−(1T −�10�

−1
00 )ȳ··0 (A4)
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Now consider the ANCOVAmodel with parameters�=(�1, . . .,�T ,�A1, . . .,�AT ,�B1, . . .,�BT )′.
The design matrix for a subject with observed data pattern g can be written as

Xi Ag =(yi A0 Ig Ig 0), Xi Bg =(yi B0 Ig 0 Ig)

for treatment groups A and B, respectively. The observed response vector and the corresponding
covariance matrix for a subject with observed data pattern g are given by

yi jg = Ig yi j1, Vg = Ig�11·0 I ′
g

Let � j =(� j1, . . .,� jT )′, then following similar steps as outlined for the cLDA model, we obtain

var(�̂)=

⎛
⎜⎜⎝

Q−1
0 −Q−1

0 M ′
A0 −Q−1

0 M ′
B0

−MA0Q
−1
0 D−1

A +MA0Q
−1
0 M ′

A0 MA0Q
−1
0 M ′

B0

−MB0Q
−1
0 MB0Q

−1
0 M ′

A0 D−1
B +MB0Q

−1
0 M ′

B0

⎞
⎟⎟⎠

and

�̂=Q−1
0 Q01, �̂ j =Mj1−Mj0Q

−1
0 Q01

where

Q0 =
B∑

j=A

∑
g∈G j

∑
i∈Pjg

(yi j0 IT −Mj0)
′Wg(yi j0 IT −Mj0)

Q01 =
B∑

j=A

∑
g∈G j

∑
i∈Pjg

(yi j0 IT −Mj0)
′Wg(yi j1−Mj1)

Note that (nA+nB)−1Q0 can be viewed as matrix-weighted variance for the baseline values, and
(nA+nB)−1Q01 can be viewed as matrix-weighted covariance between baseline and post-baseline
values. Consequently, for the between-group differences, we have

�̂A− �̂B = (MA1−MB1)−(MA0−MB0)Q
−1
0 Q01 (A5)

var(�̂A− �̂B) = D−1
A +D−1

B +(MA0−MB0)
′Q−1

0 (MA0−MB0) (A6)

For the within-group mean changes, we have

�̂ j +(�̂−1T )ỹ··0 = (Mj1−Mj0Q
−1
0 Q01)−(1T −Q−1

0 Q01)ỹ··0 (A7)

var{�̂ j +(�̂−1T )ỹ··0} = D−1
j +(ỹ··0 IT −Mj0)Q

−1
0 (ỹ··0 IT −Mj0)

′ (A8)

where ỹ··0 is the mean baseline value of all subjects included in the ANCOVA model, and the
variances are calculated conditional on the baseline values.

Comparing (A1) and (A6), we see that the variance for treatment difference from the cLDA
model is always less than (or equal to if MA0=MB0, which is unlikely due to the randomness of
yi j0 and potentially different observed data patterns between the two treatment groups) that from
the ANCOVA model provided that the baseline value is not missing. In the above derivations,
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we assumed that the covariance matrix is known. The results are also true when the covariance
matrix is estimated using maximum likelihood approach. The estimates of �11·0 from the two
models are the same because both models use the conditional likelihood of post-baseline values
given the baseline for the estimation of �11·0 (there may be some slight numeric differences in the
estimates of �11·0 if the residual maximum likelihood (REML) method is used for estimating the
covariance parameters, but the extra term in (A6) generally more than makes up for such numeric
differences).

Consider the special case when there are no missing data. Let

Suv =(nA+nB)−1
B∑

j=A

n j∑
i=1

(yi ju− ȳ· ju)(yi jv − ȳ· jv)′, u,v=0,1

then, for the between-group differences, we have

�̂A− �̂B = �̂A− �̂B =(ȳ·A1− ȳ·B1)− �̂(ȳ·A0− ȳ·B0) (A9)

vârcLDA(�̂A− �̂B) =
(

1

nA
+ 1

nB

)
�̂11·0 (A10)

vârANCOVA(�̂A− �̂B) =
{

1

nA
+ 1

nB
+ (ȳ·A0− ȳ·B0)2

(nA+nB)S00

}
�̂11·0 (A11)

and for the within-group mean changes, we have

�̂ j −1T �̂0 = �̂ j +(�̂−1T )ȳ··0=(ȳ· j1− �̂ȳ· j0)−(1T − �̂)ȳ··0 (A12)

vârcLDA(�̂ j −1T �̂0) = 1

n j
�̂11·0+ 1

nA+nB
(1T − �̂)�̂00(1T − �̂)′ (A13)

vârANCOVA{�̂ j +(�̂−1T )ȳ··0} =
{

1

n j
+ (ȳ· j0− ȳ··0)2

(nA+nB)S00

}
�̂11·0 (A14)

where

�̂ = S10/S00, �̂11·0= S11−S10S01/S00

ˆ�00 = (nA+nB)−1
B∑

j=A

n j∑
i=1

(yi j0− ȳ·00)2

.
Therefore, the point estimates for between-group differences from the two models are

identical, and the variances are asymptotically equivalent because (ȳ·A0− ȳ·B0)2/S00→0 as
nA,nB→∞. However, although the point estimates for within-group mean changes are iden-
tical for the two models, the ANCOVA model underestimates the true variability because
(ȳ· j0− ȳ··0)2/S00→0, (1T − �̂)�̂00(1T − �̂)′ →(1T −�10�

−1
00 )�00(1T −�10�

−1
00 )′ as nA,nB →∞.
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Now consider the special case when T =1. Let k j denote the number of subjects with post-
baseline value in treatment group j ( j= A, B), and

ỹ· j t = k−1
j

k j∑
i=1

yi j t , j = A, B, t=0,1

Suv = (kA+kB)−1
B∑

j=A

k j∑
i=1

(yi ju− ỹ· ju)(yi jv − ỹ· jv)′, u,v=0,1

then, for the between-group difference, we have

�̂A− �̂B = �̂A− �̂B =(ỹ·A1− ỹ·B1)− �̂(ỹ·A0− ỹ·B0) (A15)

vârcLDA(�̂A− �̂B) =
(

1

kA
+ 1

kB

)
�̂11·0 (A16)

vârANCOVA(�̂A− �̂B) =
{

1

kA
+ 1

kB
+ (ỹ·A0− ỹ·B0)2

(kA+kB)S00

}
�̂11·0 (A17)

and for the within-group mean changes, we have

�̂ j − �̂0 = (ỹ· j1− �̂ỹ· j0)−(1− �̂)ȳ··0 (A18)

vârcLDA(�̂ j − �̂0) = 1

k j
�̂11·0+ 1

nA+nB
(1− �̂)2�̂00 (A19)

�̂ j +(�̂−1)ỹ··0 = (ỹ· j1− �̂ỹ· j0)−(1− �̂)ỹ··0 (A20)

vârANCOVA{�̂ j +(�̂−1)ỹ··0} =
{

1

k j
+ (ỹ· j0− ỹ··0)2

(kA+kB)S00

}
�̂11·0 (A21)

where

�̂ = S10/S00, �̂11·0= S11−S10S01/S00

�̂00 = (nA+nB)−1
B∑

j=A

n j∑
i=1

(yi j0− ȳ·00)2

.
Therefore, the point estimates for between-group differences from the two models are identical,

and the variances are asymptotically equivalent if the probability of missing post-baseline value
does not depend on the treatment group so that ỹ·A0, ỹ·B0→ �̃0, where �̃0 denotes the asymptotic
mean among completers. However, if the probability of missing post-baseline value depends on
the baseline, we have �̃0 �=�0, hence the point estimates for within-group mean changes from the
ANCOVA are biased.

Assume n j/(nA+nB)→� j , k j/n j →� j as nA→∞ and nB →∞, then the asymptotic vari-
ance of the within-group mean from ANCOVA model is �11·0/(� j� j ), which is always smaller
than �11·0/(� j� j )+(1−�01/�00)2�00, the asymptotic variance of the within-group mean from the
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cLDA model. When �11=�00,�11·0=�11−�201/�00=�11(1−�2), therefore the under estimation
of the variance for ANCOVA model is (1−�01/�00)2�00=(1−�)2�00, which is proportional to
the baseline variance.
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