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SUMMARY

The method of generalized estimating equations (GEE) models the association between the repeated
observations on a subject with a patterned correlation matrix. Correct specification of the underlying
structure is a potentially beneficial goal, in terms of improving efficiency and enhancing scientific under-
standing. We consider two sets of criteria that have previously been suggested, respectively, for selecting
an appropriate working correlation structure, and for ruling out a particular structure(s), in the GEE
analysis of longitudinal studies with binary outcomes. The first selection criterion chooses the structure
for which the model-based and the sandwich-based estimator of the covariance matrix of the regression
parameter estimator are closest, while the second selection criterion chooses the structure that minimizes
the weighted error sum of squares. The rule out criterion deselects structures for which the estimated
correlation parameter violates standard constraints for binary data that depend on the marginal means. In
addition, we remove structures from consideration if their estimated parameter values yield an estimated
correlation structure that is not positive definite. We investigate the performance of the two sets of criteria
using both simulated and real data, in the context of a longitudinal trial that compares two treatments
for major depressive episode. Practical recommendations are also given on using these criteria to aid
in the efficient selection of a working correlation structure in GEE analysis of longitudinal binary data.
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1. INTRODUCTION

The method of generalized estimating equations (GEE, [1, 2]) is an extremely popular approach.
GEE extends generalized linear models to correlated data by assuming a generalized linear model
for the outcome variable and a structured correlation matrix to describe the pattern of association
amongst the repeated measurements on each subject, or cluster.

When conducting a GEE analysis, the correlations are often viewed as nuisance parame-
ters. However, it can be beneficial to carefully model the correlation parameters, in order to:
(1) avoid a potential substantive loss in efficiency in the estimation of the regression param-
eter that can result from applying the incorrect working structure, in particular, for larger values
of the correlation, small sample sizes [3], and time-varying covariates [4]; (2) avoid problems
with respect to infeasibility in estimation of the correlation parameters that can also result from
misidentification of the true structure [5, 6]; and (3) enhance scientific understanding, e.g. when
the correlations are of substantive interest and a particular working structure is biologically
plausible.

In this paper we compare several simple criteria that can be easily obtained in a GEE analysis
and used to guide the final selection of a working correlation structure. We consider correlated
binary data and assume that the true correlation structure is first-order autoregressive (AR1), where
the correlation between measurements j and k on subject i (yi j and yik , respectively) is given by
Corr(yi j , yik)=�| j−k|. The AR1 structure is often plausible for longitudinal trials with measure-
ments that are approximately equally spaced in time because it forces the correlation between
consecutive measurements on a subject to decrease with increasing separation in measurement
occasion.

In addition to the AR1 structure, we also planned to apply other structures to assess the sensi-
tivity of results to the choice of working structure. These included the exchangeable, for which
Corr(yi j , yik)=� for j �=k; the tri-diagonal structure, for which Corr(yi j , yik)=� for | j−k|=1
or 0 for | j−k|>1; and the identity, for which Corr(yi j , yik)=0 for j �=k. The exchangeable
model is useful for clustered observations, e.g. students in the same classroom or members of
the same household. It might also be plausible in longitudinal studies of short duration, when
little decay is expected in the correlation of measurements with increasing separation in time.
As noted by a reviewer, in contrast to the exchangeable structure, for which the correlation
remains uniformly high across the pairs of time points, only adjacent observations are correlated
for the tri-diagonal structure. The tri-diagonal structure could therefore be relevant in longitu-
dinal studies, to investigate properties at this limiting case of minimal correlation among the
observations. We considered the tri-diagonal, exchangeable, and AR1 structures because these
are the standard working structures that are available in most software packages that imple-
ment GEE, e.g. in PROC GENMOD in SAS. We also note that the unstructured correlation
matrix could be applied, but this is straightforward only when we have balanced data, i.e. an
equal number of observations per subject and subjects per cluster. In addition, an n×n unstruc-
tured correlation matrix involves n(n−1)/2 parameters and is therefore not parsimonious. For
example, for the longitudinal trial we consider in this paper, some subjects have eight measure-
ments and would therefore require estimation of 8(7)/2=28 parameters, for an unstructured
matrix.

We describe and compare several criteria for identification of a working correlation structure in
a GEE analysis of longitudinal binary data. We propose selection criteria that may be similar for
several candidate structures, in which case we also propose rule out procedures that may remove
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additional structures from consideration. The approaches we consider for selection of a working
correlation structure include criteria by Rotnitzky and Jewell [7] whose implementation was first
suggested by Wang and Carey in [8]. The Rotnitzky–Jewell (RJ) criteria were also implemented by
Shults et al. in [9] in the assessment of the fit of a banded Toeplitz matrix in a GEE analysis of a
study of interstitial cystitis in women. We also evaluate a simple selection criterion (SC) proposed
by Shults and Chaganty in [10], which was to choose the correlation structure that corresponds
to the minimum value of an objective function, the weighted error sum of squares. In addition,
we propose and evaluate a rule out criterion that is based on Prentice’s [11] observation that the
correlation parameter must satisfy additional constraints for correlated binary outcomes. The basic
idea behind this criterion is to rule out structures that correspond to a violation of bounds for the
correlation for binary data that are described in [11]. In addition, we propose a rule out criterion
based on Crowder’s observation [5] that there may be a problem with respect to the infeasibility
and existence of estimates of the correlation parameter when the working structure is misspecified.
This final criterion is to rule out structures that correspond to an estimated correlation matrix that
is not positive definite.

We evaluate the approaches for the selection of a working correlation structure in the context of
a randomized clinical trial that compared two medications for the treatment of major depressive
episode (MDE): the standard medication (Lithium) versus the newer treatment (Venlafaxine).
Preliminary analysis indicated that the values of MDE on a subject tended to be more similar if
they were collected more closely together in time. Because the measurements were approximately
equally spaced, we therefore identified the AR1 structure as a biologically plausible correlation
structure for this study.

We demonstrate that the criteria considered in this paper were unanimous in their selection of the
AR1 structure in the GEE analysis of the binary outcomes from the Venlafaxine trial. In addition,
we show (via simulations) that, in particular, the performance of the RJ criteria to correctly identify
the true correlation structure for larger values of the correlation, appeared to be superior to the
other criteria that we evaluated.

Our outline for this paper is as follows. In Section 2 we define notation, provide the model
for analysis of the Venlafaxine study, and briefly review the GEE estimation approach. Next, in
Section 3 we describe the approaches we consider for choosing a working correlation structure.
Evaluation based on simulations is then provided in Section 4: Section 4.1 describes our approach
for simulating data with an AR1 structure; Section 4.2 describes our method for comparison
of the selection criteria; Section 4.3 describes the simulation results; and Section 4.4 presents
some asymptotic results that explain some of the simulation findings. The different approaches for
identification of a working structure are then applied in the analysis of the Venlafaxine study in
Section 5. Finally, Section 6 presents a discussion of our findings and our recommendations with
regard to selection of a working correlation structure in a GEE analysis of correlated binary data
from a longitudinal trial.

2. THE VENLAFAXINE STUDY

In this section we define some notation, provide our model for analysis of the Venlafaxine study,
and briefly review GEE.
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2.1. Notation

We assume the usual setup for longitudinal analysis with GEE [1] in which measurements
yi j and associated covariates xi j =(xi j1, . . . , xi jp)′ are collected on subject i at time ti j ,
for j =1, . . . ,ni and i=1, . . . ,m. The expected value and variance of measurement yi j on
subject i can be expressed using a generalized linear model: E(yi j )=g−1(x ′

i j�)=ui j and

Var(yi j )=�h(ui j ), respectively, where g−1(◦) is known as the link function; h(◦) is the
variance function; and � is a known or unknown scale parameter. As in [1], we assume
that observations on different subjects are independent. Within subjects, the measurements
are correlated, with a pattern of association described by the working correlation structure
for observations on subject i , Corr(Yi )= Ri (�), that depends on correlation parameter �. The
covariance matrix of Yi is then given by Cov(Yi )=�Ai

(1/2)Ri (�)Ai
(1/2), where Ai =diag(h(ui1)

, . . . ,h(uini )).

2.2. Model for analysis of the Venlafaxine study

This study was a prospective, randomized, open-label comparison of venlafaxine versus lithium
monotherapy of BP II MDE. The study was conducted using the Principles of Good Clinical Practice
Guidelines, with oversight monitoring by the local Office of Human Research at the University of
Pennsylvania School of Medicine and by an independent data and safety monitoring board. The
main study hypothesis was that venlafaxine monotherapy would be superior to lithium monotherapy
with a similar hypomanic switch rate. In this paper we focus on a secondary comparison of change
in the probability of MDE over time between the two treatment groups. For more details of the
study, see [12].

The outcomes for analysis of the Venlafaxine study were binary MDE scores yi j that took
value 1 if subject i had MDE at measurement occasion j and took value 0 otherwise. To compare
treatments, we fit a logistic model for the expectation of MDE scores, with E(yi j )=g−1(�i j )=
Pi j , �i j = x

′
i j�, and

�i j =�0+�1 I (Venlafaxine)+�2time+�3 I (Venlafaxine)×time (1)

where g−1(�)=exp(�)/(1+exp(�)). In addition, the variance function h(�)=�(1−�) and
�=1. The covariate vector can therefore be expressed as x

′
i j =(xi j1, xi j2, xi j3, xi j4), where

xi j1=1; xi j2= I (Venlafaxine), which equals 1 for subjects treated with Venlafaxine and 0
for subjects treated with Lithium; xi j3= time, which takes value 1,2, . . . ,ni for subject i ; and
xi j4= I (Venlafaxine)×time, a treatment by time interaction term. There were 26 subjects per
treatment group, so that i=1,2, . . . ,52. The number of measurements per subject ni ranged
from 2 to 8, with a mean of 6.38. The goal of our analysis was to compare the change
over time in the probability of MDE between treatment groups; this was accomplished by
testing whether the regression parameter �3 for the interaction term differed significantly from
zero.

As described in Section 1, to model the pattern of intra-subject correlations, we identified the
AR1 as a biologically plausible correlation matrix. However, we also planned to implement other
structures, including the tri-diagonal, identity, and exchangeable, to assess the sensitivity of results
to the choice of working structure.
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2.3. Brief review of GEE

GEE is an iterative approach for estimation [1, 2] that alternates between (i) updating the estimate
of the regression parameter � by solving the GEE estimating equation for � and (ii) updating
the estimate of the correlation parameter �. The GEE estimating equation for � (equation (6)
in [1]) depends on the estimate of the working correlation structure for observations on subject
i, Corr(Yi )= Ri (�). Typically, moment estimates are used for estimation of �. We will use �̂ as
a generic term whose value will change according to the choice of working correlation structure.
To implement GEE in our simulations, we used Stata [13], which applies moment estimates [14]
that simplify as follows for ni =n. For the exchangeable structure,

�̂=
∑m

i=1
∑

k �= j zik zi j∑m
i=1(n−1)

∑n
j=1 z

2
i j

(2)

which is identical to the estimate provided in [6]. For the tri-diagonal structure,

�̂=
∑m

i=1 n
∑n−1

k=1 zik zik+1∑m
i=1(n−1)

∑n
j=1 z

2
i j

(3)

For the AR1 structure, Stata implements an algorithm by Newton [15].
The distribution of the GEE estimate of �, �̂ is asymptotically normal. As discussed in [4],

misspecification of the true correlation structure will not typically impact the consistency of �̂, but
may result in efficiency loss in estimation of �. For an excellent text on GEE, see [16].

3. CRITERIA FOR CHOOSING A WORKING CORRELATION STRUCTURE

Here we describe the approaches we compare for choosing between several correlation structures
in a GEE analysis of longitudinal binary data; these include selection criteria for identification of
a structure and supplementary rule out criteria that may be helpful in removing structures from
consideration.

3.1. Selection criteria

3.1.1. RJ criteria. The motivation of the RJ criteria is that if the working correlation structure is
close to the true structure, the model-based estimate �̂m of the covariance matrix of �̂ ((35) in [17],
that assumes correct specification) and the ‘sandwich’ estimate �̂s((32) in [17], that is typically
considered to be robust to misidentification) should be similar, so that Q= �̂

−1
m �̂s should be close

to an identity matrix. In this case the quantities RJ1= trace(Q)/p and RJ2= trace(Q2)/p, where
Q2=Q×Q is obtained by matrix multiplication and p is the dimension of Q, should be close to
one in value. In addition, DBAR=∑

j (e j −1)2=RJ2−2RJ1+1, where the e j are the eigenvalues
of Q, should be close to zero because if Q is close to an identity matrix, its eigenvalues should
be close in value to 1. Although we anticipated that the three criteria should yield similar results,
we evaluated RJ1, RJ2, and DBAR separately. For RJ1 we chose the structure that corresponded
to the minimum value of |RJ1−1|; the same rule was applied to RJ2. For DBAR we chose the
structure that corresponded to the minimum absolute value of DBAR.
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3.1.2. SC criterion. Shults and Chaganty [10] proposed the following criterion that chooses the
structure that minimizes an objective function: Choose the structure that corresponds to the
minimum value of the weighted error sum of squares

∑m
i=1(Yi−̂E(Yi))

′ ̂Cov(Yi)
−1(Yi−̂E(Yi))=∑m

i=1 Ẑi
′
R−1
i (�̂)Ẑi , whereZi is an ni× 1 vector with j th element equal to (yi j −Pi j )/

√
Pi j (1−Pi j )

for the logistic model (1) that we consider in this paper. The SC criterion is motivated by the
hypothesis that the correct working structure in longitudinal analyses should minimize the error
sum of squares weighted by the inverse of the working covariance structure.

3.2. Rule out criteria

3.2.1. Failure of final structure to be positive definite or of GEE to converge. In all longitu-
dinal analyses the estimated correlation parameter �̂ must satisfy certain constraints in order
for the estimated correlation matrix to be positive definite. For example, the structured corre-
lation matrices we consider in this paper will be positive definite only if � takes value in
the following intervals (see [18] for the tri-diagonal structure): (i) (−1,1) for AR1, for which
Corr(yi j , yik) =�| j−k|; (ii) (−1/(nm−1),1) for the exchangeable, for which Corr(yi j , yik)=� for
j �=k; and (iii) (−1/cm,1/cm), where cm =2sin(�[nm−1]/2[nm+1]) for the tri-diagonal structure,
for which Corr(yi j , yik)=� for | j−k|=1 and nm =maxi {ni } for ni = the number of observations
on subject i .

Crowder in [5] noted that when the working correlation structure is misspecified, the limiting
value of �̂ may fail to yield a positive definite correlation matrix. For example, as shown in [6],
when the true exchangeable structure is misspecified as tri-diagonal and ni =n∀i , then the moment
estimator for � is still consistent. However, as described above, � must take value in the interval
(−1/cm,1/cm) in order for the tri-diagonal structure to be positive definite; this interval contains
(−0.5,0.5), for all nm>2 and converges to (−0.5,0.5) as nm → ∞. As a result, if the true value
of �>0.5 and n>2, the limiting value of the GEE moment estimator of � will yield a non-positive
definite correlation matrix, when the true exchangeable structure is misspecified as tri-diagonal. It
is important to note that this result is not restricted to binary outcomes.

Shults et al. [19] consider a GEE analysis in application of the tri-diagonal structure in Stata
resulted in the warning that the estimated correlation matrix R(�̂) was not positive definite and
that GEE failed to converge. In practice, a natural reaction to failure to converge for GEE would
be to rule out the structure under consideration because reliable estimates are not available for this
structure. In addition, application of the selection criterion considered in this paper is not possible
if estimates are not available. We therefore always ruled out a particular working structure when
R(�̂) was not positive definite or when GEE failed to converge for a particular structure.
In addition, as noted by a reviewer, Dahmen and Ziegler [20] pointed out that GEE will fail to

converge if all binary outcomes within a group are identical. The probability of identical outcomes
is zero for continuous outcomes; however, for binary outcomes this probability is non-zero and
can be large, especially when the number of measurements per subject is small and the correlation
is large.

3.2.2. Violation of bounds for correlated binary data. In addition to the constraints required for
R(�̂) to be positive definite, there are additional restrictions on �̂ that must be satisfied when the
longitudinal outcomes are binary.

First, GEE provides estimates of the expected values E(Yi j )= P(Yi j =1)= Pi j , the Qi j =1−Pi j ,
and the correlation Corr(Yi j ,Yik)=Ci jk between measurements Yi j and Yik . Next, the Pi j , Qi j ,
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and Ci jk completely determine the bivariate distribution of Yi j and Yik because, as noted in [11],
the pair-wise probabilities P(Yi j = yi j ,Yik = yik)= P(yi j , yik) can be expressed as

P(yi j , yik)= P
yi j
i j Q

1−yi j
i j P yik

ik Q1−yik
ik

[
1+Ci jk

(yi j −Pi j )(yik−Pik)√
Pi j Pik Qi j Qik

]
(4)

Prentice [11] pointed out that the probabilities in (4) will be non-negative, i.e. P(Yi j = yi j ,Yik =
yik)�0, only if the correlations satisfy the following constraints (which we refer to as the Prentice
constraints) that depend on the marginal means:

Loweri ( j,k)�Corr(Yi j ,Yik)�Upperi ( j,k) (5)

where Loweri ( j,k)=max{−(wi jwik)
1/2,−(wi jwik)

−1/2}, Upperi ( j,k)=min{(wi j/wik)
1/2, (wi j/

wik)
−1/2}, and wi j = Pi j (1−Pi j )−1, for i=1,2, . . . ,m, j =1,2, . . . ,ni , and k=1,2, . . . ,ni .

The usefulness of the Prentice constraints to aid in ruling out particular working correlation
structures is based on the following observations: First, the boundary values LW and UW for �
are functions of the Pi j and therefore of �. Typically, the GEE estimates of � will be consistent,

i.e. �̂
p−→�, even when the working structure is misspecified. As a result, the boundary values

will be estimated consistently, even when the working structure is misspecified. However, �̂ may
fail to be consistent under misidentification, as described in [5]. As a result, the bounds (5) can
be violated asymptotically when the working structure is misspecified. For example, Section 4.2.2
of [21] demonstrates that asymptotic violation of bounds can be severe when the AR1 structure
is misspecified as exchangeable. That the bounds for � will only be violated asymptotically if the
working correlation structure is misspecified suggests that a violation of bounds might be used to
rule out a particular candidate working correlation structure. In particular, we suggest the following
simple algorithm. Algorithm to Rule out Working Structures Based on a Violation of Bounds for �̂:

1. For each candidate working correlation structure that yields a positive definite estimated corre-
lation matrix, conduct the GEE analysis and obtain the estimates �̂ and �̂ of the correlation
and regression parameters.

2. Obtain the boundary values L̂W and ÛW (Appendix A) for �̂.
3. Calculate the distance from �̂ to the closest boundary value, where the distance equals (i)

�̂−ÛW if �̂>ÛW , (ii)L̂W − �̂ if �̂<L̂W , or (iii) 0 if L̂W<�̂<ÛW .
4. Rule out the working structure that corresponds to the maximum distance that exceeds zero.

(More than one structure may be removed, for multiple structures with large distances.)

A reviewer also noted that [22] offered a different relevant interpretation of the potential for
violation of the Prentice constraints; we describe and apply their suggested approach in our analysis
of the Venlafaxine Study in Section 5.

4. SIMULATIONS

In this section we investigate the numerical performance of each correlation model criterion using
simulations. In Sections 4.1 and 4.2 we describe our approach for simulating binary data and
method for comparison of the criteria. Results are then discussed in Sections 4.3 and 4.4.
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4.1. Method for generating binary data

Our approach for simulation of correlated binary data with an AR1 structure requires two assump-
tions. First, we assumed the followingMarkovian dependence model for the probability of responses
Yi =(yi1, yi2, . . . , yin) on subject i that was discussed by Liu and Liang in [23] and by Jung and
Ahn in [24]:

P(Yi1= yi1, . . . ,Yin = yin)= P(Yi1= yi1)
n∏
j=2

P(Yi j = yi j |Yi j−1= yi j−1) (6)

Next, we assumed that the correlation between any two adjacent observations on a subject is
constant, so that Corr(Yi j ,Yi j+1)=�∀i and j . Using induction, it is relatively straightforward
to show that assumption of the Markovian dependence model (6) and of constant correlations,
does indeed yield data with an AR1 structure for the responses within each subject, so that
Corr(Yi j ,Yik)=�| j−k|. The proof is available in Appendix A of [21].

In addition, a reviewer suggested that we run additional simulations for an exchangeable corre-
lation structure; We simulated data for the exchangeable structure according to the approach
in [25].

4.2. Approach for simulation-based comparison of criteria for selection of a correlation structure

Here we describe our method for comparison of approaches for selection of a correlation structure
in a GEE analysis of correlated binary data.

We simulated data according to the approach described in Section 4.1, for the estimated model (1)
from the Venlafaxine trial, assuming � equals its estimated value for the AR1 structure in Section 5
and �∈ (L̂W ,ÛW )=(−0.0683,0.7752). Recall that �̂ must take value in the interval (L̂W ,ÛW )

in order to satisfy the constraints (5) for the correlations for binary outcomes. We assumed n=8
observations per subject and simulated data for m=20, 40, 80, and 160 subjects, with equally
sized Venlafaxine and Lithium treatment groups. We conducted simulations for several values of �
and n; the results were similar for all simulations. The values of � ranged from −0.0682 to 0.75,
in approximate 0.05 increments.

Our simulations were conducted in Stata 10.0 [13]; these programs utilized the xtgee procedure
in Stata for implementation of GEE, coupled with user-written programs for implementation of
the criteria for selection of a correlation structure. The programs for the simulations and a detailed
description of the simulations according to Figure 1 in [26], with some additional information
requested by a reviewer, are available on request.

To compare the methods for selection of a structure (RJ1, RJ2, DBAR, and SC) we plotted
the percentage of times (out of 1000 simulation runs) that the working correlation structure
under consideration was selected for each criterion versus the true value of �, for sample sizes
m=20, 40, 80, and 160. Each simulated data set was fitted under all three working correlation
patterns. The results under assumption of the AR1, exchangeable, and tri-diagonal working struc-
tures are displayed in Figures 1–3, respectively. The data were simulated according to an AR1
structure, therefore, Figure 1 displays results when the working structure is correctly assumed to
be AR1, while Figures 2 and 3 display results when the working structure is incorrectly assumed
to be exchangeable and tri-diagonal, respectively.

To assess the bounds rule out criterion described in Section 3.2.2, we plotted the percentage of
times (out of 1000 simulation runs) that this criterion ruled out each working structure versus �, for
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Figure 1. Proportion of 1000 simulation runs in which the AR1 working structure was correctly
selected, versus �. Candidate working structures include the AR1; exchangeable, and tri-diagonal.
The true structure is AR1. The logistic model for the simulated binary outcomes is (1), with
�=(0.6679,0.4678,−0.2273,−0.282). The RJ1 and RJ2 criteria, and to a slightly lesser extent, the
DBAR criterion, are superior for �>0. In contrast, the ability of the SC criterion to correctly select the

AR1 working structure is relatively weak for all values of �.

m=20, 40, 80, and 160; the results are displayed in Figure 4. In addition, as noted earlier, because
failure of the estimated correlation matrix to be positive definite usually results in non-convergence
for GEE, we always ruled out a structure if R(�̂) was not positive definite; this criterion was
therefore not evaluated separately.

4.3. Results of the simulations

A clear result of the simulations for the true AR1 structure was that the performance of the
RJ1 and RJ2 selection criteria (and to a slightly lesser extent, the DBAR criterion) appeared to
be superior for �>0. As shown in Figure 1, the RJ1 and RJ2 criteria both did a superior (and
virtually indistinguishable) job of correctly selecting the AR1 structure, even for small m and �.
For example, even for m=20 subjects, the RJ1 and RJ2 correctly selected the AR1 structure ≈100
per cent of the time, for �>0.30. For m=40, the RJ1 and RJ2 approaches correctly selected the
AR1 structure ≈100 per cent of the time, for �>0.20. The performance of the DBAR approach
was also superior, although to a lesser degree than the RJ1 and RJ2 criteria for smaller �.

The performance of the SC criterion was much weaker than that of the Rotnitzky–Jewell (RJ1,
RJ2, DBAR) criteria for selection. As shown in Figures 1 and 2, the SC criterion did a poor job
of distinguishing between the true AR1 and exchangeable structures, for all values of m and �.
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Figure 2. Proportion of 1000 simulation runs in which the exchangeable working structure was
incorrectly selected, versus �. Candidate working structures include the AR1; exchangeable, and
tri-diagonal. The true structure is AR1. The logistic model for the simulated binary outcomes
is (1), with �=(0.6679,0.4678,−0.2273,−0.282). The RJ1, RJ2 and DBAR criteria, and to
a slightly lesser extent, the DBAR criterion, perform well for �>0 because they are unlikely
to incorrectly select the exchangeable structure. The performance of the SC criterion is much

weaker and does not improve with increasing sample size.

However, as shown in Figure 3, all approaches did well with regard to avoiding incorrect selection
of the tri-diagonal structure, although the performance of the DBAR and SC criteria was slightly
worse than that of RJ1 and RJ2, for smaller � and all sample sizes.

With regard to the bounds rule out procedure, we see (Figure 4) that the bounds approach was
very likely to correctly rule out the exchangeable and tri-diagonal structures, for larger values of �
and increasing sample sizes. Overall, the bounds approach was very likely to correctly rule out the
tri-diagonal structure as � moved from 0; this is indicated by the U-shaped curve for the working
tri-diagonal structure in Figure 4. However, the bounds approach was more likely to incorrectly
rule out the AR1 structure (in favor of the exchangeable structure) for �<0 and increasing m.
In fact, the performance of all methods we considered was weak for negative �. However it is
important to note that the lower bound for � was close to zero for our simulation scenario; As a
result, the working structures were similar to an identity matrix, and to each other, for �<0.

As noted earlier, a reviewer also requested additional simulations for a true exchangeable
correlation structure. Owing to space limitations, the graphs are available on request. The simulation
results were similar to those for the true AR1 structure, with two important exceptions. First, as
for the true AR1 structure, the performance of RJ1, RJ2, and DBAR was superior to SC with
respect to correctly selecting the exchangeable structure and avoiding incorrect selection of the
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Figure 3. Proportion of 1000 simulation runs in which the tri-diagonal working structure was incor-
rectly selected, versus �. Candidate working structures include the AR1; exchangeable and tri-diagonal.
The true structure is AR1. The logistic model for the simulated binary outcomes is (1), with
�=(0.6679,0.4678,−0.2273,−0.282). All methods perform well for this structure because they are
unlikely to incorrectly select the tri-diagonal structure. However, the DBAR and SC criteria perform

slightly worse than the RJ1 and RJ2 criteria, for smaller � and all sample sizes.

tri-diagonal and AR1 structures; however, the performance of RJ1, RJ2, and DBAR was more
similar for the true exchangeable structure, with superior performance for DBAR for negative �.
Next, the bounds procedure did not perform well with respect to correctly ruling out the tri-diagonal
or AR1 structures in favor of the true exchangeable structure. We will explain the reason the bounds
approach failed to correctly rule out the tri-diagonal and AR1 structures in the next section.

4.4. Contrast of asymptotic and numerical results

In this section, we present asymptotic results to provide insight into the simulation results presented
in Section 4.3. We considered the model (1) from the Venlafaxine trial and assumed that � equals
its estimated value for the AR1 structure presented in Section 5. To compare simulation results
for increasing sample sizes, in Table I we display the following asymptotic quantities for each
working structure: (i) the limiting values of �̂; (ii) the limiting value of the estimated Prentice
constraints (L̂W ,ÛW ) that was obtained by calculating (LW ,UW ) for each working structure (see
Appendix A) at the assumed value of � for the model (1); (iii) the interval on which � yields a
positive definite correlation matrix (see Section 3.2.1); and (iv) the limiting value of �̂ in the interval
(LW ,UW )=(−0.0683,0.7752) for the AR1 structure, on which � takes value for the simulations.
The candidate working structures were exchangeable, tri-diagonal, and AR1; see Section 3.2.1 for
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Figure 4. Proportion of 1000 simulation runs in which the bounds approach ruled out each working
structure, versus �. Candidate working structures include the AR1; exchangeable, and tri-diagonal.
The true structure is AR1. The logistic model is (1), with �=(0.6679,0.4678,−0.2273,−0.282).
The bounds approach does a good job of correctly ruling out the tri-diagonal and exchangeable
structures for large �>0 and increasing m. For small �<0 the bounds approach correctly rules out
the tri-diagonal structure a high proportion of times; however, it also incorrectly rules out the AR1

structure in favor of the exchangeable structure, for �<0.

definitions of these structures. We also note that the identity structure is a special case (for �=0)
of each of the candidate structures.

As noted by a reviewer, comparing � across correlation structures could be problematic because
this parameter could be viewed as having a different interpretation in each structure. To allow
for comparison across the models we consider, we note that the off-diagonal elements of the tri-
diagonal, AR1, and exchangeable structures are constant, which is equivalent to assuming that the
correlation Corr(Yi j ,Yi j+1) between adjacent measurements on each subject is constant. In other
words, we are selecting from a group of structures that assume the correlation between the j th and
j+1st measurements on a subject is equal to the correlation between the kth and k+1st. We view
� as the parameter that represents this constant correlation between adjacent measurements on each
subject. Then, for the structures we consider, the correlation between measurements j and k on a
subject that are not consecutive is a function f (�, j,k) that depends on the consecutive correlation
� and the values of j and k, where | j−k|>1; the functions are as follows for each structure: (i) for
the AR1 structure, f (�, j,k)=�| j−k|; (ii) for the tri-diagonal structure, f (�, j,k)=0×�=0; for the
exchangeable structure, f (�, j,k)=1×�=�. Selecting the incorrect structure among the structures
that we consider is then equivalent to selecting the incorrect function f (�, j,k), which can have
an adverse impact on the estimation of �, as we will see in the results that follow.
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Table I. Limiting values of �̂ and of the Prentice constraints (L̂w,Ûw) for model (1) when
�=(0.6679,0.4678,−0.2273,0.282); the true correlation structure is AR1; and the working

structures are AR1, tri-diagonal (TRI), or exchangeable (EXC).

Interval on which Limiting value of
Working Limiting value Limiting value � yields a �̂ for �∈
structure of �̂ of (L̂w,Ûw)∗ PD matrix (−0.0683,0.7752)

AR1 � (−0.0683,0.7752) (−1,1) (−0.0683,0.7752)
TRI � (−0.0683,0.7752) (−0.531,0.531) (−0.0683,0.7752)

EXC† 2
∑n−1

j=1

∑n
k= j+1 �k− j

n (n−1) (−0.0683,0.1682)‡ (−0.143,1) (−0.0161,0.5089)

In addition, the interval on which � yields a positive definite (PD) correlation matrix is provided for
each working structure.
∗The limiting value of (L̂w ,Ûw) is (Lw,Uw), the interval on which � must take value in order
to satisfy the bounds for the correlations (5) for binary outcomes.

†The limiting value of �̂ when the AR1 structure is misspecified as exchangeable is provided in [6].
‡The limiting value of �̂ exceeds the limiting value of ÛW for �>0.4298.

The values shown in Table I are helpful in explaining some findings of the simulations. For
example, if the limiting value of �̂ does not take value in the limiting value of (L̂W ,ÛW ) for a
particular working structure and interval for �, the bounds approach will be more likely to rule
out that structure over the given interval, as the sample size increases. For example, on the basis
of Table I, the bounds approach (Figure 4) should be more likely to rule out the exchangeable
structure for increasing m and �>0.4298 because the limiting value of �̂ exceeds the limiting
value of ÛW for �>0.4298. However, it is also interesting to note that for �<0 the limiting value
of �̂ exceeds �; e.g. for �=−0.0683 the limiting value of �̂ is −0.0161 for the exchangeable
structure. This fact, coupled with the fact that [21] observed that a small violation of bounds is
likely when the working structure is correctly specified as AR1, for smaller m and � very close to
the boundary value, explains why we are less likely to observe a violation of bounds (Figure 4)
for the exchangeable structure (and hence less likely to rule out the exchangeable structure on the
basis of the bounds approach) for � close to the lower boundary value LW =−0.0683.

In addition, if the limiting value of �̂ does not yield a positive definite correlation matrix for
a particular structure and interval of �, all approaches will be less likely to select that structure
over the given interval, as the sample size increases; this follows from the fact that we always
ruled out a working correlation structure that resulted in a non-positive definite matrix, because
this typically results in non-convergence for GEE. Table I therefore explains why the tri-diagonal
structure was ruled out for increasing m and �>0.531, because the limiting value of �̂ yields a
non-positive-definite correlation matrix for �> 0.531.

As noted earlier, the bounds approach was unlikely to correctly rule out the tri-diagonal or the
AR1 correlation structures, in additional simulations that were requested by a reviewer for a true
exchangeable structure; this was due to the fact that for model (1) and the assumed value of �,
the Prentice constraints for � (i.e. the limiting value of the estimated Prentice constraints) were
(−0.03,0.1676) for the exchangeable structure, versus (−0.0683,0.7752) for the AR1 structure.
In addition, as shown in [6], when the exchangeable structure is misspecified as tri-diagonal or
AR1, �̂ will still be consistent. Therefore, there will not be an asymptotic violation of the Prentice
constraints for �, when the exchangeable structure is misspecified as AR1 or tri-diagonal. This
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highlights an important limitation of the bounds approach, which is that for increasing sample
sizes, it will tend to correctly rule out working structures only when misspecification results in an
asymptotic violation of the Prentice constraints for �.

5. ANALYSIS OF THE VENLAFAXINE STUDY

Table II displays the results of the GEE analysis for model (1) that was conducted using Stata for
implementation of GEE and user-written programs in Stata to obtain the RJ and SC criteria and the
boundary values for �̂. No results are displayed for the tri-diagonal structure because the estimated
correlation matrix was not positive definite, which resulted in a failure for GEE to converge for
this structure.

First, we note that the RJ1, RJ2, DBAR, and SC criteria all selected the AR1 as the appro-
priate patterned correlation matrix because the SC criterion was smallest and (RJ1,RJ2,DBAR)

were closest to (1,1,0) for this structure. Next, we note that the bounds approach ruled out the
exchangeable correlation structure because �̂=0.4078 and (L̂W ,ÛW )=(−0.0484,0.1681), so that
�̂ �∈ (L̂W ,ÛW ) for this structure.

Table II. Analysis of the Venlafaxine Study for three working structures: Exchangeable
(EXC); AR1; and Independent (IND).

EXC AR1 IND

�̂ 0.4078 0.5434 0
(L̂W ,ÛW ) (−0.0484,0.1681) (−0.0683,0.7752) NA

RJ1 1.7877 1.2031 2.5723
RJ2 4.3246 1.6830 8.2379
DBAR 1.7493 0.2768 4.0933

SC 397.6683 338.9252 349.8191

�̂0 0.6880 0.6679 0.6589
Std.Err.(�̂0) 0.4226 0.4214 0.4489
p-value 0.103 0.113 0.142

�̂1 0.1038 0.4678 0.3233
Std.Err.(�̂1) 0.6337 0.5963 0.6042
p-value 0.870 0.433 0.593

�̂2 −0.2682 −0.2273 −0.2381
Std.Err.(�̂2) 0.0928 0.0899 0.1025
p-value 0.004 0.011 0.020

�̂3 −0.2412 −0.2820 −0.2469
Std.Err.(�̂3) 0.1867 0.1667 0.1679
p-value 0.196 0.091 0.141
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The analysis results were similar for all the three structures. However, there was one potentially
interesting difference. The interaction parameter �3 was of primary interest in model (1) because
if it differed significantly from zero and had a negative estimated value, this would indicate that
the change in the probability of MDE over time is significantly lower for subjects treated with
Venlafaxine versus Lithium. The parameter �3 did not differ significantly from 0 at the 0.05
significance level for any structure; however, it did differ significantly from 0 at the 0.10 level for
the AR1 structure. In addition, the estimated value of �3 was negative and greatest (in absolute
value) for the AR1 structure. Although the difference was not striking, application of the AR1
structure relative to application of the other structures was more suggestive of a beneficial treatment
effect with Venlafaxine. As suggested by a reviewer, we plotted the trends for the groups to see how
they differ in their predictions. These graphs, available on request, suggest that the probability of
occurrence of MDE decreased more rapidly over time for the Venlafaxine versus Lithium treatment
groups. In addition, the probability of MDE was slightly lower at all measurement occasions post
baseline for the exchangeable structures, than for the AR1 and identity structures.

As mentioned earlier, a reviewer also noted that [22] offer a different relevant interpretation
of the potential for violation of the Prentice bounds for �. These authors noted that the Prentice
bounds can be extremely restrictive under an assumption of an exchangeable structure, and can
in some cases reduce to a single point (zero). As a result, they proposed guidelines for selection
of the best working structure R(�), which they viewed as a weight matrix in the GEE estimating
equation for �. In Section 7 of [22] they suggest application of an AR1 matrix for longitudinal
data, with �̂≈0 for weakly dependent binary data; �̂∈(0.2−0.3) for moderately dependent binary
data; or �̂∈(0.4−0.7) for strongly dependent binary data. Weak, moderate, or strong dependence
should be decided on the basis of descriptive analysis; for example, ‘the strongest dependence
is indicated if frequencies concentrate near the vectors of all 0 s and all 1s’. Alternatively, they
suggested that we could ‘apply IEEs (independence estimating equations) first, and then check
the (Prentice) bounds . . . for each pair (of observations) . . . and decide on an appropriate value
for � in the midrange of the bounds’. We note that application of IEEs involves solving the GEE
estimating equation for � when R(�) is an identity matrix, which is equivalent to conducting a
logistic regression for our analysis.

To apply the suggested approach of [22] in our analysis, we first note that since our study
is longitudinal, their rules require application of an AR1 structure, which we should term as an
AR1 weight matrix. Next, descriptive analysis suggested that the correlation could be viewed as
strong, although this assessment was somewhat difficult due to the relatively small sample size for
this study. Alternatively, if we fit IEEs, the Prentice constraints on � are (−0.0702,0.1831), with
mid-point 0.0564. The suggested estimate �̂ of � according to [22] would therefore be 0.0564, or
�∈(0.4,0.7), for an AR1 structure.

We note that our estimated value of �̂=0.5434 for the AR1 structure is within the interval
(0.4,0.7), so that the final estimates based on a GEE analysis are compatible with the suggested
approach of [22]. However, our approach might be easier to implement because it yields a unique
estimate of �̂ for the final working structure. In addition, it allows for consideration of more
than one potential structure for longitudinal data. Although the AR1 structure is plausible in
many biological studies, application of an exchangeable (or other type) of structure could some-
times be reasonable, especially in a study of very short duration. In addition, the rules in [22]
permit a maximum value for �̂ of 0.70, which is a limitation if the true value of � exceeds 0.70.
A comparison of our approach with application of the rules in [22] for a simulated data set for
�=0.75 is available on request.
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6. DISCUSSION

The methods for identification of the most appropriate pattern for the correlations that we considered
in this paper all confirmed our choice of the AR1 matrix as the final working correlation structure
in our analysis of the Venlafaxine study. In particular, the Prentice constraints (5) were violated for
the exchangeable structure in this analysis. As noted by a reviewer, the major software packages
that implement GEE, e.g. PROC GENMOD in SAS and xtgee in Stata, do not check and provide a
warning for a violation of these constraints. It is therefore important to check that they are satisfied.
As noted by Rochon in [27], ‘the practitioner must be aware of these restrictions, particularly at the
design stage’. For example, when doing power calculations for clinical trials with binary outcomes,
it is important to do the computations for values of � that satisfy the Prentice constraints.

During the analysis phase of a study, we suggest consideration of the selection and rule out
criteria as well as biological plausibility of a candidate working correlation structure. As we did in
Section 5, we suggest fitting all methods for selection of a working structure that we considered
in this paper. As noted by a reviewer, the standard errors of all the � coefficients were smaller
under the AR1 model that was selected as the correct correlation structure. This demonstrates that
the analysis results are sensitive to the choice of working correlation structure. Calculation of the
criteria is straightforward and programs in Stata are available on request from the authors. Each set
of criteria (rule out or selection) has its own strength in providing useful information in favor of
or against a particular correlation structure, as demonstrated using both simulated and real data in
Sections 4 and 5. If the criteria are not unanimous in identifying a biologically plausible structure
as the correct structure (as they were in our analysis of the Venlafaxine study in Section 5), more
careful analysis will be required. For example, more weight might be given to the RJ1, RJ2, and
DBAR criteria, due to their superior performance in our simulation study for �>0.

A reviewer also noted that it is perhaps not surprising that the SC model performed poorly. The
residual is a function of �̂, and we know that �̂ is robust to the choice of the working correlation
pattern, in the sense that �̂ will typically be estimated consistently, even when the working correla-
tion structure is misspecified. Thus, any discriminating power for Cov(�̂) was, in a sense, ‘washed
out’ by the lack of discriminating power in �̂ and therefore the residual.

Owing to considerations with regard to paper length, in this paper we considered data with an
AR1 structure that is often applied in longitudinal trials with measurements that are equally spaced
in time. As described earlier, we made additional comparisons for an exchangeable structure that
are available on request. Additional comparisons for other true underlying structures will be the
focus of future work. For example, as noted by a reviewer, the mixture of exchangeable and
AR1 structures is quite often used in econometrics. In addition, comparisons are planned with the
approaches of Pan [28] and Pan and Connet [29].

APPENDIX A: BOUNDS ON � FOR THE AR1, TRI-DIAGONAL, AND EXCHANGEABLE
STRUCTURES FOR LONGITUDINAL BINARY OUTCOMES

As noted in Section 3.2.1, the correlation parameter �must satisfy certain constraints, in order for the
AR1, tri-diagonal, and exchangeable structures to be positive definite. Then, as described in Section
3.2.2, there are additional constraints LW���UW that depend on the choice of working correlation
structure, that must be satisfied for correlated binary data. Here we give the values of LW and ofUW
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for the particular working structures that we consider in this manuscript: (i) for the exchangeable
structure, LW =maxi, j,k{Loweri ( j,k)} and UW =mini, j,k{Upperi ( j,k)}. (ii) For the AR1 and tri-
diagonal structures, LW =maxi, j,k:| j−k|=1{Loweri ( j,k)} and UW =mini, j,k:| j−k|=1{Upperi ( j,k)}.
Note that the Prentice constraints are identical for the AR1 and tri-diagonal structures because
Theorem 1 of [30] establishes that we only need to check that the constraints are satisfied for
adjacent marginal means for the AR1 structure. However, as described in Section 3.2.1, asymp-
totically in n, � must take value in (− 1

2 ,
1
2 ) in order for the tri-diagonal structure to be positive

definite, versus (−1,1) for the AR1 structure. As a result, when we consider the intersection of
the Prentice constraints in (5) with the constraints required to be positive definite, the bounds on
� will typically be tighter for the tri-diagonal versus AR1 structure.

See Section 2.2 of [21] for further details and simplification for the logistic model and
the equicorrelated structure. For the AR1 (and tri-diagonal) structures, [30] proves that the
Prentice constraints in (5) for the AR1 (and tri-diagonal structures) for the logistic model
are given by (LAR1,UAR1), where LAR1=maxi, j {−exp(−|(xi j +xi j+1)

′
�|)/2}; and UAR1=

mini, j {exp(−|(xi j −xi j+1)
′
�)|/2}.
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