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CHAPTER 1

Introduction

1.1 Introduction

Longitudinal data are very common in practice, either in observational stud-
ies or in experimental studies. In a longitudinal study, individuals in the study
are followed over a period of time and, for each individual, data are collected
at multiple time points. For example, each individual’s blood pressure may be
measured repeatedly over time, or each student takes multiple quizzes through-
out a semester. See Section 1.2 for a more detailed discussion of longitudinal
data and Section 1.3 for some real-data examples. Thus, the defining feature
of a longitudinal study is that multiple or repeated measurements of the same
variables (e.g., blood pressure, quiz score) are made for each individual in the
study over a period of time.

In economics and sociology, longitudinal studies are often called panel stud-
ies. A key characteristic of longitudinal data or panel data is that the multiple
measurements of a variable on the same individuals are correlated, although
data from different individuals are usually assumed to be independent. A ma-
jor advantage of a longitudinal study is that it allows us to study changes of
variables over time.

Longitudinal studies are closely related to repeated measures studies, in which
repeated or multiple measurements of one or more variables are made on each
individual in the study but these repeated measurements are not necessarily
made over time. For example, air pollution may be measured at different loca-
tions of a city, so multiple measurements of air pollution are made over space
at different cities.

More generally, longitudinal data or panel data or repeated measurement data
are all examples of clustered data in which data fall into different clusters. For
clustered data, data within the same cluster may be correlated, but data between
different clusters are often assumed to be independent. For example, in a multi-
center study, each center may be viewed as a cluster and data collected within

3
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the same center may be correlated, but data from different centers are usually
assumed to be independent. In a longitudinal study, each individual may be
viewed as a cluster. Longitudinal data, repeated measurement data, and clus-
tered data are all in the class of correlated data. In the analysis of correlated
data, the correlation should be incorporated in the analysis in order to avoid
potential bias and loss of efficiency.

Longitudinal data are also related to time series in which a single long series
of measurements are observed over time. In fact, when there is only one indi-
vidual in a longitudinal study (i.e., when sample size is 1), longitudinal data
reduce to a single time series. Compared with time series, a main advantage
of longitudinal studies is that information can be borrowed across different in-
dividuals in statistical inference. Techniques for analyzing longitudinal data
combine elements from multivariate methods and time series methods. Com-
pared with classical multivariate analysis, methods for longitudinal data allow
study of change over time and allow unbalanced data.

If the time dimension in a longitudinal setting is replaced by one or more spatial
dimensions, we have spatial data. For example, air pollution may be measured
over different regions of a city, and each region may be viewed as a cluster.
Many of the techniques used to analyze longitudinal data may also be used for
analyzing spatial data with minor modification.

Longitudinal studies differ from cross-sectional studies. In a cross-sectional
study, only one measurement is made for a variable of interest for each indi-
vidual in the study. At a fixed time point, data in a longitudinal study may be
viewed as cross-sectional data. Statistical methods for the analysis of cross-
sectional data are well developed, such as classical linear regression models
and generalized linear models. An important assumption for cross-sectional
data is that observations are independent of each other. Therefore, statistical
methods for analyzing cross-sectional data cannot directly be used for analyz-
ing longitudinal data or correlated data.

Statistical methods for the analysis of longitudinal data are similar to those for
the analysis of clustered data or repeated measurement data. A common char-
acteristic of these data is that observations within the same cluster may be cor-
related but observations between clusters are usually independent, which moti-
vates most of the statistical methods for analyzing these correlated data. How-
ever, there are often complications in longitudinal data. For example, missing
data or dropouts are very common in longitudinal studies, since one can hardly
expect to collect all data at each time point.

Specifically, the following problems or complications arise frequently in prac-
tice:

• missing data or dropouts,
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• measurement errors,
• censoring,
• outliers.

Extensive research has demonstrated that ignoring any one or more of the
above problems in statistical analyses may lead to severely biased or mislead-
ing results. In other words, it is very important to address the above problems
in data analyses in order to obtain reliable results. Although there are many
books available for the analysis of longitudinal or clustered data, this book
offers additional contributions to provide a relatively comprehensive descrip-
tions of commonly used statistical methods to address these common problems
in practice.

In this book we mainly focus on longitudinal data, but most methods can also
be applied to analyses of other correlated data such as repeated measures data
and clustered data. In Section 1.2, we discuss longitudinal data and clustered
data in more details. In Section 1.3, we present several real-data examples
that are used to motivated the models and methods throughout the book. Sec-
tion 1.4 describes some commonly used regression models for longitudinal
data or clustered data, including mixed effects models. A detailed description
of mixed effects models is given in Section 1.5. In Section 1.6, we discuss var-
ious incomplete data problems which arise frequently in practice. Section 1.7
discusses some common statistical software. The notation used throughout the
book is illustrated in Section 1.8. Section 1.8 also gives an outline of the book.

1.2 Longitudinal Data and Clustered Data

We first consider a simple example to illustrate characteristics of longitudinal
data. Suppose that a researcher wishes to evaluate a treatment for reducing
high blood pressure. The researcher would measure blood pressures of each
subject in the study before and after the treatment. The researcher may also
be interested in how blood pressures of the subjects change over time after the
treatment, so he/she would measure blood pressures of each subject repeatedly
after the treatment over a period of time, say once a month for 5 months. Thus,
there are 6 repeated measurements of blood pressure on each subject, including
the measurement before the treatment. For each subject, these 6 multiple mea-
surements are likely to be correlated since they are taken on the same subject.
For example, a subject with a very high initial blood pressure is likely to still
have a high blood pressures in the follow-up measurements, compared with
other subjects in the study.

In such a longitudinal study, the observed data are usually incomplete. For ex-
ample, some subjects in the study may drop out early for various reasons such
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as treatment side effects. It is also known that blood pressures are usually mea-
sured with errors, i.e., the observed values may differ from the (unobserved)
true values. To address the measurement errors or to increase measurement
precision, blood pressures are usually taken repeatedly on each subject at each
visit – these repeated measurements may be viewed as clustered data since they
are taken on the same subjects at roughly the same time. Therefore, longitudi-
nal data may also be clustered. Moreover, the treatment may be more effective
for some subjects than others, so there may be substantial variations between
the subjects. Finally, there may be outliers, such as subjects with unusually
high or low blood pressures or data recorded with errors. These features are
common in many longitudinal studies. In Section 1.3, we will provide more
detailed examples in which these features are quite clear.

In other words, a longitudinal study typically has the following characteristics:

• there are more than one measurements on each individual, and the numbers
of measurements and measurement times may vary across individuals, i.e.,
the observed data are often unbalanced;

• the within-individual repeated measurements may be correlated, although
the measurements across individuals are usually assumed to be independent;

• there may be substantial variation among repeated measurements within
each individual and among measurements between different individuals,
i.e., there may be substantial variations among within-individual measure-
ments and between-individual measurements;

• the observed data are often complex or incomplete in the sense that there
may be missing data, dropouts, measurement errors, censoring, and outliers.

Because of the above special characteristics of longitudinal data, statistical
models and methods for analyzing longitudinal data can be challenging.

One of the main objectives of statistical analyses is to address variations in the
data. As noted earlier, for longitudinal data there are two sources of variations:

• within-individual variation, i.e., the variation in the repeated measurements
within each individual;

• between-individual variation, i.e., the variation in the data between different
individuals.

In longitudinal studies, modeling within-individual variation allows one to study
change over time, while modeling between-individual variation allows one to
understand the differences between individuals.

In many longitudinal studies, understanding the systematic variation between
individuals receives great attention. Much of this variation may be explained
by covariates such as age and gender. Therefore, regression models are often
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used to approximate the relationship between the longitudinal response and
covariates. In a regression model for longitudinal data, the response contains
longitudinal measurements, while the covariates or explanatory variables can
either be longitudinal measurements, called time-dependent covariates, or vari-
ables which do not change over time, called time-independent covariates (e.g.,
gender and other baseline covariates). These covariates are used to partially
explain the variations in the longitudinal responses. The responses are usually
chosen based on study objectives.

The types of regression models are usually determined by the types of the
response variables. For example, if the response is continuous and roughly
normal, one may consider a normal linear regression model, and if the response
is binary, one may consider a logistic regression model. See Section 1.4 for a
more detailed discussion on regression models. In this book, we focus on a
class of widely used regression models for longitudinal data or clustered data,
called mixed effects models or random effects models. We present a detailed
discussion of mixed effects models in Section 1.5. In the following, we give a
brief overview of regression models for longitudinal data or clustered data.

The following three classes of models are commonly used for analyses of lon-
gitudinal data or clustered data:

• mixed effects models (or random effects models): in these models random
effects are introduced to incorporate the between-individual variation and
within-individual correlation in the data;

• marginal models (or generalized estimating equations (GEE) models): in
these model the mean structure and the correlation (covariance) structure
are modeled separately without distributional assumptions for the data;

• transitional models, in these models the within-individual correlation is
modeled via Markov structures.

Diggle, Heagerty, Liang, and Zeger (2002) provided a comprehensive overview
of various models for longitudinal data. Mixed effects models and GEE models
are perhaps among the most popular. See Section 1.4.3 for a more detailed
description of these models. This book focuses on mixed effects models since
they are widely used in practice and they are also natural extensions of classic
regression models for cross-sectional data. See Section 1.5 for a more detailed
discussion of mixed effects models. A detailed discussion of GEE models is
provided in Chapter 10.

There has been extensive research in statistical methods for longitudinal data
or clustered data. Recent developments are reviewed in Diggle et al. (2002),
Hedeker and Gibbons (2006), and Fitzmaurice et al. (2008), among others.
Books exclusively focusing on mixed effects models include Davidian and
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Giltinan (1995), Vonesh and Chinchilli (1997), Verbeke and Molenberghs (2001),
Demidenko (2004), and McCulloch, Searle, and Neuhaus (2008).

1.3 Some Examples

In this section, we present several examples of longitudinal data or clustered
data to show typical features of these data. These examples also motivate the
models and methods presented in the rest of the book. Specifically, these ex-
amples show the following features of longitudinal data or clustered data: (i)
longitudinal data may be unbalanced, i.e., the numbers and times of measure-
ments may vary across individuals; (ii) there may be correlation between the
within-individual or within-cluster measurements; (iii) there may be substan-
tial between-individual and within-individual variations; (iv) missing data and
dropouts are very common; (v) observed data may have measurement errors;
(vi) some data may be censored; and (vii) there may be outliers.

In the following real-data examples, we will briefly discuss the importance of
addressing missing data, measurement errors, censoring, and outliers in statisti-
cal analyses. Failing to address these issues appropriately may lead to severely
biased or misleading results. More thorough discussions of each of these issues
will be presented in later chapters, in which these examples will be used again
to illustrate how biases may arise when naive methods are used and which valid
methods can be used.

1.3.1 A Study on Mental Distress

This study investigates changes in subjects’ mental distress over time in a treat-
ment group and a control group. Mental distress in 239 subjects were measured
at baseline, 4, 12, 24, and 60 months, based on their answers to questionnaires.
All subjects are randomly assigned into two groups: a treatment group and a
control group. A more detailed description of the dataset can be found in Mur-
phy et al. (2003). The Global Severity Index (GSI), which is one of the most
sensitive indicators of mental distress, is used to measure subjects’ distress lev-
els, with a higher GSI score indicating a higher level of mental distress. Other
variables are also used to measure subjects’ distress or depression levels and
other characteristics of the subjects.

The main objectives of the study are to compare the treatment effect on reduc-
ing mental distress compared with the control group, to study how subjects’
mental distress changes over time, and to investigate whether the changes in
mental distress over time can be partially explained by the treatment and other
covariates. Covariates in the study include subjects’ education, annual income,
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Table 1.1 Summary statistics for some variables at baseline

Variable Mean Standard Deviation

GSI score of subjects (0 – 10) 1.13 0.72
Education of subjects (in years) 13.70 2.36
Income of subjects (in $10,000) 4.68 1.90
Depression score of subjects (0 – 10) 1.55 0.99
Anxiety score of subjects (0 – 10) 1.23 0.92

Table 1.2 Missing data rates for some variables over time

Variable baseline 3 months 6 months 18 months 60 months

GSI 0.04 0.14 0.19 0.36 0.39
Depression 0.03 0.13 0.19 0.36 0.39
Anxiety 0.03 0.13 0.19 0.36 0.39

depression, anxiety, etc. Summary statistics for some variables are given in Ta-
ble 1.1. Table 1.2 shows missing data rates for some time-dependent variables.
We see that missing data increase in late period of the study. At the end of the
study (60 months or 5 years from the beginning of the study), nearly 40% data
are missing, mostly due to dropouts. For a longitudinal study lasting several
years, dropouts or missing data are almost inevitable. There may be various
reasons for dropouts, such as subjects moving elsewhere and subjects finding
the treatment ineffective.

Figure 1.1 shows the GSI scores for all subjects and for 10 randomly selected
subjects respectively. We see that the GSI trajectories vary substantially across
subjects. That is, there is a large between-individual variation, so a regression
model with individual-specific regression parameters may be useful to model
these data. Such a model is called a mixed-effects model or a random effects
model in which random effects are included in the model to represent individ-
ual effects – see Section 1.5 for a detailed discussion.

The repeated measurements on each parent, or the within-individual measure-
ments, may be correlated since they are measurements on the same individuals.
For example, a subject with an higher than average initial GSI score is likely to
have higher than average GSI scores in later measurements as well. Note that
some variables such as depression scores and anxiety scores may be subject to
measurement errors, since these measurements may be subjective and may be
greatly influenced by subjects’ emotional status at the times of measurements.
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Figure 1.1 GSI scores over time. Left figure: GSI scores for all subjects. Right figure:
GSI scores for 10 randomly selected subjects. The open dots are the observed values.

The repeated measurements of these variables allow us to at least partially
address measurement errors (see Chapter 5). There seem also some outlying
observations which do not follow the general patterns, so robust analysis may
be needed.

Figure 1.2 displays boxplots of GSI scores from all subjects for the two groups
at each measurement time. At each measurement time, the boxplot shows the
cross-sectional summaries of GSI scores for the two groups, which allows us
to compare the two groups at that particular time point using standard methods
for cross-sectional data such as a t-test. On the other hand, all the four boxplots
show the longitudinal trend of GSI scores, which allow us to study the changes
of treatment effects over time. A formal method for longitudinal data analysis,
such as a mixed effect model, allows us to evaluate the treatment effect and
study its change over time simultaneously, so it is more desirable than separate
analyses at each time point.

In this study, the measurement schedules are strictly fixed in advance for all
subjects. However, there are many dropouts which lead to unbalanced observed
data. In addition to dropouts, there are also missing data in some baseline vari-
ables such as income. As noted earlier, there may also be measurement errors
and outliers. In later chapters, this example will be used again to show the con-
sequences of ignoring any of these issues and how the results based on naive
methods may be misleading. For example, the treatment effects may be mis-
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Figure 1.2 Boxplots of GSI scores for all subjects at 3 months, 6 months, 18 months,
and 5 years.

leading if any of these issues are ignored or are handled inappropriately. Thus,
it is important to address dropouts, missing data, measurement errors, and out-
liers simultaneously in order to avoid biased or misleading results.

1.3.2 An AIDS Study

In an AIDS study designed to evaluate an anti-HIV treatment, 53 HIV infected
patients were treated with an antiviral regimen. Viral load (i.e., plasma HIV
RNA) was repeatedly quantified on days 0, 2, 7, 10, 14, 21, and 28, and weeks
8, 12, 24, and 48 after initiation of the treatment. Immunologic markers known
as CD4 and CD8 cell counts were also measured along with viral load, as well
as some other variables. A more detailed description of this dataset can be
found in Wu and Ding (1999). In this study, viral load has a lower detection
limit of 100, i.e., viral loads below 100 are not quantifiable. Table 1.3 sum-
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Table 1.3 Summary statistics for viral load (RNA), CD4, and CD8 at five selected mea-
surement times

Variable Day 2 Day 7 Day 14 Day 28 Day 56
Mean S.D.b Mean S.D. Mean S.D. Mean S.D. Mean S.D.

RNAa 5.00 0.59 4.06 0.81 3.23 0.64 3.02 0.61 2.52 0.74
CD4 203 74 231 89 274 108 284 89 300 94
CD8 961 506 1026 643 1037 545 1086 627 1033 329

Note: a) RNA (viral load) is in log10 scale; b) S.D.: standard deviation

Table 1.4 Missing data rates for some variables at baseline

Covariate Definition Missing Rate

AGE age of the patient 0
WEIGHT weight of the patient 0
LU20 NK activity 37.5%
TNF plasma tumor necrosis factor 16.7%
APOP % of cells that are apoptotic 0
CH50 complement CH50 18.75%
BIGG gp120-binding IgG levels 22.92%
BIGC3 C3 binding to HIV-infected cells 27.08%

marizes the data for viral load, CD4, and CD8 measured at five selected time
points.

Figure 1.3 shows viral load trajectories of all patients and six randomly se-
lected patients respectively. Figure 1.4 shows CD4 and CD8 trajectories of six
randomly selected patients. These figures indicate a number of features of this
dataset: (a) different measurement times across patients; (b) different numbers
of within-individual measurements across patients; (c) large variation between
patients; (d) large variation in the data within each patient; (e) some patients
dropping out of the study; (f) some viral loads being censored (i.e., below the
limit of detection); (g) substantial measurement errors in the data; (h) complex
long-term trajectories. (i) data being missing at measurement times. These fea-
tures are common in many longitudinal studies, so statistical methods analyz-
ing these data should address these features. Table 1.4 shows the missing data
rates of some variables at baseline.

HIV viral dynamic models, which model viral load trajectories during an anti-
HIV treatment, have received great attention in recent years (e.g., Ho et al.
1995; Perelson et al. 1996, 1997; Wu and Ding 1999; Wu 2005). These models
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Figure 1.3 Viral loads trajectories (in log10 scale). The open circles are observed val-
ues. The viral load detection limit in this study is log10(100) = 2. Viral loads below the
detection limit are substituted by half the limit.
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14 MIXED EFFECTS MODELS FOR COMPLEX DATA

describe the virus elimination and production processes during antiviral treat-
ments. In an HIV viral dynamic model, the relationship between viral load and
viral dynamic parameters is often nonlinear and the viral dynamic parameters
often vary substantially across patients. Thus, nonlinear regression models with
individual-specific regression parameters, i.e., nonlinear mixed effects models
(see Section 1.5), have been widely used for modeling HIV viral dynamics.

AIDS researchers have also shown great interest in the relationship between
viral loads and CD4 counts over time (Henry, Tebas, and Lane 2006; Rodriguez
et al. 2006). Due to large between-individual variation in many AIDS datasets,
regression models with individual-specific regression parameters (e.g., mixed
effects models) are useful for modeling these types of data. See Section 1.5 for
some specific examples.

A major challenge in statistical analyses of AIDS data is that these datasets
typically contain missing values, censored values, measurement errors, and
outliers. For example, CD4 counts are known to be measured with substan-
tial errors, and patients often drop out because of drug side effects or other
problems. In later chapters, we will show that it is important to address these
issues appropriately in order to obtain reliable and valid results. For instance, if
dropout patients are excluded in data analysis, a new anti-HIV treatment may
be claimed as more effective than a standard treatment while in fact this may
not be true. Thus, developments of valid statistical methods for missing data,
censored data, measurement errors, and outliers, are very important in AIDS
research.

1.3.3 A Study on Students’ Performance

This dataset contains quiz scores of a statistics class with 53 students in a
semester. Five quizzes were given in the class throughout the semester, with
roughly equal time intervals between the quizzes. The objective is to study how
students’ performances change over time. Figure 1.5 shows the quiz scores for
all 53 students in the class and the quiz scores for six randomly selected stu-
dents. We see that students’ performances appear to improve over time in gen-
eral, but there seems to be substantial variation between students, so a model
with student-specific parameters may be useful, such as a mixed effects model
(see Section 1.5).

There are missing values in this dataset since some students failed to take some
quizzes. Possible reasons for these missing data include i) some students were
sick or had personal problems at the time of a quiz; ii) some students dropped
out from the class since they found the course too challenging; iii) some stu-
dents did not hand in their quizzes because they did very poorly. These reasons
for the missing data lead to different missing data mechanisms, which suggest
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Figure 1.5 Students’ quiz scores throughout a semester. Left figure: all 53 students in
the class. Right figure: 6 randomly selected students.

different statistical methods for the missing data (see Chapter 3 for a detailed
discussion). Moreover, there may be a few outliers in the data, so robust meth-
ods would also be useful.

1.3.4 A Study on Children’s Growth

Goldstein (1987) described a well-known dataset which contains the heights of
26 boys from Oxford, England. It consists of the heights of these boys at differ-
ent ages, each measured on nine occasions with roughly equal time intervals.
The data are displayed in Figure 1.6.

A unique feature of this dataset is that, although children’s initial heights are
different, the rates of growth (i.e., the rates of increase in height) are similar
across children and are roughly constant during the measurement period. For
each child, the longitudinal trajectory of heights appears roughly linear, so the
repeated measurement data on each child may be fitted by a straight line. That
is, we may fit the data using a simple linear regression model with individual-
specific intercepts but a constant slope. This is an extension of a standard sim-
ple regression model for cross-sectional data by introducing a random effect
(or an individual effect) in the intercept but not in the slope.
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Figure 1.6 Boys’ heights (in cm) at nine measurement occasions. The open circles are
observed values.

1.4 Regression Models

1.4.1 General Concepts and Approaches

Regression models are perhaps the most widely used statistical methods. In ei-
ther a cross-sectional study or a longitudinal study, data are usually collected
on more than one variable. Depending on the objectives of the study, one vari-
able may be treated as a response (or dependent variable) and some other vari-
ables may be treated as possible covariates, which are also called explanatory
variables or independent variables or predictors. In this section, we provide a
brief overview of the essential ideas of regression models. Chapter 2 provides
a more detailed description of various regression models.

In a regression model, covariates are used to partially explain the systematic
variation in the response. The remaining unexplained variation in the response
is treated as random and is often assumed to follow a probability distribution –
it reflects the uncertainty of the response aside from its systematic parts. This
probability distribution is usually chosen based on the type of the response



INTRODUCTION 17

variable. In the systematic part of a regression model, the mean response is
often assumed to link the covariates through a linear combination of the co-
variates, called a linear predictor. The resulting model is called a generalized
linear model. The use of a linear predictor in a regression model is usually
based on its simplicity and easy interpretation. In a nonlinear regression model
or in a nonparametric or semiparametric regression model, however, the mean
response may be linked to covariates in any nonlinear form. In a survival re-
gression model, we may link the covariates to the hazard rather than the mean
response.

The type of a regression model is usually determined by the type of the re-
sponse variable. For example, if the response is a continuous variable, we may
consider a linear regression model with normally distributed random errors. If
the response is a binary variable, we may consider a logistic regression model
with the random error following a binomial distribution. If the response is a
count, we may consider a Poisson regression model with a Poisson random er-
ror. If the response is the time to an event of interest (e.g., time to death), we
may consider a survival regression model with the random error following a
Weibull distribution. In summary, the following types of regression models are
commonly used in practice:

• linear models,
• generalized linear models,
• nonlinear models,
• survival regression models.

All these regression models can be extended to the analysis of longitudinal or
clustered data.

In regression models, a main objective is to understand the dependence of
the response on the covariates. Basic ideas and approaches of regression tech-
niques apply to both cross-sectional data and longitudinal data. However, spe-
cial considerations are needed for longitudinal or clustered data in order to
incorporate the correlations within clusters.

In practice the true or exact relationship between a response and covariates
may be very complicated. In a regression model, we often attempt to approxi-
mate this relationship using a simple and easy-to-interpret model, such as lin-
ear regression models or some generalized linear models. These simple models
usually do not represent the true relationship between the responses and the co-
variates, even if the models fit the observed data well, and they are sometimes
called empirical models. Prediction outside the observed-data range based on
empirical models is often dangerous. These empirical models have been pop-
ular mainly because of their simplicity, which is especially important before
modern computers become available.
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In some cases, based on subject-area knowledge we may have a good under-
standing of the underlying mechanisms which generate the data. In these cases
we may be able to derive the (approximate) true relationship between a re-
sponse and covariates. The resulting models are often nonlinear, leading to
nonlinear regression models. Therefore, nonlinear regression models are typi-
cally mechanistic, and they may represent the true (or approximately true) re-
lationship between the response and the covariates. For this reason, nonlinear
regression models often provide more reliable predictions than linear regres-
sion models. With the availability of modern computers, which greatly reduce
computational burden, nonlinear models should be preferred if available.

In a broader sense, there are two general approaches for analyzing multivariate
data. One approach is called supervised learning, where we treat one variable
as a response and other variables as possible covariates. Regression models
are examples of supervised learning. If more than one variables are treated
as responses, we have multivariate regression models. The other approach is
called unsupervised learning, where we treat all variables equally or symmet-
rically, i.e., no variables are treated as responses and no variables are treated
as covariates. In unsupervised learning, the goal is to understand the underly-
ing structures in all the variables. Examples of unsupervised learning include
principal components analysis, cluster analysis, factor analysis, contingency
tables, and graphical models. In the analysis of longitudinal data, regression
models receive more attention and are thus the focus of this book.

In the following subsections we provide a brief review of commonly used re-
gression models for cross-sectional data and for longitudinal data. A more de-
tailed description of these models is given in Chapter 2.

1.4.2 Regression Models for Cross-Sectional Data

Regression models for cross-sectional data have been well developed. The
most widely used regression models are probably linear regression models,
where the relationship between the mean response and covariates is assumed
to be linear and the random error is usually assumed to be normal. A com-
prehensive discussion of linear regression models can be found in Draper and
Smith (1998) and Weisberg (2005), among others. Faraway (2004) discussed
linear models using statistical software R, while Littell et al. (2002) illustrated
statistical software SAS for linear models. In this section, we provide a brief
overview of common regression models for cross-sectional data, with a focus
on general concepts and approaches without technical details. In Chapter 2, we
will return to this topic with some technical details. We begin with this review
because mixed effects models are natural extensions of the corresponding re-
gression models for cross-sectional data by introducing random effects in the
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models. Moreover, many of the ideas and approaches used in regression models
for cross-sectional data can be extended to regression models for longitudinal
data or clustered data.

Suppose that there are n individuals in the sample, and the data on individual i
are (yi, xi1, xi2, · · · , xip), where yi is the response and xij’s are covariates. A
general (multiple) linear regression model can be written as

yi = β0 + β1xi1 + · · ·+ βpxip + εi, i = 1, 2, · · · , n, (1.1)
εi i.i.d. ∼ N(0, σ2),

where βj’s are unknown regression parameters linking the covariates to the
response, and εi is a random error representing residual variation in the data.
The standard assumptions for linear model (1.1) are:

• the random errors {ε1, ε2, · · · , εn} or the response {y1, y2, · · · , yn} are in-
dependent;

• the random errors εi’s have a zero mean and a constant variance;
• the random errors εi’s are normally distributed.

The independence of the observations {y1, y2, · · · , yn} is an important as-
sumption for classical linear regression models.

Unknown parameters in model (1.1) can be estimated by the least-square method
or by the maximum likelihood method. Once the unknown parameters are esti-
mated, model checking or model diagnostics should be performed to check the
reasonability of the model and the assumptions, which can informally be based
on residual plots and other graphical techniques. Variable transformations may
be used to improve model fitting. Outliers and influential observations should
also be checked since they may greatly affect the resulting estimates and may
lead to misleading inference. Model selection can be based on standard statisti-
cal methods such as the stepwise method as well as on scientific considerations.
In general, parsimonious models are preferred since they may avoid potential
collinearity in the predictors and may improve precision of the main parame-
ter estimates. In linear model (1.1), when all the covariates are categorical or
discrete, the model is equivalent to an analysis of variance (ANOVA) model,
which allows a specific decomposition of total variation into systematic part
and random part.

Linear regression models have been widely used due to their simplicity, which
is important in the pre-computer era since closed-form or analytic expressions
of parameter estimates can be derived. However, linear models require strong
assumptions such as linearity, and they may not be appropriate when the re-
sponse is (say) categorical. Moreover, unlike nonlinear models, linear models
usually do not describe the data-generating mechanisms and they often do not
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provide reliable prediction outside the observed data range. Therefore, exten-
sions of linear models have received great attention in the last few decades, due
partially to the developments of modern computers and computational tools.
Linear models may be extended in two directions:

• non-normal distributions for the random errors;
• nonlinear relationships between the response and covariates.

These two extensions are briefly described below.

The first extension is to allow non-normal distributions for the responses or
random errors. This is necessary for some responses whose distributions are
clearly non-normal (even after transformations), such as binary responses tak-
ing only two possible values (say 0 or 1). A natural family of candidate distribu-
tions is the exponential family, which includes normal distributions, binomial
distributions, Poisson distributions, and other distributions. For example, if the
response of interest is an indicator of whether an individual has cancer or not,
the response is a binary variable with only two possible values (say, 0 or 1). In
this case, linear model (1.1) cannot be used since the covariates can take any
real values and the response will not follow a normal distribution. However,
we may assume that the response yi follows a binomial (Bernoulli) distribu-
tion and consider the following nonlinear regression model, called a logistic
regression model

log
{

P (yi = 1)
1− P (yi = 1)

}
= β0 + β1xi1 + · · ·+ βpxip, i = 1, 2, · · · , n, (1.2)

in which the mean response E(yi) = P (yi = 1) and the covariates are linked
through a monotone function h(y) = log(y/(1 − y)), called a logit link func-
tion, and the response yi is assumed to follow a binomial (Bernoulli) distribu-
tion.

More generally, we may assume that the response follows a distribution in the
exponential family and then we link the mean response to the covariates via
a linear predictor. The resulting model is called a generalized linear model
(GLM). Specifically, a GLM can be written as follows

h(E(yi)) = ηi ≡ β0 + β1xi1 + · · ·+ βpxip, i = 1, 2, · · · , n, (1.3)

where h(·) is a known monotone link function and ηi is a linear predictor.
Note that a GLM is a special nonlinear model. A more detailed discussion of
GLMs is given in Chapter 2. When h(y) = y (the identity link) and y follows
a normal distribution, GLM (1.3) reduces to the standard normal linear model
(1.1). When h(y) = log(y/(1 − y)) (the logit link) and y follows a binomial
distribution, GLM (1.3) reduces to a logistic regression model. When h(y) =
log(y) and y follows a Poisson distribution, GLM (1.3) reduces to a Poisson
regression model for count response. For comprehensive discussions of GLMs,
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see McCullagh and Nelder (1989), Fahrmeir et al. (2001), and McCulloch et
al. (2008). Faraway (2005) describes GLM using software R.

Another extension of linear regression models is to allow the response to link
the covariates in any nonlinear forms, leading to nonlinear regression mod-
els. We focus on the common class of nonlinear models in which the response
and covariates may be linked in a nonlinear forms but the response or random
error are assumed to be normal. A nonlinear regression model is often mech-
anistic in the sense that it usually describes or approximately describes the
data-generating mechanism, i.e., the underlying mechanism which generates
the observed data. Thus, nonlinear regression models often provide better pre-
dictions than linear regression models, and the parameters in nonlinear models
often have natural physical interpretations.

A nonlinear regression model can be written as

yi = g(xi1, · · · , xip,β) + εi, i = 1, 2, · · · , n,

where g(·) is a nonlinear function and εi follows a normal distribution. Statis-
tical inference for nonlinear regression models is more complex than that of
linear models because closed-form expressions of parameter estimates are typ-
ically unavailable. Moreover, good choices of starting values are needed and
are important for nonlinear models since the likelihoods may have multiple
modes. See Chapter 2 for a more detailed discussion. For comprehensive dis-
cussions of nonlinear models, see Seber and Wild (2003) and Bates and Watts
(2007).

A standard approach for statistical inference of regression models is the max-
imum likelihood method. The likelihood method is widely used because it is
generally applicable to a wide variety of models and it offers nice asymptotic
properties – the maximum likelihood estimates are consistent, asymptotically
normal, and asymptotically most efficient under some regularity conditions. In
Chapter 12 (Appendix), we will provide an overview of the likelihood method.
A drawback of the likelihood method is that it requires distributional assump-
tions. So likelihood inference may be sensitive to departures from the assumed
distributions and sensitive to outliers. A more robust approach is the so-called
quasi-likelihood method and the closely related generalized estimating equa-
tions (GEE) method in which one only needs to specify the first two moments
without distributional assumptions. However, the GEE estimates are less effi-
cient than the likelihood estimates if the distributional assumptions hold. See
Chapter 10 for a detailed discussion of the quasi-likelihood methods and GEE
methods.
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1.4.3 Regression Models for Longitudinal Data

The regression models for cross-sectional data presented in Section 1.4.2 can
be extended to longitudinal data or clustered data. A key difference between
cross-sectional data and longitudinal data is that the repeated measurements
within an individual in a longitudinal study are typically correlated. Thus,
regression models for longitudinal data must incorporate this correlation for
valid inference. In other words, a regression model for longitudinal data must
address both the relationship between the response and covariates and the cor-
relation in the repeated measurements. As noted in Section 1.2, there are three
common approaches to incorporate the correlation in longitudinal data or clus-
tered data: a mixed effects modeling approach, a marginal GEE modeling ap-
proach, and a transitional modeling approach. In the following, we provide an
overview for each of the three approaches.

Mixed Effects Models

For mixed effects models, we introduce random effects for each individual
or cluster to incorporate the correlation between the repeated measurements
within the individual or cluster. Since each individual or cluster shares the
same random effects, the measurements within the individual or cluster are
correlated. Moreover, the random effects facilitate individual-specific infer-
ence. Note that there are two sources of variations in longitudinal or clustered
data: the between-individual variation and the within-individual variations. A
mixed effects model specifically incorporates both sources of variations: it uses
random effects or individual effects to represent deviations of individual lon-
gitudinal trajectories from the population average. Thus, a mixed effect model
allows subject-specific inference, in addition to standard population-average
inference.

A mixed effects model can be obtained from a standard regression model for
cross-sectional data by introducing random effects to appropriate parameters,
allowing these parameters to be individual-specific. For example, for the chil-
dren growth data in Example 1.3.4 (page 15) in Section 1.3, since the inter-
cepts vary greatly across children but the slopes remain roughly constant, we
may consider a simple linear regression model with random intercepts but fixed
slope:

yij = β0 + bi + β1xij + eij

= β0i + β1xij + eij , i = 1, 2, · · · , n, j = 1, 2, · · · , ni, (1.4)

where yij and xij are the height and occasion of child i at measurement time
j respectively, eij is the random error for the repeated measurements within
child i, bi is a random effect for child i, β0i = β0 + bi is a individual-specific
parameter, and parameters β0 and β1 are called fixed effects or population pa-
rameters. We assume eij i.i.d. ∼ N(0, σ2), bi ∼ N(0, d2), and eij and bi are
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independent. Model (1.4) is a simple linear mixed-effects model. More exam-
ples of mixed effects models are given in Section 1.5, and the general theory
will be presented in Chapter 2.

Marginal GEE Models

In a marginal model, we first model the mean structure of the response, i.e., the
dependence of the mean response on covariates, and then we separately model
the covariance structure of the response, i.e., the variances and correlations of
the response measurements. The idea is similar to a quasi-likelihood approach
which only requires specifications of the first moment (mean structure) and
the second moment (covariance structure) of the responses without assuming
any distributions for the data. So marginal models are robust to distributional
assumptions. Moreover, if the mean structure is correctly specified, parame-
ter estimates are consistent and asymptotically normal, even if the covariance
structure is mis-specified. GEE models are usually more useful for non-normal
data.

The parameters in a marginal model can be estimated by solving a set of esti-
mating equations, called generalized estimating equations (GEEs). The GEEs
are analogous to the score equations in likelihood inference. Specifically, let
yi = (yi1, yi2, · · · , yini

)T and xi be the response measurements and covari-
ates for individual i. A marginal GEE model for longitudinal or clustered data
can be specified as follows:

• the marginal mean structure of the response yi:

µi(β) ≡ E(yi|xi,β) = g(xi,β),

where g(·) is a known link function and β contains unknown regression
parameters.

• a working covariance matrix Σi(β,α) for the covariance structure of yi,
which is often assumed to have a simple form such as an independence
correlation structure or an auto-correlation structure, where α contains un-
known parameters.

The GEE for estimating β is given by
n∑

i=1

Di(β)Σi(β,α)(yi − µi(β)) = 0,

where Di(β) = ∂g(xi,β)/∂β. Note that, in the special case of independent
observations with constant variances, the working covariance matrix can be
chosen as Σi = σ2Ini

, and the above GEE reduces to the usual form of the
score function for cross-sectional data. A detailed discussion of marginal mod-
els and GEE methods is given in Chapter 10.
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Transitional Models

A transitional model assumes a Markov structure for the longitudinal process
to incorporate the correlation between the repeated measurements. The idea is
to assume that the current response value depends on previous response val-
ues given observed data, which suggests a Markov process. Such a Markov
structure may be reasonable in some applications. A transitional model can be
specified by including previous response values as additional “covariates”, so
it is similar to a classical regression model for cross-sectional data. For ex-
ample, if a first-order Markov assumption holds for a longitudinal process, a
transitional model may be written as

E(yij) = g(yi,j−1,xi,β), i = 1, 2, · · · ,

where g is a known link function. Random effects may also be introduced in
a transitional model to incorporate between individual variations, and such a
mixed effects transitional model may be useful for modeling clustered longitu-
dinal data (Cook, Yi, Lee, and Gladman 2004). We will not discuss details of
transitional models. Interested readers are referred to Fahrmeir and Tutz (2001)
and Diggle et al. (2002).

Comparison of the Models

Each of the three classes of regression models for longitudinal data has its
own advantages and disadvantages. Mixed effects models are widely used in
practice because (i) they allow for individual-specific (or subject-specific) in-
ference; (ii) they are natural extensions of the corresponding regression models
for cross-sectional data; and (iii) likelihood inference is conceptually straight-
forward and maximum likelihood estimates have very attractive asymptotic
properties. Disadvantages of mixed effects models include the distributional
assumptions, which sometimes may be restrictive, and computational chal-
lenges.

Advantages of marginal GEE models are: (i) they only require specifications
of the first two moments, with no distributional assumptions; (ii) GEE esti-
mates are consistent even if the covariance structure is misspecified, as long as
the mean structure is correctly specified; and (iii) GEE estimates are asymp-
totically normal. Disadvantages of marginal models are that GEE estimates
are not fully efficient if the covariance structure is mis-specified and marginal
models do not allow for subject-specific inference.

Transitional models are similar to regression models for cross-sectional data if
we view previous responses as additional “covariates”, so transitional models
share some characteristics with classical regression models. Note that, in mixed
effects models or GEE models, we can use previous responses as additional
“covariates”, so mixed effects models or GEE models can be combined with
transitional models.
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In the presence of missing data or measurement errors, which are very common
in longitudinal studies, mixed effects models are particularly attractive because
it is conceptually straightforward to incorporate missing data or measurement
errors in likelihood inference for mixed effects models, even when the missing
data mechanism is non-ignorable (see Chapter 3). This is less straightforward
for marginal models. Therefore, in the presence of incomplete data, mixed ef-
fects models offer another advantage over other models.

Other Models for Longitudinal Data

Other common models for longitudinal data include nonparametric models
and semiparametric models. Since in practice longitudinal data can be very
complex, parametric models may not be flexible enough to capture the longi-
tudinal trajectories. Nonparametric or semiparametric models offer more flex-
ible approaches for modeling complex longitudinal processes. Note that many
nonparametric or semiparametric models may be approximated by parametric
mixed effects models (see Chapter 3). This is yet another advantage of mixed
effects models. We review some nonparametric or semiparametric models in
Chapter 3.

Bayesian methods offer the advantage of incorporating prior information or
information from similar studies. The advance of Markov chain Monte Carlo
(MCMC) methods has led to rapid developments of Bayesian methods in the
last few decades. In fact, mixed effects models have a Bayesian connection
if the random effects are viewed as random parameters. Bayesian methods are
closely connected to likelihood methods, when non-informative priors are con-
sidered. We discuss Bayesian methods in details in Chapter 11.

1.4.4 Regression Models for Survival Data

In a longitudinal study, often we are also interested in the times to an event
of interest. For example, we may be interested in times to dropout, times to
death, times to an accident, etc. Such data are called survival data or event-time
data. Statistical analysis of survival data or event-time data is called survival
analysis. In the following we give a brief review of survival data, and we will
provide a more detailed discussion in Chapter 7.

There are some special features for survival data:

• survival data are often censored, i.e., the event of interest may not be ob-
served for some subjects throughout the study period so the event times are
censored;

• survival data are often skewed, i.e., they are usually not symmetric so a
symmetric distribution such as a normal distribution should not be assumed
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for survival data (but such a distribution may be assumed if the survival data
are transformed).

Moreover, survival data often have unequal follow-up times. Due to these fea-
tures of survival data, special techniques are needed for analyzing survival data.
In particular, nonparametric and semiparametric methods are widely used in
survival analysis. In regression analysis of survival data, we are interested in
the dependence of event times on covariates. The most commonly used re-
gression models for survival data are probably the Cox proportional hazards
models, which is a semiparametric regression model.

Parametric survival models are also available. These parametric models as-
sume distributions for the survival data and may give more efficient estimates
than nonparametric or semiparametric models if the distributional assumptions
hold. A popular parametric distribution for survival data is the Weibull distribu-
tion, which includes the exponential distribution as a special case. The Weibull
distribution plays a similar role as the normal distribution in linear regression
models. Another class of models for survival data is accelerated failure time
models. Accelerated failure time models offer attractive interpretations and are
good choices in some applications.

Survival data may also be clustered. For example, survival data from different
centers or hospitals may be clustered since data from the same centers or hos-
pitals may be similar and thus may be correlated. For clustered survival data,
random effects may be used to represent cluster effects, which also incorpo-
rate correlation within clusters. Survival models with random effects are called
frailty models. A more detailed description of survival models and frailty mod-
els is given in Chapter 7.

Since survival data may arise in longitudinal studies, in which we may be in-
terested in both the time to an event of interest and the longitudinal process,
we may consider joint models for longitudinal data and survival data. In other
words, we may simultaneously model survival data and longitudinal data and
conduct joint inference, since the survival model and the longitudinal model in
a study are usually linked in some ways so joint inference is desirable. Joint
models have received great attention in recent years. We discuss joint models
in details in Chapter 8.

1.5 Mixed Effects Models

1.5.1 Motivating Examples

In Section 1.4.3, we briefly discussed mixed effects models for longitudinal
data and presented a simple example. Since mixed effects models are the main
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focus of this book, in this section we provide a more detailed description, in-
cluding simple approaches for building mixed effects models in practice and
an overview of commonly used mixed effects models. Technical details and
more general descriptions of these mixed effects models will be presented in
Chapter 2.

A mixed effects model may be viewed as an extension of the correspond-
ing regression model for cross-sectional data by introducing random effects
in the model to account for variations between individuals and correlations
within individuals. Thus, the commonly used regression models described in
Section 1.4.1 can be extended to the following commonly used mixed effects
models:

• linear mixed effects (LME) models,
• generalized linear mixed models (GLMMs),
• nonlinear mixed effects (NLME) models,
• frailty models.

In regression models for cross-sectional data and in marginal GEE models for
longitudinal data, all model parameters are fixed, i.e., the parameters are the
same for all individuals, so the mean parameters are called fixed effects or
population parameters. In some longitudinal studies, if the data vary greatly
across individuals, we may allow each individual to have individual-specific
parameters. These individual-specific parameters can be obtained by adding
random effects or individual effects to the population parameters, so the ran-
dom effects represent individual deviations from the population averages (plus
random errors). Therefore, we can choose random effects informally based on
the heterogeneous feature of the data. Formally, we can conduct hypothesis
testing (e.g., the likelihood ratio test) to test the need of certain random effects,
or we can use formal model selection methods, such as AIC or BIC criteria,
to choose between models with and without random effects. We will return to
this topic in Chapter 2.

The random effects in a mixed effects model not only incorporate heterogene-
ity in the data but also incorporate correlation between the multiple measure-
ments within each individual or cluster. This is because the data within the
same individuals or the same clusters share the same random effects or simi-
lar characteristics, which leads to correlation in the data. In the following, we
present several examples to illustrate the selection of random effects.

We return to Example 1.3.4 (page 15) in Section 1.3. As evident in Figure
1.6 (page 16) in Section 1.3, there appear large variations in intercepts but
relatively homogeneous slopes in the growth trajectories, so intuitively it may
be reasonable to assume a model with fixed slope but random intercept, i.e.,

yij = β0i + β1xij + eij , (1.5)
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β0i = β0 + bi, i = 1, 2, · · · , n; j = 1, 2, · · · , ni, (1.6)

where yij is the height of child i at measurement time xij , eij is a random
error, bi is a random effect for the intercept of child i, and β0 and β1 are fixed
effects. We assume that the random effect bi and the error eij are independent
and both follow normal distributions with zero means, i.e.,

bi ∼ N(0, d2), eij ∼ N(0, σ2).

We also assume that ei1, ei2, · · · , eini
are conditional independent given bi.

Models (1.5) and (1.6) can be combined as follows:

yij = (β0 + β1xij) + bi + eij , (1.7)

where the fixed effects and the random effects are separated. Model (1.7) is an
example of a linear mixed-effects (LME) model.

The LME model (1.5) and (1.6) is also called a two-stage model: in the first
stage we model the within-individual variation by model (1.5), and in the sec-
ond stage we model the between-individual variation by model (1.6). Such a
two-stage approach can also be used in other mixed effects models.

For the AIDS data in Example 1.3.2 (page 11) in Section 1.3, a simple linear
regression model may provide a reasonable fit to the viral load trajectories in
the first two weeks after initiation of the anti-HIV treatment. For this initial
period, Figure 1.3 (page 13) suggests that intuitively we may consider a linear
model with random intercept and random slope, i.e.,

yij = β0i + β1itij + eij , i = 1, 2, · · · , n; j = 1, 2, · · · , ni, (1.8)
β0i = β0 + b0i, β1i = β1 + b1i, (1.9)

where yij is the log10-transformation of viral load (RNA) for individual i at
time tij , β0i and β1i are individual-specific parameters, β0 and β1 are fixed
effects, b0i and b1i are random effects, and eij’s are random errors. The log10-
transformation of viral load is used to stabilize the variance of viral load and
to make the viral load data more normally distributed. We assume that

(b1i, b2i)T ∼ N(0, D), eij i.i.d. ∼ N(0, σ2),

where D is a 2× 2 covariance matrix. Models (1.8) and (1.9) can be combined
as a single LME model

yij = (β0 + β1tij) + (b0i + b1itij) + eij , (1.10)

which separates the fixed effects and the random effects.

In models (1.8) and (1.9), the variation in the viral decay rates β1i may be
partially explained by variation in baseline CD4 values (denoted by zi). In this
case, we may replace the second-stage model (1.9) by the following model

β0i = β0 + b0i, β1i = β1 + β2zi + b1i. (1.11)
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Then, we can combine models (1.8) and (1.9) and obtain the following single
LME model

yij = (β0 + β1tij + β2zitij) + (b0i + b1itij) + eij . (1.12)

In the above examples, the model selection approaches are quite informal and
are only used for illustration. More formally, one can use AIC or BIC criteria
or the likelihood ratio test to select good models or to confirm the informally
or empirically selected models. Pinheiro and Bates (2000) provided some de-
tailed examples on model selection for mixed effects models using Splus.

1.5.2 LME Models

In this section we present LME models in general forms. Let yi = (yi1, yi2, · · · , yini
)T

be the ni repeated measurements of the response variable y on individual i,
i = 1, 2, · · · , n. A general linear mixed-effects (LME) model can be written as

yi = Xiβ + Zibi + ei, i = 1, 2, · · · , n, (1.13)
bi ∼ N(0, D), ei| ∼ N(0, Ri), (1.14)

whereβ = (β1, · · · , βp)T is a p×1 vector of fixed effects, bi = (bi1, · · · , biq)T

is a q × 1 vector of random effects, the ni × p matrix Xi and the ni × q
matrix Zi are known design matrices which may contain covariates, ei =
(ei1, ei2, · · · , eini

)T represents random errors of the repeated measurements
within individual i, D is a q × q covariance matrix of the random effects, and
Ri is a ni × ni covariance matrix of the within-individual errors.

We often assume that Ri = σ2Ini
for simplicity, where Ini

is the ni×ni iden-
tity matrix, i.e., the within-individual measurements are assumed to be inde-
pendent with constant variance. This assumption may be reasonable when the
within-individual measurements are relatively far apart (so they are approxi-
mately independent) and when the repeated measurements within individuals
roughly have a constant variance. The value of σ2 represents the magnitude
of the within-individual variation, and the values of the diagonal elements of
D represent the magnitude of the between-individual variation. The simpli-
fied with-individual covariance structure Ri greatly reduces number of param-
eters and may avoid some identifiability problems. Wang and Heckman (2009)
showed that LME model (1.13) and (1.14) is always identifiable ifRi = σ2Ini

.
This is an important advantage in many problems. See Section 2.2.2 in Chap-
ter 2 for a more detailed discussion.

LME model (1.13) and (1.14) is an extension of the corresponding linear re-
gression model by adding the random effects bi in the model. In other words,
if the term with random effects bi is omitted, LME model (1.13) and (1.14)
reduces to a standard linear regression model. A key characteristic of a LME
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model is that it is linear in both the mean parameters β and the random ef-
fects bi. Therefore, many analytic or closed-form expressions of parameter
estimates can be obtained for LME models, which greatly reduces computa-
tional burden. This important advantage is unavailable for models which are
nonlinear in either the mean parameters or the random effects or both.

In LME model (1.13) and (1.14), the fixed effects β are population-level pa-
rameters and are the same for all individuals, as in a classical linear regression
model for cross-sectional data, while the random effects bi are individual-level
“parameters” representing individual variations from population-level param-
eters. The random effects bi measure between-individual variation, and the
random errors ei measure within-individual variation. Since each individual
shares the same random effects, the multiple measurements within each indi-
vidual or cluster are correlated. Properties and statistical inference for LME
models are presented in Chapter 2.

In a mixed effects model, the repeated measurements {yi1, yi2, · · · , yini
} of the

response within each individual can be taken at different time points for differ-
ent individuals, and the number of measurements ni may also vary across indi-
viduals. In other words, a LME model allows unbalanced data in the response.
This is an advantage of mixed effects models.

In LME model (1.13) and (1.14), the design matrix Zi is often a submatrix of
the design matrix Xi. For example, in model (1.7) (page 28) we have

Xi =


1 xi1

1 xi2

...
...

1 xini

 , Zi =


1
1
...
1

 , bi = bi, (1.15)

in model (1.10) (page 28) we have

Xi = Zi =


1 xi1

1 xi2

...
...

1 xini

 , bi =
(
bi0
bi1

)
, (1.16)

and in model (1.12) (page 29) we have

Xi =


1 ti1 ziti1
1 ti2 ziti2
...

...
...

1 tini
zitini

 , Zi =


1 ti1
1 ti2
...

...
1 tini

 , bi =
(
bi0
bi1

)
.
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1.5.3 GLMM, NLME, and Frailty Models

In the previous section, we see that a LME model for longitudinal data can
be obtained from the corresponding linear regression model for cross-sectional
data by introducing random effects in the model to account for between-individual
variation and within-individual correlation. This idea can be extended to other
types of regression models. For example, if the longitudinal response is a bi-
nary variable, we can extend a logistic regression model for cross-sectional
data to a longitudinal regression model by introducing random effects in the
logistic model. The resulting longitudinal regression model is an example of
generalized linear mixed models (GLMMs). We briefly illustrate the approach
as follows.

Consider the study on mental distress in Section 1.3.1 (Example 1.3.1 on page
8). We may wish to study if a subject’s mental distress at each measurement
time throughout the study is above or below his/her baseline value. Let yij =
1 if the mental distress of subject i at measurement time j is above his/her
baseline score and yij = 0 otherwise. Then, the data {yij , i = 1, · · · , n; j =
1, · · · , ni} are longitudinal binary data. Suppose that we are also interested in
if the value of yij is related to the gender (xi) of subject i. Then, the following
generalized linear mixed model (GLMM) for longitudinal binary response may
be considered:

log
(

P (yij = 1)
1− P (yij = 1)

)
= βi0 + β1xi, (1.17)

βi0 = β0 + bi, bi ∼ N(0, d2), (1.18)

where bi is a random effect used to incorporate the between-subject variation
and within-subject correlation in the longitudinal data, i = 1, · · · , n; j =
1, · · · , ni.We may also introduce a random effect for parameter β1 if necessary.
Here the responses yij are assumed to be conditionally independent and follow
binomial distributions given the random effects.

More generally, a general GLMM may be written as

h(E(yi)) = Xiβ + Zibi, i = 1, · · · , n, (1.19)
bi ∼ N(0, D), (1.20)

where yi = (yi1, · · · , yini
)T are the repeated measurements within individual

or cluster i, h(·) is a known monotone link function, Xi and Zi are known de-
sign matrices, β contains fixed effects, bi contains random effects, and D is a
covariance matrix. It is typically assumed that the responses yij are condition-
ally independent and follow distributions in the exponential family, given the
random effects. Chapter 2 provides a more detailed discussion of GLMMs.

Next, we consider an example of nonlinear regression models. Consider the
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AIDS study in Section 1.3.2 (page 11). The viral load trajectories in the first
three months may be modeled by the following nonlinear mixed effects (NLME)
model (Wu and Ding 1999)

yij = log10

(
β1ie

−β2itij + β3ie
−β4itij

)
+ eij , (1.21)

βi = β + bi, bi ∼ N(0, D), eij ∼ N(0, σ2), (1.22)

where yij is the log10-transformation of viral load (RNA) for individual i at
time tij , βi = (β1i, β2i, β3i, β4i)T are individual-specific parameters, β =
(β1, β2, β3, β4)T contains fixed effects, bi = (bi1, bi2, bi3, bi4)T contains ran-
dom effects, and eij is a within-individual measurement error, i = 1, · · · , n; j =
1, · · · , ni. A general NLME model can be written as

yi = g(xi,β,bi) + ei, i = 1, · · · , n, (1.23)
bi ∼ N(0, D), ei|bi ∼ N(0, Ri), (1.24)

where g(·) is a known nonlinear function, xi contains covariates, ei = (ei1, · · · , eini
)T

are random errors, and Ri is a covariance matrix. More details of NLME mod-
els can be found in Chapter 2.

Similarly, if there are clusters in survival data, we can introduce random effects
in a standard survival model to account for the variation between clusters and
the correlation within clusters. The resulting survival model is called a frailty
model. We will provide a detailed discussion of survival models and frailty
models in Chapter 7.

The above approaches can be used to extend other regression models for cross-
sectional data to longitudinal data or clustered data. That is, we can introduce
random effects to a regression model for cross-sectional data and obtain a
mixed effects model for longitudinal or clustered data. The distributions of the
random effects are not limited to normal distributions – they can be other para-
metric distributions such as t-distributions and gamma distributions or even
nonparametric distributions.

Statistical inference for mixed effects models is typically based on the likeli-
hood methods. For mixed effects models, the observed-data likelihoods involve
integrations with respect to the unobservable random effects, which can be in-
tractable except for LME models. Therefore, computation can be intensive and
challenging. See Chapter 2 for detailed discussions.

1.6 Complex or Incomplete Data

In longitudinal studies, the observed data are often complex or incomplete. For
example, in a mixed effects model, there may be missing data in the response
or covariates, dropouts, and censoring, so the observed data are incomplete.
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The reason is that in practice it is almost impossible to obtain all data at each
time point in a longitudinal study lasting a long time. This can be seen from the
examples and figures in Section 1.3. In this book, we define incomplete data in
a broad sense to include data with measurement errors and outliers, although
most people may view incomplete data simply as missing data or dropouts.
Data with measurement errors may be viewed as incomplete data since for
these data their true values are not observed, i.e., the observed are incomplete.
In a similar sense, outliers may also be viewed as incomplete data because their
true values are not observed (here we assume that outliers are not true values,
although in some cases outliers are in fact true values).

In this section we briefly discuss common incomplete data problems in longi-
tudinal studies. Incomplete data include

• completely missing data: in this case there is no information available for
the missing data. This is what missing data mean in the usual sense.

• partially missing data: in this case the true values are not observed but some
closely related values are observed. Examples include data with measure-
ment errors, and censored data.

In the following, we discuss these incomplete data problems in the context of
regression models.

1.6.1 Missing Data

When data are completely missing, we do not have any information about the
missing values. To address the missing data in statistical inference, a standard
approach is to assume a probability distribution for the variables with missing
data, and then “impute” the missing data based on the predictive distribution of
the missing data given the observed data, and in the meantime take the missing
data uncertainty into account. In regression models, missing data may arise in
the response or covariates or both, as described below.

In a longitudinal study, measurements are taken repeatedly over time, often on
a pre-specified measurement schedule. However, subjects in the study may fail
to show up at a scheduled time for various reasons. This leads to missing data
in the response and in time-dependent covariates. Note that there are two types
of covariates in a longitudinal regression models: time-independent covariates,
i.e., covariates whose values do not change over time such as gender and race,
and time-dependent covariates, i.e., covariates whose values may change over
time are repeatedly measured throughout the study. Missing data may occur for
both types of covariates but are particularly common in time-dependent covari-
ates. For a time-dependent covariate, missing data may arise in the following
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situations: i) the covariate is measured at time schedules different from the re-
sponse measurement schedule, so covariate values are missing at the response
measurement times; ii) subjects may fail to show up at scheduled measurement
times; and iii) subjects may drop out.

Dropouts are especially common in longitudinal studies lasting a long time.
Subjects may drop out before the end of the studies for various reasons: sub-
jects may move to elsewhere, subjects may have drug side effects, subjects may
be too busy, and so on. If a subject drops out, all data on that subject from the
last visit are missing. If dropout subjects never return to the study, the resulting
missing data have a monotone missing pattern (after perhaps a re-arrangement
of the data). If dropout subjects return to the study at later times, the missing
data are intermittent missing and have a non-monotone missing pattern.

In the presence of missing data, statistical analyses ignoring missing data or
based on simple imputation methods may lead to biased results. Appropriate
statistical methods for missing data must take the missing data mechanisms
into account. In Chapter 3, we give an overview of common missing data meth-
ods. In Chapter 4, we focus on missing data problems in mixed effects models.

1.6.2 Censoring, Measurement Error, and Outliers

In practice some data may be viewed as partially missing or partially observed,
such as censored data and mis-measured data. When data are partially missing,
the true values of the variables are not observed but some versions of the true
values are observed, i.e., partial information is available for the unobserved
true values, which is different from completely missing data.

In some studies, some variables may be censored in the sense that too large or
too small values are unobservable. For example, in Example 1.3.2 (page 11),
some viral loads are left censored due to a low detection limit, i.e., a certain
threshold below which viral loads are not quantifiable. When data are censored,
their true values are missing but are known to be smaller (or larger) than known
values, so partial information is available for the missing values. Mixed effects
models with censored data will be discussed in details in Chapter 6.

In practice, some variables may be measured with errors, i.e., the observed data
are not the true values but are contaminated ones. For example, blood pressure
and air pollution are often measured with errors. Ignoring measurement errors
may lead to misleading statistical inference. In regression models, we mainly
focus on measurement errors in covariates. Statistical methods for covariate
measurement errors will be studied in Chapter 5.

An outlier can be defined as an observation which appears to be inconsistent
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with the remainder of the data, i.e., an outlier is far away or is distinctly dif-
ferent from the rest of the data. If we assume that a statistical model approx-
imates the true data-generating mechanism, we can treat outliers as observa-
tions that deviate from the true model (of course, if there are too many outliers,
the assumed model may be questionable). Thus, in many cases outliers may
be interpreted as observations that deviate from their true values or interpreted
as incompletely observed values or mis-measured values. Outliers may arise
from measurement errors, recording errors, or special individuals who are not
representative of the population. Although some outliers may be true values,
here we view outliers as incomplete data. However, our view does not affect
the methods used to address outliers. It is known that maximum likelihood
methods are sensitive to outliers, so robust methods are useful for mixed ef-
fects models. We discuss robust methods for regression models in Chapter 9.

1.6.3 Simple Methods

In the presence of missing data, a widely used method (often the default method
in standard software) is the so-called complete-case method: it simply deletes
any individuals (cases) which contain missing data. This simple method can
lead to biased results if the missing data are informative (see Section 3.2.1,
page 101, in Chapter 3 for a more detailed discussion and examples). Even if
the missing data are not informative, the complete-case method may be ineffi-
cient because substantial observed data may be discarded in many cases. Note
that a mixed effects model allows unbalanced response data, i.e., individuals or
cases will not be discarded in standard software even if there are missing data
in the response. However, if the missing responses are informative, the missing
data mechanism must be incorporated for valid analysis (see Chapter 4). More-
over, a mixed effects model does not allow any missing data in covariates, so
any cases with missing values may be discarded in a standard software.

Another commonly used simple method for missing data in longitudinal stud-
ies is the so-called last-value-carried-forward (LVCF) method: it imputes a
missing value by the last observed value from the individual. This method may
also lead to misleading results, since the validity of this method requires very
strong assumptions (Cook, Zeng, and Yi 2004). Moreover, it fails to incorpo-
rate the missing data uncertainty.

There are other simple imputation methods. For example, we may impute a
missing value by a mean value of the observed data or by a predicted value
from a regression model. Little and Rubin (2002) provided a detailed discus-
sion. A main drawback of these single imputation methods is that they fail to
take the missing data uncertainty into account, so the standard errors of the
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main parameter estimates are likely to be under-estimated. More appropriate
methods should either adjust the standard errors or impute several values for
each missing value. In Chapter 3, we will provide a comprehensive overview
of various missing data methods and literature in this area.

In regression analyses, covariate measurement errors are often ignored. How-
ever, if a covariate is measured with substantial error, ignoring the measure-
ment error may lead to severely misleading inference. For example, a highly
significant covariate may be claimed as not significant. We discuss details in
Chapter 5.

A simple method for outliers is to remove them. However, outliers may contain
valuable information. Moreover, for models with multiple variables, it may be
difficult to detect outliers, due to the high dimensionality (so graphical tools
may not be easily used). Therefore, robust methods which accommodate out-
liers or downweight outliers are very useful. These robust methods will be
discussed in Chapter 9.

1.7 Software

Standard mixed effects models, including LME, GLMM, and NLME models,
have been implemented in many commonly used statistical software, such as
R or Splus, SAS, Stata, and SPSS. We use R or Splus for most of the examples
and figures throughout the book. In this section we give a brief overview of
common software for mixed effects models and incomplete data. More details
are discussed in later chapters as appropriate.

Splus is a statistical software based on the S programming language developed
at Bell Labs (now Lucent Technologies). R may be considered as a different
implementation of S, and much of the code for Splus and R is the same. R
is free and open source, and it can be downloaded from the R home page:
http://cran.r-project.org/. The book by Venables and Ripley (2003) “Modern
Applied Statistics with S-PLUS” (the MASS package) is a good reference for
most common statistical analyses. Readers can go to the R webpage for infor-
mation on R packages. To use a package, one needs to install it first (just once),
and then in each R session one needs to load in the package using the library()
function.

SAS is a widely used statistical software that is particularly popular in biomed-
ical research (www.sas.com). Stata is a statistical software popular in social
science and survey research (www.stata.com). It is becoming increasingly pop-
ular, and it offers some simple-to-implement methods such as methods for ro-
bust standard errors across a wide variety of models and cluster resampled
bootstrap methods. SPSS is a statistical software that is popular in psychol-
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ogy and social science (www.spss.com). Other software, some are for specific
statistical methods, includes WinBugs, NONMEM, HLM, MLWin, and more.

For fitting mixed effects models (LME, NLME, GLMM models), the R pack-
ages include lme4, nlme, glmm, and glmmPQL. Pinheiro and Bates (2002)
is a good reference. The SAS procedures include mixed, nlmixed, and glim-
mix. The STATA command is xtmixed, and the SPSS command is mixed. See
Section 2.7.1 in Chapter 2 for more details.

Software for missing data includes the Splus missing data library library(missing)
in Splus version 7.0, Joseph Schafer’s free software in Splus, R and Splus pack-
age MICE, SAS procedure proc mi, SPSS missing data library in SPSS ver-
sion 12.0, and Bayesian package WinBugs. STATA offers software for mea-
surement error in generalized linear models (http://www.stata.com/merror/).
Robust methods are also widely implemented in many software, such as SAS
procedure proc robustreg and Splus function lmRobMM() and many R pack-
ages. See Section 3.8 in Chapter 3 for more details.

Optimization procedures are also widely implemented. For example, R of-
fers function nlm(), which carries out a minimization using a Newton-type
algorithm, and function optim(), which offers general-purpose optimizations
based on Nelder-Mead, quasi-Newton and conjugate-gradient algorithms and
includes an option for box-constrained optimization and simulated annealing.
Splus offers functions ms(), nlmin(), and nlminb(). SAS/OR software offers
several procedures for optimization, including proc lp (for linear program-
ming problems), proc netflow (for network optimization problems), proc nlp
(for nonlinear programming problems), and more.

Available software can mostly be used to analyze standard models and prob-
lems. For many of the more advanced and more specific models and methods,
available software may not be directly applicable. Users either need to modify
existing packages or program their own functions.

1.8 Outline and Notation

Outline of the Book

In this book, we mainly focus on mixed effects models or random effects mod-
els for longitudinal or clustered data when the observed data may be complex
or incomplete. These mixed effects models include LME models, GLMMs,
NLME models, frailty models, and semiparametric or nonparametric mixed
effects models. We first provide a comprehensive overview of these mixed ef-
fects models, and then we discuss various complex or incomplete data prob-
lems, including missing data, measurement error, censoring, and outliers.

Throughout the book, we mostly consider maximum likelihood methods for
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inference since likelihood methods are standard inferential tools for mixed
effects models. However, for the analysis of longitudinal or clustered data,
GEE methods and Bayesian methods are equally popular and in some cases
may even be more desirable than likelihood methods. For example, for some
problems software may be available for GEE methods and Bayesian methods,
which makes these methods easy to implement, but software may not be avail-
able for likelihood methods since likelihood methods may require custom pro-
gramming. There are many books available which focus on GEE methods and
Bayesian methods. Thus, due to space limitation, in this book GEE methods
and Bayesian methods will only be briefly discussed.

The book is organized as follows. In Chapter 2, we provide a comprehensive
overview of commonly used mixed effects models, their properties, and infer-
ential methods. In Chapter 3, we discuss missing data mechanisms and review
general missing data methods, including the EM algorithm and multiple impu-
tation methods. Chapter 4 focuses on missing data problems in mixed effects
models. Covariate measurement errors in mixed effects models are discussed
in Chapter 5. Mixed effects models with censored responses are discussed in
Chapter 6. In Chapter 7, we consider survival models and frailty models with
incomplete data. In Chapter 8, we discuss joint models of survival data and lon-
gitudinal data, in the presence of incomplete data. Robust methods for mixed
effects models with incomplete data are discussed in Chapter 9. In Chapter 10,
we consider marginal GEE models for longitudinal data or clustered data, in
the presence of incomplete data. In Chapter 11, we discuss Bayesian meth-
ods for mixed effects models with incomplete data. Chapter 12 is an Appendix
which provides some background materials.

Readers are recommended to read Chapters 1 – 3 to get an overview of various
mixed effects models and general methods for incomplete data (Chapter 1 may
be skipped if readers already have some background in mixed effects models),
and then jump to certain chapters as needed without necessarily following the
order of the chapters. Since some readers may be just interested in materials
in certain chapters, we try to make each chapter somewhat self-contained if
possible, so some essential materials may be briefly repeated in some chapters.
Some background materials are provided in Chapter 12, including likelihood
theory, the Gibbs sampler, rejection and importance sampling methods, numer-
ical integration methods, optimization methods, bootstrap, and some matrix
algebra.

Notation Used in the Book

Throughout the book, in general we will use capital letters to represent matri-
ces, bold-face small letters to represent vectors, and small letters (not in bold
type) to present scalars. Vectors will be in column formats. Transpose of a ma-
trix or a vector will be denoted by T . Thus, for example,A represents a matrix,
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AT denotes the transpose of A, y = (y1, y2, · · · , yn)T represents a n× 1 vec-
tor with components yj’s, and yj represents a scalar. To simplify notation, a
sample point yj may either represent a random variable or an observed value
of this random variable (we rely on the context to distinguish the two).

In general we will use f(·) to denote a generic probability density function.
Thus, for example, f(x) is a density function of a random variable x and f(y)
is a density function of a random variable y, relying on the context to distin-
guish the two. The conditional distribution of y given x is denoted by [y|x], and
the corresponding conditional density function is denoted by f(y|x). In gen-
eral, such notation should not cause confusion, but in cases where confusion
may arise, we will use fx(x) to denote the density function of x.

For longitudinal or clustered data, yi = (yi1, yi2, · · · , yini
)T represents the

ni repeated measurements on individual or cluster i (i = 1, 2, · · · , n), so the
natural unit is yi, not yij . The sample size is n, while ni is the number of
repeated measurements within individual or cluster i. For example, in the chil-
dren growth data in Section 1.3.4 (page 15), n = 26 and ni = 9 for all i.
We will use the terms individuals, subjects, clusters, patients, children, etc.,
interchangeably for the experiment units based on context.

Although we try to make the notation consistent throughout the book, we also
try to follow standard notation in the literature so that readers may find it easier
to follow. Thus, notation in some chapters or sections are self-contained, which
may differ slightly from that in other chapters or sections, so readers should not
assume that the same notation always means the same variable throughout the
book. In these cases, the notation will be re-defined in the particular chapters
or sections. This approach should not cause much confusion.





CHAPTER 2

Mixed Effects Models

2.1 Introduction

In Sections 1.4 and 1.5 of Chapter 1, we reviewed regression models for cross-
sectional data and longitudinal or clustered data. In this chapter, we provide a
more detailed discussion of mixed effects models for longitudinal or clustered
data, including their properties and methods for statistical inference.

A mixed effects model for longitudinal or clustered data can be obtained from
the corresponding model for cross-sectional data by introducing random ef-
fects. Specifically, we have

• linear mixed effects (LME) models, which can be obtained from linear re-
gression models by introducing random effects;

• nonlinear mixed effects (NLME) models, which can be obtained from non-
linear regression models by introducing random effects;

• generalized linear mixed models (GLMMs), which can be obtained from
GLMs by introducing random effects;

• frailty models, which can be obtained from survival models by introducing
random effects.

For these mixed effects models, the random effects in the models represent the
influence of each individual (cluster) on the repeated observations that is not
captured by the observed covariates.

A mixed effects model may also be viewed as a multi-level or hierarchical
model in which the level-1 observations are nested within the higher level-2
observations. For example, in longitudinal studies repeated observations from
a subject are nested within this subject (cluster), and in multi-center studies
observations from a center are nested within this center (cluster). Random ef-
fects are used to accommodate the heterogeneity in the data, which may arise
from subject or clustering effects or from spatial correlation. The magnitude of
the random effects measures the variability across individuals or measures the

41
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between individual variations. Mixed effects models allow individual-specific
or subject-specific inference and are often called subject-specific (SS) models.
This is to be contrasted with the population averaged (PA) models or marginal
models.

With a mixed effects model, we can make inference or prediction for a specific
individual or cluster, which is useful in some applications. For example, in
some medical studies we may be able to provide individualized treatments. In
mixed effects models, individuals are assumed to be drawn from a population
that share common features, so one can borrow strength (information) from
similar individuals or combine results from similar studies.

A LME model may be viewed as a special case of either a GLMM or a NLME
model. A key difference between a LME model and a GLMM or a NLME or
a frailty model is that the random effects are linear in the LME model, while
the random effects are nonlinear in the other models. This difference leads to
major computational challenges in likelihood estimation for models nonlinear
in the random effects, since the likelihoods involve integrations with respect
to these unobservable random effects. Moreover, the distinction between SS
models and PA models may not be important for LME models but it is critical
under nonlinearity (Heagerty 1999; Davidian and Giltinan 2003).

There are large parallel literatures of GLMMs and NLME models. Many of the
estimation methods are similar, but their finite-sample performances may be
different due to different types of the responses such as a continuous response
and a binary response (see Section 2.6 for discussion). Moreover, NLME mod-
els are often “scientific” (or mechanistic) models while GLMMs (like LME
models) are often empirical ones, so interpretations may be different. Survival
and frailty models will be treated separately in Chapter 7 since survival data
are often censored so special techniques are needed.

LME, GLMM, and NLME models are all parametric models in which the
functional forms linking covariates to the responses are assumed to be known,
and the objective is to estimate the unknown parameters in the models. For
complex longitudinal data, however, parametric models may be too restrictive
due to the complexity of longitudinal trajectories. In nonparametric models,
the functional forms of the longitudinal trajectories are left to be unspecified,
which can be any smooth functions without parametric forms, and a main ob-
jective is to estimate the smooth functions. Therefore, nonparametric models
are more flexible in modeling longitudinal trajectories. Semiparametric mod-
els combine elements of parametric models and nonparametric models and
sometimes may be more appealing. For longitudinal data, we can also intro-
duce random effects or random processes in nonparametric or semiparametric
models to incorporate between individual variation and within individual cor-
relation. The resulting models are called nonparametric mixed effects models
or semiparametric mixed effects models.
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In this chapter, we discuss LME, GLMM, and NLME models in details. Frailty
models will be discussed separately in Chapter 7. Since mixed effects models
may be viewed as extensions of their corresponding models for cross-sectional
data, in each section we first review the essential ideas of the corresponding
models for cross-sectional data, and then we extend the models to mixed-
effects models by introducing random effects. This approach also allows us
to compare the models, estimates, and inferences for cross-sectional data and
longitudinal or clustered data. Finally we describe commonly used statistical
software to fit these mixed effects models.

2.2 Linear Mixed Effects (LME) Models

2.2.1 Linear Regression Models

In Section 1.4.2 of Chapter 1, we briefly discussed classical linear regression
models for cross-sectional data. In this section, we provide a more detailed
discussion.

A general linear regression model for cross-sectional data can be written as

yi = β0 + β1xi1 + · · ·+ βpxip + εi = xT
i β + εi, i = 1, 2, · · · , n, (2.1)

where yi is the response for individual i, βj’s are unknown parameters, xij is
the j-th covariate for individual i, xi = (xi1, · · · , xip)T , β = (β0, · · · , βp)T ,
and εi’s are random errors. Let

y =


y1
y2
...
yn

 , X =


1 x11 · · · x1p

1 x21 · · · x2p

· · · · · ·
1 xn1 · · · xnp

 , ε =


ε1
ε2
...
εn

 .

Model (2.1) can be written in a matrix form as follows

y = Xβ + ε. (2.2)

The standard assumptions for models (2.1) or (2.2) are (i) the errors εi’s are
independent, (ii) the errors εi’s have mean zero, i.e., E(ε) = 0, and constant
variance σ2, i.e., V ar(ε) = σ2In, where In is the n × n identity matrix,
and (iii) the errors εi’s are normally distributed, i.e., ε ∼ N(0, σ2In). The
(marginal) distribution of y is given by

y ∼ N(Xβ, σ2In), (2.3)

under the model assumptions.

The least squares method for estimating β is to minimize Q(β) = (y −
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Xβ)T (y −Xβ). The parameter estimates are

β̂ = (XTX)−1XT y, σ̂2 =
RSS

n− p− 1
=

rT r
n− p− 1

, (2.4)

where r = y − Xβ̂ is a vector of residuals, and RSS = rT r is the residual
sum of squares. Residuals represent the differences between the fitted values
and the observed values of the response, so they can be used to check if the
model fits the data well. For linear model (2.2), the least square estimates are
identical to the maximum likelihood estimates (MLEs). It can be shown that

β̂ ∼ N(β, σ2(XTX)−1). (2.5)

This result can be used to construct confidence intervals and perform hypothe-
sis testing for β.

Note that the closed-form or analytic expressions of the results in (2.3) – (2.5)
depend on the linearity of the model in the parameters and other model as-
sumptions. For nonlinear or generalized linear models, which are nonlinear in
the parameters, such closed-form or analytic expressions are unavailable.

For model diagnostics, one should check i) whether the model assumptions are
valid, i.e., goodness of fit, constant variance, and normality; ii) whether there
are any outliers; and iii) whether there are any influential observations, which
may have big impacts on parameter estimates but are not necessary outliers.
Model diagnostics are often based on graphical tools such as residual plots,
although some formal methods are also available.

References for linear regression models are extensive, including Draper and
Smith (1998) and Weisberg (2005), among others. Interested readers can find
more detailed discussions of linear models in these references.

2.2.2 LME Models

For longitudinal data or clustered data, the classical linear regression model
(2.2) is inappropriate because the observations within each individual or clus-
ter may be correlated (so the independence assumption for model model (2.2)
does not hold). To incorporate the correlation within individuals or clusters
and the variation between individuals or clusters, we can extend model (2.2)
by introducing random effects in the model and thus obtain a LME model, as
demonstrated by the examples in Section 1.5 of Chapter 1. In this section, we
discuss general LME models and their properties.

The Model

Let yij be the response value for individual (or cluster) i at time tij , i =
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1, 2, · · · , n, j = 1, 2, · · · , ni, and let yi = (yi1, yi2, · · · , yini
)T be the ni re-

peated observations within individual (or cluster) i. A general LME model can
be written as (Laird and Ware 1982)

yi = Xiβ + Zibi + ei, i = 1, 2, · · · , n, (2.6)
bi ∼ N(0, D), ei ∼ N(0, Ri), (2.7)

where β = (β0, β1, · · · , βp)T are population parameters (or fixed effects),
bi = (bi1, · · · , biq)T are random effects, Xi is a ni × (p + 1) design ma-
trix containing covariates of individual i, Zi is a ni × q design matrix (Zi

is often a submatrix of Xi), ei = (ei1, ei2, · · · , eini
)T are random errors of

within-individual measurements, Ri is a ni×ni variance-covariance matrix of
within-individual measurements, and D is the variance-covariance matrix of
the random effects.

A distributional assumption is made for the random effects in (2.7) since the
sampled subjects are thought to represent a population of subjects. The matrix
D is usually unstructured, but it can be structured such as a diagonal matrix
(Jennrich and Schluchter 1986). The variances of the random effects bi, or
the diagonal elements ofD, are sometimes called variance components, which
measure the variability of the longitudinal trajectories between individuals that
are unexplained by covariates. The variances of eij’s, or the diagonal elements
of Ri, measure the variability of the repeated measurements within each indi-
vidual. We assume that bi and ei are independent.

The covariance matrixRi is often assumed to depend on i only through their di-
mensions. For example, it is often assumed thatRi = σ2Ini

. This suggests that
the within individual measurements are often assumed to be conditionally in-
dependent given the random effects. This assumption may be reasonable when
the within individual measurements are far apart so that within-individual au-
tocorrelation is practically negligible, or that the between-individual variation
is dominant. In many cases an accurate characterization of Ri is less critical.
In fact, the conditional independence assumption is standard for GLMMs. Da-
vidian and Giltinan (2003) provided a detailed discussion on the specification
of matrix Ri.

LME model (2.6) and (2.7) specifically incorporates two sources of variability:
the within-individual variation and the between-individual variation. Thus,
it can be interpreted as a hierarchical two-stage model: stage 1 specifies the
within-individual variation, which is given by (2.6), and stage 2 specifies the
between-individual variation, which is given by (2.7).

Note that LME model (2.6) and (2.7) differs from the classical linear regres-
sion model (2.2) only by the term Zibi, which links the random effects to the
response.
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The marginal distribution of the response yi is given by

yi ∼ N(Xiβ, ZiDZ
T
i +Ri). (2.8)

Thus, the variance-covariance structure of the repeated observations within in-
dividual i is given by

Cov(yi) = Vi = ZiDZ
T
i +Ri. (2.9)

The marginal meanE(yi) = Xiβ can be interpreted as an average over all ran-
dom effects, so it does not reflect individual longitudinal trajectories. Instead,
individual-specific inference is performed by conditioning on the random ef-
fects bi. Inference for the population parameters β is based on the marginal
distribution (2.8).

Note that the ability to derive the marginal distribution of yi in closed form
in (2.8) depends on the assumptions that the random effects bi and random
errors ei are linear in LME model (2.6) and that bi and ei are independent
and normally distributed. In GLMM or NLME models, however, closed form
expressions of the marginal distributions are unavailable, as will be seen in
Sections 2.3.2 and 2.4.2.

Parameter identifiability (or model identifiability) is an important problem in
mixed effects models. Parameters or models are called non-identifiable if two
sets of different parameters lead to the same probability distribution. Demi-
denko (2004) and Wang and Heckman (2009) discussed parameter identifia-
bility for LME models. In particular, Wang and Heckman (2009) showed that
LME model (2.6) and (2.7) is always identifiable when Ri = σ2I .

Inference Based on Likelihood Methods

Statistical inference for a LME model is typically based on the maximum like-
lihood method or the restricted maximum likelihood method (Laird and Ware
1982; Lindstrom and Bates 1988).

Let η denote the vector of all distinct parameters in the variance-covariance
matrices D and Ri, and let θ = (β,η) denote all parameters in LME model
(2.6) and (2.7). The likelihood for the observed data y = {y1, · · · ,yn} is given
by

L(θ|y) =
n∏

i=1

f(yi|β,η) (2.10)

=
n∏

i=1

∫
f(yi|bi,β, Ri)f(bi|D) dbi, (2.11)

where

f(yi|bi,β, Ri) = (2π)−ni/2|Ri|−1/2exp
[
− (yi −Xiβ − Zibi)TR−1

i
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×(yi −Xiβ − Zibi)
]
,

f(bi|D) = (2π)−q/2|D|−1/2exp
(
−bT

i D
−1bi

)
.

In the case Ri = σ2I , given the variance-covariance parameters η (or Vi =
Vi(η)), the values of β and σ2 that maximize the likelihood are

β̂ =

(
n∑

i=1

XT
i V

−1
i Xi

)−1 n∑
i=1

XT
i V

−1
i yi,

σ̂2 =
1
n

n∑
i=1

(yi −Xiβ̂)TV −1
i (yi −Xiβ̂),

which may be used to derive the profile likelihood.

Maximum likelihood estimates (MLEs) of the unknown parameters in LME
model (2.6) and (2.7) can be obtained using an iterative algorithm such as
an expectation-maximization (EM) algorithm or a Newton-Raphson method
(Laird and Ware 1982; Lindstrom and Bates 1988; Verbeke and Molenberghs
2001). Pinheiro and Bates (2002) provided computational details. In Chapter 3
(Section 3.4) we will provide a detailed description of the EM algorithm in its
general form.

The EM algorithm is a popular iterative algorithm typically used to compute
MLEs in the presence of missing data or unobservables (Dempster, Laird, and
Rubin 1977). It is general, simple, and stable. It can be used for likelihood
inference in mixed effects models in which the random effects are viewed as
unobservables or “missing data”.

The EM algorithm iterates between an E-step, which computes the conditional
expectation of the “complete-data” log-likelihood given the observed data and
current parameter estimates, and an M-step, which maximizes the conditional
expectation in the E-step to obtain updated parameter estimates. Given starting
values of the unknown parameters, one iterates between the E-step and the
M-step until convergence. At convergence, the final parameter estimates are
(possibly local) maximizers of the observed-data likelihood. Standard errors
of the MLEs are not directly produced in the EM algorithm, but they can be
obtained separately.

For LME model (2.6) and (2.7), if we treat the random effects as “missing
data”, so we have “complete data” (y,b) = {(yi,bi), i = 1, 2, · · · , n}. Let k
denote the iteration number, k = 0, 1, 2, · · · . The E-step of the EM algorithm
at iteration k computes

Q(θ|θ(k)) = E
[
logL(θ|y,b)

∣∣ y,θ(k)
]

(2.12)
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= E

[
n∑

i=1

{
(log f(yi|bi,β, Ri) + log f(bi|D))

∣∣ yi,θ
(k)
}]

,

where the conditional expectation is taken with respect to the conditional distri-
bution f(bi|yi,θ

(k)). For LME models, the E-step simplifies to the computa-
tion of the following sufficient statistics of the variance-covariance parameters
η in the covariance matrices D and Ri:

n∑
i=1

E
(
eT

i ei

∣∣yi, θ̂
(k)
)

=
n∑

i=1

[
ê(k)T

i ê(k)
i + tr

(
Cov

(
ei|yi, θ̂

(k)
))]

,

n∑
i=1

E
(
bibT

i

∣∣yi, θ̂
(k)
)

=
n∑

i=1

[
b̂(k)

i b̂(k)T
i + Cov

(
bi|yi, θ̂

(k)
)]
,

where

ê(k)
i = yi −Xiβ̂

(k)
− Zib̂

(k)
i ,

b̂(k)
i = D(η̂(k))ZT

i V
−1
i (η̂(k))

(
yi −Xiβ̂

(k)
)
,

Vi(η̂(k)) = ZiD(η̂(k))ZT
i +Ri(η̂(k)),

and the posterior covariance matrices can be obtained from the joint normal
density of (yi,bi, ei).

The M-step finds an updated parameter estimate θ(k+1) which maximizesQ(θ|θ(k)),
i.e.,

β̂
(k+1)

=

[
n∑

i=1

XT
i V̂

−1
i (η̂(k))Xi

]−1 n∑
i=1

XT
i V̂

−1
i (η̂(k))yi,

σ̂(k+1)2 =
n∑

i=1

E
(
eT

i ei

∣∣yi, θ̂
(k)
)/ n∑

i=1

ni,

D̂(k+1) =
n∑

i=1

E
(
bibT

i

∣∣yi, θ̂
(k)
)/

n, k = 0, 1, 2, · · · .

Iterating the above procedure until convergence, we obtain the MLE of θ.

Note that, for LME models, the unobservable random effects can be integrated
out in the E-step of the EM algorithm, so analytic (or closed-form) expressions
of the E-step and M-step can be obtained, which is not possible for GLMM
and NLME models. This greatly reduces computation effort since computing
Q(θ|θ(k)) in the E-step for GLMM and NLME models can be challenging, as
will be seen in Section 2.6.

Confidence intervals and hypothesis tests for the parameters in a LME model
are often based on asymptotic results (Miller 1977), since the exact finite-
sample distribution of the MLEs cannot be explicitly derived. That is, we
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can use the asymptotic normal distribution of the MLE to obtain approximate
confidence intervals and hypothesis tests for the parameters. See Verbeke and
Molenberghs (2001) for a detailed discussion. Alternatively, we can use boot-
strap methods (Efron and Tibshirani 1993), which generally gives more accu-
rate approximation but is computationally more intensive.

Given a dataset, the random effects can be estimated by the following empirical
Bayesian estimators

b̂i = E(bi|yi, θ̂) = D(η̂)ZT
i V

−1
i (η̂)(yi −Xiβ̂). (2.13)

These random effect estimates can then be used for individual-specific infer-
ence. For example, a predicted response trajectory for individual j is given by

ŷj = Xjβ̂ + Zjb̂j .

Standard errors and confidence intervals for b̂i and ŷj can also be obtained
(see, e.g., Verbeke and Molenberghs 2001).

Restricted Maximum Likelihood (REML) Estimates

Note that MLEs of the variance components η are biased downward since the
degrees of freedom lost in the estimation of the mean parameters β are not in-
corporated in the estimation of η. This can be more easily seen from the follow-
ing simple example. Suppose that z1, · · · , zn i.i.d. ∼ N(µ, σ2). The MLE of
σ2 is given by σ̂2 =

∑n
i=1(zi− z̄)2/n, which is biased becauseE(σ̂2) = (n−

1)σ2/n. An unbiased estimate of σ2 is given by σ̃2 =
∑n

i=1(zi− z̄)2/(n−1),
which is the REML estimate of σ2 described as follows.

For a LME model, less biased estimates of the variance components η can be
obtained using the restricted (or residual) maximum likelihood (REML) esti-
mates (Harville 1977). REML estimates of η can be obtained by maximizing
the following restricted likelihood

LR(η|y) =
∫
L(β,η|y) dβ,

which may be interpreted as integrating the mean parameters β out of the like-
lihood L(β,η|y) in a Bayesian framework with uniform prior for β. So the
restricted likelihood LR(η|y) is a likelihood only involving η. Laird and Ware
(1982) gave expressions of an EM algorithm for REML estimation. Note that
the bias of the MLE of η depends on the dimension of the mean parameters β.
The REML estimator is less biased than the MLE for estimating η, but REML
estimate may have larger mean square errors (Corbeil and Searle 1976).

More extensive discussions of LME models can be found in Verbeke and
Molenberghs (2001), Demidenko (2004), Jiang (2007), and McCulloch, Searle,
and Neuhaus (2008). Pinheiro and Bates (2002) provided nice illustration using
Splus/R, and Littell et al. (2006) illustrated SAS implementation.
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Example 2.1

We consider the following simple LME model to illustrate the correlation in-
troduced by the random effect in the model:

yij = β + bi + eij , i = 1, 2, · · · , n; j = 1, 2, · · · ,m,
bi ∼ N(0, σ2

b ), eij i.i.d. ∼ N(0, σ2
e),

where bi is the random effect and eij is the random error. It can be shown that
the correlation coefficient between the repeated measurements {yi1, yi2, · · · , yim}
within subject i is given by

r = corr(yij , yik) =
σ2

b

σ2
b + σ2

e

, j 6= k, j, k = 1, 2, · · · ,m.

Thus, the random effect bi introduces correlation r between the repeated mea-
surements. If there is no random effect (i.e., σ2

b = 0), there is no correlation
(i.e., r = 0). If the between-individual variation is much larger than the within-
individual variation (i.e., σ2

b � σ2
e ), the correlation r will be very high (close

to 1).

Example 2.2 Mental distress data

Consider the mental distress data in Section 1.3.1 of Chapter 1 (page 8). We fit
a simple linear regression model with GSI score (yij) as the response and time
(tij , in month) as a covariate. If we ignore the correlation between the repeated
measurements within each individual, we may simply fit the following linear
regression model

yij = β1 + β2tij + eij , i = 1, · · · , n; j = 1, · · · , ni, (2.14)

where eij i.i.d. ∼ N(0, σ2). However, the repeated measurements within each
individual are likely to be correlated, and there is also a large variation between
individuals. Thus, it may be more appropriate to consider the following LME
model

yij = β1i + β2itij + eij , (2.15)
β1i = β1 + b1i, β2i = β2 + b2i, i = 1, · · · , n; j = 1, · · · , ni,

where eij i.i.d. ∼ N(0, σ2), and (b1i, b2i)T ∼ N(0, D) are random effects.

There are missing data in this dataset. As an illustration, here we only use
complete-cases, i.e., individuals with missing data are removed. Table 2.1 shows
the estimates based on models (2.14) and (2.15). We see that there is a strong
downward trend of GSI scores over time based on either model (significant
negative estimates of β2 in both models), suggesting that the depression levels
decrease over time. However, the two models may produce different estimates.
In particular, the two models produced quite different estimates of the standard
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Table 2.1 Estimates based on linear model (2.14) and LME model (2.15) for the mental
distress data

Model Par. Est. S. E. Par. Est. S. E. Par. Est.

Linear Model (2.14) β1 1.015 0.026 β2 –0.276 0.062 σ 0.67
LME Model (2.15) β1 1.024 0.042 β2 –0.222 0.038 σ 0.36

S.E.: standard error

errors. Estimates based on the LME model (2.15) should be more reliable.
Moreover, by separating the within-individual and between-individual varia-
tions, the LME model (2.15) produced much smaller estimate of the residual
standard error σ than the linear model (2.14).

2.3 Nonlinear Mixed Effects (NLME) Models

2.3.1 Nonlinear Regression Models

Classical linear regression models have been widely used because of their sim-
plicity, which is an important advantage before modern computers become
available. However, linear models usually only provide description of observed
data, rather than trying to understand data, since they are usually chosen based
on simplicity and reasonable fit of the observed data without necessarily un-
derstanding of the data-generation mechanisms. In other words, linear mod-
els usually provide little understanding of the data-generation mechanism, but
only provide a local approximation to the true relationship between the re-
sponse and covariates, if such true relationship exists. With the availability of
modern computing power, there may be little reason to constrain one’s choice
to linear models.

Nonlinear regression models, on the other hand, attempt to understand the me-
chanics of data generation, so they are often called mechanistic models (or
“scientific” models). The advantages of nonlinear models include:

• nonlinear models may provide better predictions outside the range of ob-
served data than that of linear models, since nonlinear models are usually
based on data-generating mechanisms;

• parameters in nonlinear models often have natural physical interpretations;
• nonlinear models may require few parameters than the corresponding linear

models that fit the data equally well.

Note that, however, in many cases we do not know the data-generating mech-
anisms. In these cases, linear models would be good choices.
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Unlike linear models, for nonlinear models there are typically no analytic or
closed-form expressions for parameter estimates, so an iterative algorithm is
generally required and computation sometimes may be intensive. Moreover, in
fitting nonlinear models it is important to choose good starting values for the
iterative algorithms since the likelihood may have multiple modes. In this sec-
tion we briefly review the essential ideas and methods for nonlinear regression
models for cross-sectional data.

Let yi and xi = (xi1, · · · , xip)T be the response and covariates for individual
i respectively, i = 1, 2, · · · , n. A general nonlinear regression model for cross-
sectional data can be written as

yi = g(xi,β) + εi, i = 1, 2, · · · , n, (2.16)

where g is a known nonlinear function, β is a vector of regression parameters,
and εi is the random error. Assumptions for a standard nonlinear regression
model are the same to those for a standard linear model, i.e., (i) the errors εi’s
are independent, (ii) the errors εi’s have mean zero and constant variance σ2,
and (iii) the errors εi’s are normally distributed. Some of these assumptions
may be relaxed for more general models.

Statistical inference for a nonlinear regression model can be based on the least
squares method or the likelihood method. The ordinary least-squares estimator
for β is to minimize the sum of squares

∑n
i=1(yi − g(xi,β))2. This can be

achieved by solving the following estimating equation
n∑

i=1

∂g(xi,β)
∂β

[yi − g(xi,β)] = 0. (2.17)

An iterative algorithm such as the Newton-Raphson method is often needed to
solve the above equation.

Alternatively, under the normality assumption for the errors, i.e., εi i.i.d. ∼
N(0, σ2), the MLE ofβ can be obtained by maximizing the likelihood function

L(β, σ2|y) =
n∏

i=1

1√
2πσ2

exp
[
− (yi − g(xi,β))2

2σ2

]
.

So the MLE of β satisfies the following likelihood equation

∂ logL(β, σ2|y)
∂β

= 0,

which is identical to the least-squares equation (2.17). Therefore, the ordinary
least-squares estimator of β is the same as the MLE of β, and estimation for a
nonlinear regression model is analogous to that for a linear regression model.

For nonlinear regression models, analytic or closed-form expressions for pa-
rameter estimates are unavailable. However, statistical inference can still be
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carried out based on the standard asymptotic results of likelihood methods un-
der the usual regularity conditions (see Chapter 12). That is, under some regu-
larity conditions, MLEs of the model parameters are consistent, asymptotically
normal, and asymptotically most efficient. Confidence intervals and hypothe-
sis testing can be based on the asymptotic normality of the MLEs. Therefore,
with the availability of modern computers and software, statistical inference
for nonlinear models does not offer much more difficulties than that for linear
models.

In many cases, nonlinear models can be derived from a set of differential equa-
tions based on the understanding of the underlying data-generation mecha-
nisms. Sometimes closed-form expressions of the models can be obtained by
solving the differential equations under plausible assumptions (see, e.g., Wu
and Ding 1999; Lindsey 2001). In some cases, however, the differential equa-
tions cannot be solved explicitly, so the nonlinear models are implicit (see, e.g.,
Ramsay et al. 2007; Huang and Lu 2009).

The developments of nonlinear models require close collaboration between
statisticians and subject-area scientists, but such models may not always avail-
able since the true data-generation mechanisms can be highly complex. Note
that, in principle, any smooth nonlinear functions can be approximated by a
high-order polynomial based on Taylor series expansions, if the functions are
sufficiently smooth. However, high order polynomials are often unstable in
replications of the data so are generally not recommended.

Nonlinear models have been widely used in practice, such as HIV viral dynam-
ics, pharmacokinetics, pharmacodynamics, molecular genetics, and growth or
decay. More detailed discussions of nonlinear models can be found in Bates
and Watts (1988), Seber and Wild (1989), and Lindsey (2001).

Example 2.3 Growth curve models

In the analysis of growth curves, nonlinear models are usually necessary. There
are various growth curve models (see, e.g., Lindsey 2001). Here we consider
a simple monomolecular growth function. Let y(t) be the size at time t (e.g.,
size of an animal), and let µ(t) = E(y(t)). Suppose that the growth rate is
proportional to the remaining size. Then µ(t) satisfies the following differential
equation:

dµ(t)
dt

= β1(β0 − µ(t)), β1 > 0,

which can be solved analytically, with solution

µ(t) = β0 + β2e
−β1t.

Thus, given an observed sample, we can consider the following nonlinear re-
gression model for estimating the parameters

yij = β0 + β2e
−β1tij + eij , i = 1, · · · , n, j = 1, · · · , ni, (2.18)
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where yij is the size for individual i at measurement time tij and eij is the cor-
responding measurement error. If the parameters βj’s vary greatly across indi-
viduals, we can introduce random effects to account for the between-individual
variation. Note that, when β0 + β2 = 0 (i.e., when the initial size is 0), the
above model is called the von Bertalanffy growth curve, which is often used in
ecology to describe animal growth.

Example 2.4 Pharmacokinetics

Studies of pharmacokinetics are important in drug developments (Gibaldi and
Perrier 1982; Gutfreund 1995; Lindsey 2001). Pharmacokinetics studies the
course of absorption, distribution, metabolism, and elimination of some sub-
stance in the body over time, given drug dose, i.e., how the drug moves through
the body. Suppose that a substance enters the body via ingestion. Let y(t) be
the concentration of the substance in the body at time t (usually measured in
the blood), and let µ(t) = E(y(t)). Let µ0(t) be the amount at the absorption
site (e.g., stomach). A commonly used one-compartment model is based on the
following differential equations

dµ(t)
dt

= β1µ0(t)− β2µ(t),

dµ0(t)
dt

= −β1µ0(t),

where β1 is the absorption rate and β2 is the elimination rate. The above dif-
ferential equations have an analytic solution given by

µ(t) =
β1x

(β1 − β2)β3

(
e−β2t − e−β1t

)
,

where x is the dose of the substance and β3 is the volume of distribution.
Therefore, given an observed sample, we can consider the following nonlinear
regression model for estimating the parameters

yij =
β1xi

(β1 − β2)β3
(e−β2tij − e−β1tij ) + eij , (2.19)

i = 1, · · · , n, j = 1, · · · , ni,

where yij is the concentration for individual i at time tij and eij is the corre-
sponding random error. This nonlinear model is widely used.

2.3.2 NLME Models

Nonlinear models for cross-sectional data can be extended to modeling longitu-
dinal or clustered data by introducing random effects in the models to account
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for correlation among the repeated observations within each individual or clus-
ter and the variation between individuals. The resulting models are called non-
linear mixed effects (NLME) models. NLME models are useful in many longi-
tudinal studies, such as studies of growth and decay, HIV viral dynamics, and
pharmacokinetics analysis.

The Model

We can write a NLME model as a two-stage hierarchical nonlinear model to
specifically model intra-individual variation and inter-individual variation. In
the first stage we specify the mean and covariance structure for a given individ-
ual or cluster (see equation (2.20) below), and in the second stage we model the
between-individual variation through random effects (see equation (2.21) be-
low). Specifically, let yi = (yi1, · · · , yini

)T be the ni repeated observations of
the response for individual or cluster i. A general NLME model can be written
as follows

yij = g(tij ,βi) + eij , (2.20)
βi = h(xi,β,bi), i = 1, 2, · · · , n, j = 1, 2, · · · , ni, (2.21)
bi ∼ N(0, D), ei ∼ N(0, Ri), (2.22)

where g(·) is a known nonlinear function, h(·) is often chosen as a linear func-
tion, βi and β are individual-specific parameters and fixed-effects parameters
respectively, xi contains covariates for individual i, Ri is a covariance matrix
for the repeated observations within individual i, D is a covariance matrix for
the random effects, ei = (ei1, ei2, · · · , eini

)T are random errors for observa-
tions within individual i, and bi’s are random effects. We assume that ei and
bi are independent.

Davidian and Giltinan (1995, 2003) provided a detailed discussion about the
choice of the covariance matrix Ri. The within individual error ei may be par-
titioned into two sources: deviation of the observed trajectory for individual
i from the assumed model and possible measurement error. The choice of Ri

should be guided by practical considerations. In many cases, we can simply
choose Ri = σ2Ini

, which may be reasonable if the observation times tij’s
are far apart for fixed i (so correlation between yij and yik is negligible) or
if one emphasizes measurement errors. The advantage of this choice is that it
greatly reduces the number of parameters and it may avoid parameter identifi-
ability problems. Note that the accurate specification of Ri may be less critical
when the between individual variation is dominant. This conditional indepen-
dence assumption is standard for GLMMs. The covariance matrix D measures
the between individual variation that is not explained by covariates xi. The
function h(·) is often chosen to be simple (e.g., linear) and parsimonious.

A NLME model is a subject-specific (SS) model. The parameter β has an in-
terpretation as the typical value of the individual-specific parameter βi, rather
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than the typical average response profile as in a population averaged (PA)
model. In other words, the interpretations of β in SS models and PA models
are not the same for NLME models. This distinction is important for NLME
models, but not for LME models (Davidian and Giltinan 2003; Heagerty 1999).
Thus, one should take this into account when choosing a NLME model in prac-
tice.

Statistical Inference

If the within-individual measurements are rich, i.e., if the ni’s are large, in-
ference can be based on the following two-step method: in step 1 individual
parameters βi are estimated by fitting a nonlinear regression model to the re-
peated observations within each individual using standard estimation methods
for nonlinear models such as the least square method, then in step 2 the individ-
ual estimates β̂i are used to estimate the fixed parameters β and perform infer-
ence based on large-sample asymptotic results. Davidian and Giltinan (1995,
2003) described this two-step method in details. This two-step method is sim-
ple and requires no distributional assumptions, but it requires large ni’s. More-
over, no software is currently available for this two-step method. Therefore, in
the following we focus on the likelihood method.

Let θ = (β,η, D) denote all parameters, where η is the collection of dis-
tinct parameters in the covariance matrix Ri. The marginal distribution of the
response yi is given by

f(yi|θ) =
∫
f(yi|xi,β,η, bi)f(bi|D) dbi, (2.23)

so the likelihood is

L(θ|y) =
n∏

i=1

∫
f(yi|xi,β,η, bi)f(bi|D)dbi. (2.24)

Unlike LME models, the marginal distribution (2.23) and the likelihood (2.24)
typically do not have analytic or closed form expressions (except in special
cases), since the NLME model is nonlinear in the random effects bi. This is a
key difference between a LME model and a NLME model, and it leads to many
computational problems which do not exist for LME models. This difference
also leads to the distinction between a SS model and a PA model.

A major difficulty of likelihood inference for a NLME model is the evaluation
of the intractable integral in the likelihood (2.24). Commonly used methods
include numerical or Monte Carlo integration methods, EM algorithms, and
approximate methods. Specifically, the following approaches are often used:

• numerical or Monte Carlo methods. These methods use Gauss-Hermite
quadrature or Monte Carlo integration techniques to approximate the in-
tegral in the likelihood (2.24).
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• EM algorithms. These methods use EM algorithms to indirectly maximize
the likelihood. Typically, a Monte Carlo or stochastic or numerical method
is needed in the E-step of the EM algorithm.

• approximate methods. These methods use Taylor expansions to linearize the
NLME model and then iteratively solve the resulting LME models, or use a
Laplace approximation to directly approximate the likelihood (2.24).

The Gauss-Hermite quadrature method works well when the random effects
have a low dimension and follow a normal distribution, but the computational
effort increases exponentially with the dimension of the random effects or the
dimension of the integral (see, e.g., Evans and Swartz 2000). The EM algo-
rithm is very general and stable and works for random effects with any dimen-
sions and any distributions, but it can be computationally intensive. The ap-
proximate methods are computationally very efficient since they avoid the in-
tractable integration, so they are implemented in many standard software such
as Splus/R and SAS, but the approximations cannot be made arbitrarily accu-
rate. Since these methods are also used in GLMMs, their detailed descriptions
will be presented in Section 2.6, after GLMMs are discussed.

For a comprehensive discussion of NLME models, see Davidian and Giltinan
(1995, 2003), Vonesh and Chinchilli (1997), and Demidenko (2004), among
others.

Example 2.5 Mixed effects growth and pharmacokinetics models

The growth curve model and pharmacokinetics model, as examples of nonlin-
ear models for cross-sectional data, presented in Section 2.3.1 can be extended
to longitudinal data by introducing random effects to appropriate parameters,
leading to NLME models.

Specifically, the corresponding NLME model for the growth curve model (2.18)
(page 53) can be written as

yij = βi0 + βi2e
−βi1tij + eij , (2.25)

(βi0, βi1, βi2)T = (β0, β1, β2)T + (bi0, bi1, bi2)T , (2.26)
eij i.i.d. ∼ N(0, σ2), (bi0, bi1, bi2)T ∼ N(0, D). (2.27)

Note that, in the above second-stage model (2.26), we can incorporate co-
variates to partially explain the variation in the individual-specific parameters
(βi0, βi1, βi2). Moreover, some parameters may not vary substantially across
individuals so the corresponding random effects may be unnecessary. See Sec-
tion 2.7.1 for strategies of selecting random effects and covariates.

Similarly, the corresponding NLME model for the pharmacokinetics model
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(2.19) (page 54) can be written as

yij =
βi1xi

(βi1 − βi2)βi3
(e−βi2tij − e−βi1tij ) + eij , (2.28)

(βi1, βi2, βi3)T = (β1, β2, β3)T + (bi1, bi2, bi3)T , (2.29)
eij i.i.d. ∼ N(0, σ2), (bi1, bi2, bi3)T ∼ N(0, D), (2.30)

which is widely used in pharmacokinetics. Again, we can introduce covariates
and select random effects for the second-stage model (2.29).

Example 2.6 HIV viral dynamic models

Consider the AIDS study in Section 1.3.2 of Chapter 1 (page 11). Viral dy-
namic models have been used to describe the virus elimination and production
process during anti-HIV treatments. These HIV viral dynamic models have
received great attention in recent years.

Wu and Ding (1999) proposed the following mathematical model for HIV dy-
namics

dTp/dt = k∗TVI − δpTp,

dVI/dt = (1− η)P − cVI , (2.31)
dVNI/dt = ηP + P ∗ +NδpTp − cVNI ,

where Tp, VI , VNI are the concentrations of the productively infected cells, in-
fectious virus, and non-infectious virus respectively, δp is the rate of infected
cells Tp killed by HIV, η is the proportion of non-infectious virus produced
by infected cells, P ∗ accounts for virus production from the ignored compart-
ments, k∗ is a constant, and N is the number of virions per cell.

Under some reasonable assumptions and approximations, model (2.31) leads
to the following bi-exponential (two-compartments) dynamic model, which is
appropriate for the early period after initiation of the treatments (say, first three
months)

V (t) = P1e
λ1t + P2e

λ2t, (2.32)
where V (t) is the total virus at time t, λ1 and λ2 are the turnover rates of
productively infected cells and long-lived and/or latently infected cells respec-
tively, and P1 and P2 are baseline values.

Since the repeated measurements on each individual may be correlated and
there are large variations in viral load across individuals and within individuals
(see Figure 1.3, page 13), we introduce random effects and random error in the
nonlinear model (2.32) and obtain the following NLME model

yij = log10(P1ie
−λ1itij + P2ie

−λ2itij ) + eij , (2.33)
P1i = P1 + b1i, λ1i = λ1 + b2i,

P2i = P2 + b3i, λ2i = λ2 + b4i,
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Table 2.2 Estimates of viral dynamic parameters

Model P1 λ1 P2 λ2 σ

Est. S.E. Est. S.E. Est. S.E. Est. S.E. Est.
Nonlin. Model (2.32) 12.20 0.32 0.40 0.05 7.70 0.33 0.02 0.005 0.66
NLME Model (2.33) 12.35 0.21 0.42 0.02 7.58 0.26 0.02 0.005 0.29
NLME Model (2.34) 12.38 0.19 0.46 0.06 7.45 0.27 0.02 0.005 0.27

S.E.: standard error

where yij = log10(V (tij)) and the log10-transformation is used to stabilize the
variance and make the data more normally distributed, bi = (b1i, b2i, b3i, b4i)T

are random effects, and eij is a random error. We assume that eij i.i.d. ∼
N(0, σ2) and bi ∼ N(0, D).

In model (2.33), the individual-specific parameters are used to incorporate the
variation of these parameters across individuals, which are decomposed into
fixed effects and random effects. Part of this variation may also be explained
by covariates. For example, the variation in the first-phase viral decay rate λ1i

may be partially explained by variation in CD4 counts. Moreover, we may
allow the individual-specific parameters to change over time. Therefore, an
alternative NLME model is

yij = log10(P1ie
−λ1ijtij + P2ie

−λ2itij ) + eij , (2.34)
P1i = P1 + b1i, λ1ij = λ1 + β CD4ij + b2i,

P2i = P2 + b3i, λ2i = λ2 + b4i.

Other covariates may also be introduced in the model. One may select a good
model based on AIC or BIC criteria as well as scientific considerations.

We fit the nonlinear regression model (2.32) using the nonlinear least-square
method and fit the NLME models (2.33) and (2.34) using the approximate
method of Lindstrom and Bates (1990) to the data in the first three months.
In fitting the nonlinear model (2.32), we assume that the errors eij’s are i.i.d.,
so we ignore the correlation in the clusters. Table 2.2 shows some parameter
estimates. Other parameter estimates are: β̂ = −0.00013 (with standard error

0.0002) and diag(D̂)
1/2

= (1.04, 0.05, 1.50, 0.03). We see that ignoring cor-
relation in the data may lead to possibly biased estimates. Moreover, by split-
ting the variation in the data into within-individual measurement error eij and
between-individual random effects bi, one can estimate the within-individual
measurement error more accurately (note that the estimate of σ based on model
(2.32) is more than twice as large as that based on NLME models (2.33) or
(2.34). Figure 2.1 shows the fitted values and observed values based on NLME
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Figure 2.1 Fitted curves based on NLME model (2.33) for four randomly selected sub-
jects.

model (2.33) for four randomly selected individuals. We see that NLME model
(2.33) fits the observed data well.

2.4 Generalized Linear Mixed Models (GLMMs)

2.4.1 Generalized Linear Models (GLMs)

The nonlinear models in Section 2.3.1 extend classical linear models by allow-
ing arbitrary nonlinear relationships between the mean response and covariates,
but the response is assumed to be normally distributed, as in linear models. In
practice, however, there are various types of responses, and many of them are
unlikely to follow normal distributions even after transformations. For exam-
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ple, if the response is a binary variable taking only two possible values (say,
0 or 1), such a response cannot follow a normal distribution no matter what
transformation is used. Generalized linear models (GLMs) extend classical
linear models by allowing responses to follow distributions in the exponential
family, as well as allowing nonlinear relationships between the response and
covariates. The exponential family includes a wide range of commonly used
distributions, such as normal, binomial, and Poisson distributions. Therefore,
GLMs greatly extend the applicability and popularity of regression models. In
this section, we briefly review GLMs for cross-sectional data.

The Model

Let {y1, y2, · · · , yn} be a sample of i.i.d. observations from a distribution in
the exponential family. Then the general probability density function of yi can
be expressed in the form

f(y|θ, φ) = exp
{
yθ − b(θ)
a(φ)

+ c(y, φ)
}
, (2.35)

where a(·), b(·) and c(·) are known functions, θ is called the canonical pa-
rameter representing the location, and φ is called the dispersion parameter
representing the scale. It can be shown that

E(yi) = µ = ∂b(θ)/∂θ, V ar(yi) = a(φ)∂2b(θ)/∂θ2.

The following commonly used distributions belong to the exponential family:
normal distribution, binomial distribution, Poisson distribution, gamma distri-
bution, and inverse Gaussian distribution.

For a normal distribution N(µ, σ2) with mean µ and variance σ2, we have

θ = µ, φ = σ2,

a(φ) = φ, b(θ) = θ2/2, c(y, φ) = −(y2/φ+ log(2πφ))/2.

For a binomial distribution with probability P (y = k) =
(
n
k

)
µk(1 −

µ)n−k, k = 0, 1, · · · , n, where 0 < µ < 1, we have

θ = log(µ/(1− µ)), φ = 1,

b(θ) = −n log(1− µ), c(y, φ) = log
(
n
y

)
,

E(y) = nµ, V ar(y) = nµ(1− µ).

The binomial distribution reduces to the Bernoulli distribution when n = 1,
i.e.,

P (y = k) = µk(1− µ)1−k, k = 0, 1,
with

E(y) = µ = P (y = 1), V ar(y) = µ(1− µ).
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For a Poisson distribution with probability P (Y = k) = (k!)−1e−µµk, k =
0, 1, 2, · · · , where µ > 0, we have

θ = log(µ), φ = 1,
a(φ) = 1, b(θ) = eθ, c(y, φ) = − log(y!),

with E(y) = V ar(y) = µ. These three distributions are most commonly used
in GLMs.

Let µi = E(yi) be the mean response and xi be a vector of covariates, i =
1, · · · , n. Let

ηi = xT
i β = xi1β1 + xi2β2 + · · ·+ xipβp

be the linear predictor, which combines the predictors (covariates) in a linear
form, where β = (β1, · · · , βp)T is a p × 1 vector of unknown parameters. A
generalized linear model (GLM) for cross-sectional data can be written as

g(µi) = xT
i β, i = 1, 2, · · · , n, (2.36)

where g(·) is a monotone and differentiable function, called the link function.
Thus, a GLM has two components:

• the response follows a distribution in the exponential family;
• the link function describes how the mean response is related to a linear

combination of predictors.

GLMs are special nonlinear regression models. They include classical linear
models as a special case when the response distribution is normal and the link
function is the identity function. Note that GLMs are still restrictive in that they
involve essentially linear regression models and only cover distributions from
the exponential family. The two most widely used GLMs for non-normal data
are logistic regression models and Poisson regression models (see Example 2.7
and Example 2.8 below).

Statistical Inference

Statistical inference for GLMs can be based on the likelihood method. For a
general GLM, the log-likelihood function is given by

l(β, φ) =
n∑

i=1

{
yiθi − b(θi)

a(φ)
+ c(yi, φ)

}
.

Note that the regression parameters β is implicit in the loglikelihood function
l(β, φ) since g(E(yi)) = xT

i β and E(yi) = ∂b(θi)/∂θi. Since the loglikeli-
hood l(β, φ) is nonlinear in the parameters β and φ, MLEs are obtained using
an iterative algorithm such as the Newton-Raphson method, which is equiva-
lent to the iteratively reweighted least squares method described in McCullagh
and Nelder (1989). Inference is often based on the deviance, which can be
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defined as the difference between the log-likelihoods for the full model and
for the fitted model. The full model (or saturated model) is the most complex
model where the data is explained exactly (i.e., it represents the data as being
entirely systematic), while the null model is the smallest model where there
is no relationship between the predictors and the response (i.e., it represents
the data as being entirely random). When comparing two nested models, under
the null hypothesis of no difference between the two models, the difference
in the deviances asymptotically follows a χ2 distribution with degrees of free-
dom being the difference of the number of parameters in the two models being
compared.

Note that for some most common distributions in the exponential family, such
as the binomial distribution and the Poisson distribution, the variance is com-
pletely determined by the mean or the variance has a strong relationship with
the mean, unlike normal regression models where the mean and the variance
parameters are separate and can vary freely. This is very restrictive in prac-
tice since the variation in the observed data may not agree with the theoret-
ical variance assumed in the model. If the variation in the data is larger or
smaller than the theoretical variance determined by the assumed distribution,
the problem is called an over-dispersion or a under-dispersion problem, which
must be addressed for correct inference (McCullagh and Nelder 1989; Dean
1998; McCulloch, Searle, and Neuhaus 2008). Overdispersion problems can
arise in longitudinal or clustered data if the correlation within clusters are not
addressed. One way to address these problems is to specify the mean and vari-
ance functions separately without a distributional assumption. This approach is
called the quasi-likelihood method, which is closely related to the generalized
estimating equation (GEE) method (see Chapter 10 for a detailed discussion).

There are extensive literature on GLMs. Interested readers are referred to Mc-
Cullagh and Nelder (1989), Fahrmeir et al. (2001), Diggle et al. (2002), and
McCulloch et al. (2008).

Example 2.7 Logistic regression models

Logistic regression models are perhaps the most widely used models in the
GLM family. A logistic regression model is usually used when the response
y is a binary variable taking only two possible values (say, 0 or 1). In this
case, it may be reasonable to assume that y follows a binomial or Bernoulli
distribution. There are several ways to link the mean response to covariates.
The most popular choice of the link function is the following logit link

g(µ) = log
(

µ

1− µ

)
,

where µ = E(y) = P (y = 1), which has an attractive interpretation as the
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odds in log-scale. With the logit link, the resulting GLM is the following logis-
tic regression model

log
(

µi

1− µi

)
= xi1β1 + xi2β2 + · · ·+ xipβp, i = 1, · · · , n, (2.37)

where µi = E(yi) = P (yi = 1). Other common link functions for binary
responses include probit link and complementary log-log link, but they do not
have the attractive interpretation as the logit link.

Example 2.8 Poisson regression models

If the response y is a count, it may be reasonable to assume that y follows a
Poisson distribution. Then we may choose the following log link

g(µ) = log(µ),

where µ = E(y). The resulting GLM is the following Poisson GLM

log(µi) = xi1β1 + xi2β2 + · · ·+ xipβp, (2.38)

where µi = E(yi). Over-dispersion arises when the observed variance in the
response data is greater than the theoretical variance V ar(yi) = µi, which
must be addressed for valid inference.

2.4.2 GLMMs

GLMs for cross-sectional data can be extended to longitudinal data or clus-
tered data by introducing random effects in the models in a way similar to
LME and NLME models. The random effects incorporate correlation between
the repeated observations within each individual or cluster and variation be-
tween individuals or clusters. The resulting models are called generalized lin-
ear mixed models (GLMMs). In a GLMM, it is assumed that correlation arises
among repeated observations within a given individual or cluster because of
the shared random effects, but these repeated observations are assumed to be
conditionally independent given the random effects.

The Model

Let yi = (yi1, yi2, · · · , yini
)T be the ni repeated observations of the response

within individual or cluster i, i = 1, 2, · · · , n. We assume that, conditioning on
the random effects bi, the repeated measurements yi1, yi2, · · · , yini

are inde-
pendent and each follows a distribution in the exponential family, i.e., a general
GLMM can be written as

g(µij) = xT
ijβ + zT

ijbi, (2.39)
bi ∼ N(0, D), j = 1, 2, · · · , ni, i = 1, 2, · · · , n, (2.40)
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where µij = E(yij |β, bi) is the conditional mean, xij and zij are vectors
containing covariates ( zij is often a sub-vector of xij), β is a vector of fixed
effects, and D is a covariance matrix. Since the model is specified based on
the conditional mean, GLMMs are sometimes called conditional models or
subject-specific models, in contrast to the marginal GEE models.

One can see that the difference between a GLM and a GLMM is the random
effect term zT

ijbi in (2.40). However, this term will cause much of the computa-
tional problems since the random effects bi are unobservable and are nonlinear
in the model, as in a NLME model. The interpretation of GLMMs is similar to
NLME models (see Section 2.3.2).

Statistical Inference

Statistical inference for a GLMM is typically based on the likelihood method.
In GLMM (2.39) and (2.40), the marginal distribution for yi is

f(yi|β, D) =
∫ ni∏

j=1

[f(yij |xij ,zij ,β, φ, bi)f(bi|D)] dbi, (2.41)

which usually does not have an analytic or closed-form expression since the
model is nonlinear in the random effects bi. The likelihood for all observed
data is given by

L(β, D|y) =
n∏

i=1


∫ ni∏

j=1

[f(yij |xij ,zij ,β, φ, bi)f(bi|D)] dbi

 . (2.42)

Note that the likelihood (2.42) of a GLMM is similar to the likelihood (2.24)
of a NLME model (see page 56) in the sense that both involve an intractable
multi-dimensional integral with respect to the random effects. Therefore, like-
lihood inference for a GLMM is similar to that for a NLME model. In fact,
most estimation methods for these two classes of models are conceptually the
same, although there have been parallel developments in the literature. How-
ever, an important difference between these two classes of models is that the
responses in GLMMs may have different types, such as binary or count, while
the responses in NLME models are continuous and assumed to be normal. This
difference may cause different performances of the same methods for the two
classes of models. For example, for finite samples, the approximate methods
based on Taylor approximations or Laplace approximations perform well for
NLME models but may lead to biases for GLMMs. These issues will be dis-
cussed further in Section 2.6.

As noted above, the commonly used inference methods for GLMMs are similar
to that for NLME models (see Section 2.3.2). These methods include “exact”
methods based on Gauss-Hermite quadrature or Monte Carlo integration tech-
niques, EM algorithms, and approximate methods based on Taylor approxima-
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tions or Laplace approximations (Breslow and Clayton 1993; McCulloch 1994,
1997; McCulloch, Searle, and Neuhaus 2008; Lee, Nelder, and Pawitan 2006).
In particular, the approximate methods based on first- or second-order Taylor
expansions or Laplace approximations are called penalized or predictive quasi-
likelihood (PQL) (Breslow and Clayton 1993). As in NLME models, numeri-
cal or Monte Carlo methods can be computationally intensive, especially when
the dimension of the random effects is not small, and approximate methods
which avoid the integrations are computationally much more efficient. Dean
and Nielsen (2007) provided a recent review of these methods for GLMMs.
We will discuss these methods in details in Section 2.6.

Unlike NLME models, however, approximate methods for GLMMs based on
Taylor or Laplace approximations such as the PQL method may lead to non-
negligible biases (towards zero) for non-normal responses, especially binary
responses. Breslow and Lin (1995) and Lin and Breslow (1996) proposed
methods for bias correction. Joe (2008) demonstrated that the performance of
these approximate methods may depend on how discrete the response is – the
more discrete the response is the worse the methods perform. The performance
of these approximate methods may be improved by using higher order Taylor
or Laplace approximations and the so-called hierarchical likelihood method
(h-likelihood method) (Lee, Nelder, and Pawitan 2006).

Over-dispersion problems may also arise in GLMMs when the observed data
variation is inconsistent with the theoretical variance based on the assumed
model and distribution. In this case, a more robust method, which only assumes
the first two moments and does not require distributional assumptions, is the
quasi-likelihood method and the GEE method. See Chapter 10 for details.

There has been extensive literature in GLMMs, especially in recent years. More
comprehensive discussions of GLMMs can be found in recent books (e.g.,
Jiang 2007; McCulloch, Searle, and Neuhaus 2008).

Example 2.9 Logistic regression model with random effects

Consider a longitudinal binary response yij taking only two possible values
(say, 0 or 1), i = 1, · · · , n; j = 1, · · · , ni. A simple logistic regression model
with random intercept can be written as

log
(

µij

1− µij

)
= β0i + β1tij = β0 + bi + β1tij ,

bi ∼ N(0, d2),

where µij = E(yij) = P (yij = 1) and β0i = β0 +bi. A more general GLMM
for binary longitudinal or clustered responses may be written as

log
(

µij

1− µij

)
= xT

ijβ + zT
ijbi,
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Table 2.3 Estimates for the distress data based on GLM and GLMM models

Model Parameter β0 Parameter β1 Parameter β2 Parameter β3

Est. S.E. Est. S.E. Est. S.E. Est. S.E.

GLM (2.43) –2.64 0.68 –0.73 0.21 0.04 0.29 1.39 0.31
GLMM (2.44) –1.98 0.33 –0.63 0.20 0.02 0.13 1.04 0.15

S.E.: standard error

bi ∼ N(0, D),

which can be used to model longitudinal or clustered binary data.

Example 2.10 Poisson regression model with random effects

For longitudinal or clustered count responses yij , we may consider the follow-
ing Poisson regression models with random effects

log(µij) = xT
ijβ + zT

ijbi,

bi ∼ N(0, D),

where µij = E(yij). This is another example of a GLMM.

Example 2.11 Mental distress data

We return to the mental distress data in Chapter 1 (page 8). An alternative
approach for analyzing this dataset is to check if a subject’s mental distress is
above or below average over time and if the changes can be partially explained
by covariates such as gender and treatment group. We thus define yij = 1 if
the GSI score of subject i at time tij is above average and yij = 0 otherwise.
There are missing data in this dataset. Here we only use the complete-cases for
illustration.

If we ignore the correlation between the repeated measurements on each indi-
vidual, we may consider the following GLM:

logit(P (yij = 1)) = β0 + β1tij + β2 xi1 + β3 xi2, (2.43)

where xi1 is group and xi2 is gender for individual i, time tij is in month,
and the yij’s are assumed to be independent. To incorporate possible correla-
tion between the repeated measurements on each individual, we consider the
following GLMM:

logit(P (yij = 1)) = β0 + bi + β1tij + β2 xi1 + β3 xi2, (2.44)

where bi ∼ N(0, d2) is a random effect.

Table 2.3 presents the estimates based on the above two models. We see that
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the two models lead to somewhat different estimates of the parameters, so ig-
noring correlation in the repeated measurements may lead to possibly biased
estimates. We also see that subjects’ mental distress changes significantly over
time, with more subjects becoming less depressed over time (since the estimate
β̂1 is negative and significant at 5% level). Moreover, subject’s mental distress
seems to be significantly correlated with gender, with female subjects more
likely to be distressed (since estimate β̂3 is positive and significant). However,
there seems to be no significant difference between the two groups (the esti-
mate β̂2 is not significant).

2.5 Nonparametric and Semiparametric Mixed Effects Models

2.5.1 Nonparametric and Semiparametric Regression Models

So far we have focused only on parametric regression models. In paramet-
ric regression models, the functions determining the relationship between the
response and covariates are assumed to be known, and one only needs to es-
timate the unknown parameters in the models. In practice, many longitudinal
processes are quite complex. In these cases, it may be difficult to specify a
known functional form for the processes, either linear or nonlinear. One may
consider polynomials with high orders, but they are known to be unstable.

Nonparametric regression models are very flexible for modeling complex time
series or longitudinal processes since they leave the functional form com-
pletely unspecified, except the requirement of some smoothness. A semipara-
metric regression model, which contains both parametric and nonparametric
parts, offers a good compromise between parametric and nonparametric regres-
sion models. In this section we briefly review the main ideas and approaches
for nonparametric and semiparametric regression models for cross-sectional
or i.i.d. data. The approaches are then extended to longitudinal data in Sec-
tion 2.5.2.

Let yi be a response and xi be a covariate for individual i. We focus on the most
common case where xi = ti is the time, although xi can be other covariate,
and we first focus on one covariate. A general nonparametric regression model
can be written as

yi = g(ti) + ei, i = 1, 2, · · · , n, (2.45)

where yi is the response at time ti, g(·) is a unknown smooth function, t1 <
t2 < · · · < tn, and ei is random noise with mean zero. We assume that ei i.i.d.
∼ N(0, σ2). The objective is to estimate the function g(·) directly. That is, we
let the data to determine the suitable form of the smooth function g(·). This is
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different from parametric regression models where the function g(·) is known
(specified in advance) and the objective is to estimate unknown parameters.

There are many approaches for estimating the smooth function g(·) in (2.45).
The commonly used approaches are:

• regression splines,
• kernel estimation,
• local-polynomial regression,
• smoothing splines.

In the following, we briefly review the main ideas of each approach.

Regression Splines

Splines are piecewise polynomials within any two neighboring breakpoints.
The idea is based on the fact that any smooth function can be approximated
by a low-order polynomial within a small range, based on Taylor expansions.
Specifically, let s1 < · · · < sm be m breakpoints or knots chosen from the
entire time range [t1, tn]. One can approximate g(t) by a polynomial piecewise
in the intervals [sj , sj+1), j = 1, · · · ,m−1, which join smoothly at the knots.
For cubic splines, the polynomials have continuous first and second derivatives
at the knots. The natural cubic spline has zero second and third derivatives at
the boundaries. A polynomial B-spline consists of polynomial pieces between
the knots.

A regression spline can be constructed using a basis-based approach. That is,
the smooth function g(t) can be approximated by ĝr(t) given by

ĝr(t) =
r∑

j=0

γjψj(t), (2.46)

where {ψ0(t), ψ1(t), · · ·} are known basis functions and γj are coefficients
to be estimated. The number r of basis functions controls the smoothness
of the estimated function ĝr(t). There are many basis functions available for
curve fitting, including global bases such as Legendre polynomials and Fourier
series and local bases such as regression splines, B-splines, natural splines,
and wavelet bases (Eubank 1988; de Boor 1978; Green and Silverman 1994,
Ramsay and Silverman 2005). For example, the power basis functions are
ψj(t) = tj (leading to polynomial models), the Gaussian basis functions are

ψj(t) = exp(−|t− µj |2/(2h2
j )),

and the Fourier basis functions are

ψ0(t) = 1, ψ2j(t) =
√

2cos(2πjt), ψ2j+1(t) =
√

2sin(2πjt)

(useful for modeling seasonal effects).
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The location and the number of knots sj’s are very important for splines since
they strongly determine the degree of smoothing. One can place the knots uni-
formly (i.e., equally-spaced knot placing), or use all distinct time points as
knots. The percentile-based knot-placing rule puts more (fewer) knots in the
areas where more (fewer) data are available (Eubank 1988), i.e., we use the
sample percentiles of the design time points as knots for constructing splines.
This approach is useful for smoothing time series or longitudinal data which
are not uniformly scattered.

Kernel Smoothing and Local Polynomial Kernel Smoothing

A kernel estimation procedure uses a weighted average as follows:

ĝh(t) =
∑n

i=1 wi(t, h)yi∑n
i=1 wi(t, h)

(2.47)

where

wi(t, h) = k

(
t− ti
h

)
is a weight function, k(·) is a kernel function, and h is the bandwidth (or
smoothing parameter) of the kernel. The bandwidth is used to specify the size
of the local neighborhood, e.g., a window with size 2h may be the interval
I(h, t) = [t−h, t+h]. A kernel function k(·) is a continuous symmetric func-
tion with

∫
k(t)dt = 1. It is used to specify how the observations contribute

to the fit at each time t, while the bandwidth h specifies the size of the lo-
cal neighborhood. Typically, the weights wi(t, h) will decrease as the distance
|t− ti| increases. The bandwidth (or window width) h determines how fast the
weights decrease. For example, the Gaussian kernel is given by

k(t) = exp(−t2/2),

where the contribution of the data yi’s for fitting ĝh(t) at time t is determined
by the distance of ti from t. The uniform kernel on interval [−1, 1] (say) is
given by k(t) = 0.5 if −1 ≤ t ≤ 1 and k(t) = 0 if |t| > 1, where all the data
yi’s corresponding to the ti’s in the interval [−h, h] contribute equally while
observations outside this interval make no contribution.

The local polynomial kernel smoothing method locally approximates the func-
tion g(·) by a low-order polynomial, since any smooth function can be locally
approximated by a polynomial based on Taylor expansion. Specifically, one
minimizes the weighted least squares:

ĝh(t) =
n∑

i=1

wi(t, h)
{
yi −

[
β0 + β1(ti − t) + · · ·+ βk(ti − t)k

]}2
, (2.48)

at each fixed time t. The weights wi(t, h) in (2.48) can be chosen as the one
discussed above. Local constant (k = 0), linear (k = 1), and quadratic (k = 2)
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estimates are most commonly used. The local constant smoother corresponds
to the weighted average (2.47), and the local linear and quadratic estimates are
sometimes called loess or lowess estimators. See Fan and Gijbels (1996) for a
comprehensive discussion.

Smoothing means a compromise between bias and variance. When the band-
width h is larger, more observations are used so bias is higher and variance is
lower, and the fitted curve is smoother. When the bandwidth h is small, only a
small number of observations have influential weights so bias is low but vari-
ance is high. The choice of a kernel is usually not so crucial.

Smoothing Spline

The smoothing spline method finds an estimator ĝλ(t) of g(t) which minimizes
the following penalized sum of squares (PSS)

PSS(λ) =
n∑

i=1

(yi − g(ti))2 + λ

∫ (
d2g(t)
dt2

)2

dt, (2.49)

where λ is a smoothing parameter. It can be shown that the solution ĝλ(t)
which minimizes PSS(λ) is a natural cubic spline with knots at the distinct
times ti, i.e., ĝλ(t) is a cubic polynomial between successive t-values and has
continuous first and second derivatives at the distinct times.

In (2.49), the first term is the residual sum of squares, which measures how
close the fitted curve to the data, and the second term is a roughness penalty,
which is large when ĝλ(t) is “rough” (rapidly changing slope). Without the
roughness penalty, the solution ĝλ(t) of (2.49) simply interpolate the data. The
smoothing parameter λ controls the tradeoff between the smoothness of the
fitted curve and the faith with the data. Larger values of λ give more weight to
the penalty term, leading to fitted curves with smaller variance but higher bias,
or vice versa.

The foregoing smoothing methods are most commonly used in nonparamet-
ric regression models. Although it may not be obvious in some cases, many
smoothers are linear, i.e., the estimators have the following linear form

ĝρ(t) =
n∑

i=1

wi(t, ρ)yi ≡ A(ρ)y, (2.50)

where ρ is a smoothing parameters (e.g., r, or h, or λ), wi(t, ρ) is the weight,
A(ρ) is an appropriate matrix with componentswi(t, ρ), and y = (y1, · · · , yn).
The local polynomial, regression spline, smoothing spline are all linear smoothers.
From (2.50), we have

E(ĝρ(t)) = A(ρ)E(y), Cov(ĝρ(t)) = A(ρ)Cov(y)A(ρ)T ,

which can be used to derive the biases and variances of the fitted curves and to
construct confidence bands for the fitted curves.
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Figure 2.2 Nonparametric smoothing curves based on spline and local polynomial
methods (with bandwidths h = 8 and h = 15 respectively). Viral load is in log10

scale.

Example 2.12 AIDS data

Consider the AIDS dataset in Chapter 1 (page 11). One can see from Figure 1.3
that the long-term viral load trajectories are complex and may not be modeled
well by a parametric model. So we may try nonparametric or semiparametric
models. Assume all the data are independent. Figure 2.2 shows nonparametric
curves fitted by splines and local polynomial methods (with bandwidths h = 8
and h = 15 respectively). We can see that nonparametric models are very
flexible in fitting complex longitudinal data. We can also see how the choice of
bandwidth affects the fitted smooth curves.

Choosing Smoothing Parameters

Choosing the smoothing parameter ρ (e.g., r, or h, or λ) is crucial to the perfor-
mance of a smoothing estimator. A general approach is to minimize the mean
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square error (MSE)

MSE(ĝρ(t)) =
n∑

i=1

E(ĝρ(ti)− g(ti))2

=
n∑

i=1

{
[E(ĝρ(ti)− g(ti))]2 + E[ĝρ(ti)− E(ĝρ(ti))]2

}
= bias2 + variance,

which is the sum of (squared) bias and variance. We should choose a smoothing
parameter ρ with a tradeoff between the variance and bias to minimize the
mean square error. In other words, smoothing parameter selection is a tradeoff
between the goodness of fit and model complexity. The goodness of fit may be
measured by the sum of squared errors (SSE):

SSE(ρ) =
n∑

i=1

(yi − ŷi)2 =
n∑

i=1

(yi − ĝρ(ti))2.

The model complexity can be measured by the trace of the smoother matrix
A(ρ), which roughly indicates the number of effective parameters in the model.
One can also minimize a penalized sum of squares similar to (2.49). Another
measure for goodness of fit is the log-likelihood.

The exact mean squared error is hard to compute since the true model is un-
known. However, it can be approximated by a cross-validation or a AIC or a
BIC criterion. For example, a leave-one-out cross-validation is defined as

CV (ρ) =
1
n

n∑
i=1

(yi − ĝ−i
ρ (ti))2,

where ĝ−i
ρ (ti) is a version of ĝρ(ti) computed by leaving out the i-th data point

(ti, yi). The cross-validation method selects ρ to minimize CV (ρ), which bal-
ance the goodness of fit and the model complexity indirectly. Cross-validation
methods are often computationally intensive. Alternatively, one can use stan-
dard model selection criteria such as the AIC or BIC methods to select ρ (see
Section 2.7.1).

Semiparametric Models

A semiparametric model has both parametric components and nonparametric
components. It is a compromise between a parametric model and a nonpara-
metric model, and in the meantime it retains many nice features of both para-
metric and nonparametric models. For example, a semiparametric model is
useful when some important variables, such as treatment or group effects, are
best modeled parametrically, while some less important nuisance variables are
modeled nonparametrically.
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Let xi = (x1i, · · · , xpi)T be p covariates at time ti. If the response yi is known
to be linearly related to xi, or if covariates xi are best modeled in a linear
fashion (e.g., xi are discrete variables), we may consider a semiparametric
regression model in which some residual variation may be modeled nonpara-
metrically. A semiparametric regression model may be written as

yi = xT
i β + g(ti) + ei, (2.51)

where g(t) is a unknown smooth function and ei represents unexplained ran-
dom error. In model (2.51), the first term on the right-hand side is parametric,
which can in fact be any known parametric function such as a nonlinear func-
tion, while the second term is nonparametric.

Many of the estimating methods for nonparametric models can be extended to
semiparametric models, including local polynomial methods, regression spline
methods, and smoothing spline methods. There is an extensive literature on
nonparametric and semiparametric models. Recent reviews of these methods
can be found in Fan and Gijbels (1996), Ruppert, Wand, and Carroll (2003),
Ramsay and Silverman (2005), and Wu and Zhang (2006), among others.

Nonparametric Regression Models with Non-Normal Responses

The foregoing nonparametric regression models are for continuous responses
(normal responses) and for a single covariate (time). The ideas and approaches
can be extended to nonparametric regression models with non-normal responses,
such as binary responses and count responses, and multiple covariates, which
are briefly described as follows.

For regression models with non-normal responses, generalized linear mod-
els are natural choices. A nonparametric generalized linear model (GLM) for
cross-sectional data, with a single covariate time ti, can be written as

h(E(yi)) = g(ti), i = 1, · · · , n, (2.52)

where h(·) is a known link function, g(t) is a unknown smooth function, and yi

follows a distribution in the exponential family. Estimation methods for model
(2.52) are similar to those for normal responses. For example, for a regression
splines or basis-based approach, we can approximate g(t) in (2.52) by

ĝr(t) =
r∑

j=0

γjψj(t), (2.53)

where ψj(t)’s are some basis functions.

For a smoothing spline approach, one maximizes the following penalized log-
likelihood

PL(λ) =
n∑

i=1

li(yi; g(ti))−
1
2
λ

∫ (
d2g(u)
du2

)2

du, (2.54)
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where li is the log-likelihood for individual i. In (2.54), the first term represents
faith to the data and the second term is a penalty function. Note that, when the
response yi is normal, the penalized log-likelihood (2.54) reduces to the penal-
ized least-squares (2.49). The penalized log-likelihood (2.54) is a compromise
between faith to the data and roughness of the fitted function, with the smooth-
ing parameter λ controlling this compromise. The solution of (2.54) is again a
cubic spline. Therefore, estimation methods for nonparametric GLMs are sim-
ilar to those for normal response, with log-likelihood replacing residual sum of
squares.

Nonparametric Regression Models with Multiple Covariates

Nonparametric regression models with one covariate can be extended to non-
parametric models with multiple covariates. We describe one such extension in
the framework of nonparametric GLMs for cross-sectional data. Let x1, · · · , xp

be p covariates. We may consider the following generalized additive model

h(E(y)) = η(x1, · · · , xp) = β0 + g1(x1) + · · ·+ gp(xp), (2.55)

where h(·) is a known link function, and η(x1, · · · , xp) and gj(·)’s are un-
known smooth functions. Hastie and Tibshirani (1990) provided a detailed dis-
cussion of generalized additive models. Note that, when the link function is
the identity link h(y) = y, model (2.55) reduces to a nonparametric regression
model with normal response and multiple covariates.

Estimation methods for model (2.55) are similar to those for models with a
single covariate. For example, a basis-based approach estimator is given by

η̂r(x1, · · · , xp) =
p∑

j=0

r∑
k=1

γjkψjk(xj), (2.56)

where {ψj1(xj), · · · , ψjr(xj)} are r basis functions for estimating gj(xj), j =
1, · · · , p, and γjk are coefficients to be estimated.

In a generalized additive model, we can allow some covariates to enter the
model parametrically and other covariates to enter the model nonparametri-
cally. This leads to the following semiparametric model or partial linear model:

h(E(y)) = β0 + β1x1 + · · ·+ βqxq + gq+1(xq+1) + · · ·+ gp(xp),

where q < p. The above partial linear model is useful, for example, when
x1, · · · , xq are important covariates or categorical variables or are roughly lin-
ear in the model while the remaining covariates (xq+1, · · · , xp) may be nui-
sance factors. Hardle, Liang, and Gao (2000) provided a detailed discussion of
partially linear models.
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2.5.2 Nonparametric and Semiparametric Mixed Effects Models

The nonparametric and semiparametric regression models in the previous sec-
tion are for cross-sectional or i.i.d. data. They can be extended to the anal-
yses of longitudinal data or clustered data. One such extension is to intro-
duce random effects in the models to account for within-individual correlation
and between-individual variation in longitudinal or clustered data. Another ap-
proach is based on marginal GEE methods. In this section, we briefly discuss
these extensions and focus on nonparametric and semiparametric mixed effects
models, which may be viewed as a combination of nonparametric models and
parametric mixed effects models.

Nonparametric Mixed Effects Models

Longitudinal data can be written as {(yij , tij), i = 1, · · · , n; j = 1, · · · , ni},
where yij is the response for individual i at design time point tij . A nonpara-
metric (population mean) model for the longitudinal data can be written as

yij = g(tij) + eij , i = 1, · · · , n; j = 1, · · · , ni, (2.57)

where g(t) is a unknown smooth function and eij = ei(tij) represents ran-
dom noise. By introducing a random smooth process in model (2.57), we have
the following nonparametric mixed effects model (or nonparametric subject-
specific regression model)

yij = g(tij) + ui(tij) + eij , (2.58)
ui(t) ∼ GP (0, γ), ei ∼ N(0, Ri), i = 1, · · · , n; j = 1, · · · , ni,

where ui(t) is a random smooth process and assumed to follow a Gaussian
process with mean 0 and covariance function Cov(ui(s), ui(t)) = γ(s, t), de-
noted by ui(t) ∼ GP (0, γ), and ei = (ei1, · · · , eini

)T . The random process
ui(t) incorporates within-individual correlation and between-individual varia-
tion, similar to the roles played by random effects in a parametric mixed effects
model. It also allows subject-specific inference.

Estimation methods for nonparametric mixed effects models are a combination
of nonparametric methods described in the previous section and methods for
parametric mixed effects models. In many cases, a nonparametric mixed effects
model can be approximated by a parametric LME model, as shown below.

We first consider a regression spline approach. As discussed in Sections 2.5.1,
regression splines are piecewise polynomials that are specified by a group of
knots and some continuity conditions. They can be represented as linear com-
binations of regression spline bases, such as B-spline basis and truncated power
basis (Shi, Weiss, and Taylor 1996; Rice and Wu 2001). The idea of a mixed
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effects regression spline method is to approximate (2.58) by

yi(tij) ≈
r∑

k=0

βkψk(tij) +
q∑

k=0

bikφk(tij) + ei(tij), (2.59)

where Ψr(t) = (ψ1(t), · · · , ψr(t))T and Φq(t) = (φ1(t), · · · , φq(t))T are
known basis functions, β = (β1, · · · , βr)T are fixed coefficients, and bi =
(bi1, · · · , biq)T are random coefficients. We assume that bi ∼ N(0, D). The
numbers r and q of basis functions control the smoothness and goodness of fit
of the estimated function.

Let xij = Φr(tij) and zij = Ψr(tij). Model (2.59) can be written as a standard
LME model

yij = xT
ijβ + zT

ijbi + eij , (2.60)
bi ∼ N(0, D), ei ∼ N(0, Ri). (2.61)

So standard estimation methods for LME models can be used for approximate
inference of the original nonparametric mixed effects model (2.58). Note that
Cov(ui(s), ui(t)) = γ(s, t) ≈ Φq(s)TDΦq(t). The basis functions can be
any commonly used ones, and we often choose φj(t) = ψj(t) for simplicity.
Choices of r and q are based on trade-off between goodness of fit and model
complexity.

For a local polynomial method, we can approximate g(t) and ui(t) in the non-
parametric mixed effects model (2.58) using a Taylor approximation around a
neighborhood of interest. That is, at a neighborhood of a fixed t, we have

g(tij) ≈ g(t) + g(1)(t)(tij − t) + · · ·+ g(r)(t)
r!

(tij − t)r = xT
ijβ,

ui(tij) ≈ ui(t) + u
(1)
i (t)(tij − t) + · · ·+ u

(q)
i (t)
q!

(tij − t)q = zT
ijbi,

where g(k)(t) is the k-th derivative of g(t) and similarly for u(k)
i (t), xij =

(1, tij−t, · · · , (tij−t)r)T , zij = (1, tij−t, · · · , (tij−t)q)T ,β = (g(t), g(1)(t),
· · · , g(r)(t))T , bi = (ui(t), u

(1)
i (t), · · · , u(q)

i (t))T . We often choose r = q so
zij = xij . Thus, within a neighborhood of t, we can again approximate the
nonparametric mixed effects model (2.58) by a LME model:

yij = xT
ijβ + zT

ijbi + eij , (2.62)
bi ∼ N(0, D), ei ∼ N(0, Ri). (2.63)

Inference can be based on local likelihood methods (Tibshirani and Hastie
1987; Wu and Zhang 2006). Alternatively, Lin and Carroll (2000) considered a
local polynomial kernel GEE method for clustered or longitudinal data. Wang,
Carroll, and Lin (2005) considered efficient semiparametric marginal estima-
tion for longitudinal or clustered data, and Wang (2003) considered marginal
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nonparametric kernel regressions which incorporate correlation within individ-
uals.

Finally, we consider a smoothing splines method. Note that the nonparametric
mixed effects model (2.58) can be approximated by (Wu and Zhang 2006)

yi = Xiβ + Ziui + ei, (2.64)
ui ∼ N(0, D), ei ∼ N(0, Ri), (2.65)

where Xi = Zi = (xi1, · · · ,xini
)T , g(tij) = xT

ijβ and ui(tij) = xT
ijui,

β = (g(t∗1), · · · , g(t∗K))T with t∗j’s being all the distinct design time points
and K being the total number of the distinct design time points, and xij =
(xij1, · · · , xijK)T with xijk = 1 if tij = t∗k and 0 otherwise. The cubic mixed
effects smoothing splines estimators of g(t) and ui(t) are defined as the mini-
mizers of the following penalized log-likelihood criterion

P (λ1, λ2) =
n∑

i=1

{
(yi −Xiβ − Ziui)TR−1

i (yi −Xiβ − Ziui)

+ log |D|+ uT
i D

−1ui + log |Ri|
}

+λ1

n∑
i=1

∫ (
d2ui(t)
dt2

)2

dt+ λ2

∫ (
d2g(t)
dt2

)2

dt,

where λ1 and λ2 are smoothing parameters.

Semiparametric Mixed Effects Models

A semiparametric mixed effects model for longitudinal data introduces ran-
dom effects in the parametric terms and the nonparametric terms. A general
semiparametric mixed effects model can be written as

yij = xT
ijβ + zijbi + g(tij) + ui(tij) + eij , (2.66)

i = 1, · · · , n; j = 1, · · · , ni,

where xij and zij are known design vectors containing covariates, β contains
fixed effects, bi contains random effects, g(t) is a unknown smooth function,
ui(t) is a unknown random smooth process of time, and eij is the random
error. We may assume that bi ∼ N(0, D), ei ∼ N(0, Ri), and ui(t) follows a
Gaussian process with mean 0 and covariance function γ(s, t).

For a specific application, it may not be necessary to include all the terms
in (2.66). Dropping one or more terms in model (2.66) leading to various
semiparametric mixed effects models. Inference can again be based on com-
mon smoothing methods, such as regression spline methods, local polynomial
methods, and smoothing spline methods, with some modification. For exam-
ple, Zhang et al. (1998) used a smoothing spline method and connected it to a
LME model.
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Semiparametric Nonlinear Mixed Effects Models

In semiparametric mixed effects model (2.66), the parametric components and
nonparametric components enter the model in a linear fashion. In some ap-
plications, the parametric and/or nonparametric components may enter the
model in a nonlinear fashion, leading to a semiparametric nonlinear mixed
effects model. Specifically, a general semiparametric nonlinear mixed effects
(SNLME) model may be written as follows:

yij = h(βij , gi(tij)) + eij , (2.67)

βij = xT
ijβ + zT

ijbi, (2.68)
gi(t) = g(t) + ui(t), i = 1, · · · , n, j = 1, · · · , ni, (2.69)

where h(·) is a known nonlinear function, g(·) and ui(·) are unknown smooth
fixed and random functions respectively, β contains fixed effects, bi contains
random effects, and eij is random error. We assume that ei = (ei1, · · · , eini

)T ∼
N(0, Ri), bi ∼ N(0, D), and ui(t) is a zero-mean Gaussian stochastic process
with covariance function γ(s, t).

Model (2.67) – (2.69) is very general in the sense that it contains many mixed
effects models as special cases. For example, if the nonparametric component
(2.69) is dropped, it reduces to a parametric NLME model. If the parametric
component (2.68) is dropped and h(·) is linear, it reduces to a nonparametric
mixed effects model. If h(·) is linear, it reduces to a semiparametric mixed ef-
fects model. It also includes the semiparametric model of Ke and Wang (2001)
as a special case. Inference for model (2.67) – (2.69) can again be based on a
combination of parametric and nonparametric methods. Wu and Zhang (2002)
considered a basis-based approach and approximate the model by a paramet-
ric NLME model so standard parametric methods may be used. A similar ap-
proach is also considered in Liu and Wu (2007).

Lin and Zhang (1999) proposed the following very flexible generalized addi-
tive mixed model

h(E(yi|bi)) = β0 + g1(xi1) + · · · gp(xip) + zT
i bi, (2.70)

where h(·) is a known link function, gk(·)’s are unknown smooth functions,
β0 is an unknown parameter, zi are covariates, and bi are random effects. Lin
and Zhang (1999) combined a smoothing spline method and the usual PQL
method for GLMMs, leading to penalties for both the spline terms and the
random effects which they called double PQL.

Example 2.13 A semiparametric NLME model

We return to the AIDS dataset in Chapter 1 (page 11). The parametric NLME
models (2.33) or (2.34) (see page 58) may be used to fit viral load trajectories
in the short term (say, first three months). For long-term viral load trajectories,
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however, a nonparametric or a semiparametric model may be more appropriate
and more flexible. For example, for parametric NLME model (2.34), we may
allow the second-phase viral decay rate λ2i to vary over time nonparametri-
cally, since viral load trajectories after the initial period seem complicated and
may not be modeled parametrically. In other words, we may consider the fol-
lowing semiparametric NLME model for long-term HIV viral dynamics (Liu
and Wu 2007)

yij = log10(P1ie
−λ1ijtij + P2ie

−λ2ijtij ) + eij , (2.71)
P1i = P1 + b1i, λ1ij = λ1 + β1CD4ij + b2i, P2i = P2 + b3i,

λ2ij = w(tij) + hi(tij), (2.72)

where w(tij) and hi(tij) are nonparametric fixed and random smooth func-
tions respectively.

We may consider linear combinations of natural cubic splines with percentile-
based knots to approximate the nonparametric functions w(t) and hi(t). Based
on AIC and BIC criteria, we obtain the following approximation for λ2ij :

λ2ij ≈ β2 + β3 ψ1(tij) + β4 ψ2(tij) + b4i, (2.73)

where ψk(·)’s are basis functions. Therefore, a semiparametric NLME model
is approximated by a parametric NLME model.

We fit the above semiparametric NLME model to the AIDS data in the en-
tire study period (long term). To avoid very small estimates, which may be
unstable, we standardize CD4 values and re-scale time to have a range of
[0,1]. The resulting estimates (standard errors) are: P̂1 = 11.69 (0.19), λ̂1 =
62.29 (4.09), β̂1 = 0.49 (3.42), P̂2 = 6.53 (0.79), β̂2 = −5.37 (7.84), β̂3 =
11.25 (12.01), β̂4 = 0.65 (4.32). Liu and Wu (2007) showed that the above
semiparametric NLME model provides more flexible fit for long-term viral
load trajectories than the parametric NLME model.

2.6 Computational Strategies

The likelihood method is the standard approach for statistical inference in
mixed effects models. It is also a fundamental component of Bayesian infer-
ence. As shown in previous sections, for GLMM and NLME models, the like-
lihoods involve intractable integrals with respect to the random effects since
these models are nonlinear in the random effects. For LME models, the ran-
dom effects can be integrated out from the likelihood since the likelihood is
linear in the random effects, so analytic expressions of parameter estimates
are available for LME models and the computation is much simpler. In other
words, computational challenges mainly arise in GLMM, NLME, and frailty
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models. In this section we give a summary of the commonly used computa-
tional approaches for mixed effects models. We focus on NLME models for
illustration. The methods for GLMM are similar, although their performance
may be different (see Section 2.4.2). Similar methods may also be considered
for frailty models (see Chapter 7).

Many estimation methods for mixed effects models have been proposed (Da-
vidian and Giltinan, 1995, 2003; Jiang 2007; McCulloch, Searle, and Neuhaus
2008). Most of these approaches are in one of the following three categories:
“exact” methods, EM algorithms, and approximate methods. These three ap-
proaches are briefly described as follows.

The so-called “exact” methods use the Gauss-Hermite quadrature method or
Monte Carlo methods to approximate the likelihood of a mixed effects model,
where the intractable integral in the likelihood is approximated by a summa-
tion. These methods can approximate the exact likelihood with arbitrary accu-
racy, in the expense of computing time. So they are called “exact” methods.
They are also called direct maximization methods since they directly maximize
the approximated likelihoods to find MLEs. These “exact” methods are often
used when the random effects follow normal distributions and their dimen-
sions are low, since the computation of these methods becomes very intensive
or even infeasible when the dimensions of the integrals (or random effects) are
not low.

The Gauss-Hermite quadrature method approximates the integration in the
likelihood by a summation on a specified number of quadrature points for each
dimension of the integration, assuming the random effects are normally dis-
tributed. It can approximate the integral to any practical degree of accuracy
(so it is called an “exact” method here). However, when the dimension of the
random effects (or the integral) is not small, this method involves a summa-
tion over a large number of quadrature points, so the computation can be ex-
tremely slow or even infeasible. The adaptive quadrature method, which uses
fewer quadrature points, is therefore preferred. The Gauss-Hermite quadrature
method is thus usually used for low dimension integrations. See Chapter 12 for
a detailed description of the Gauss-Hermite quadrature method. Alternatively,
one can use Monte Carlo methods to simulate a large sample of the random
effects from the assumed distribution and then approximate the integral by the
sum over simulated values.

The EM algorithm indirectly maximizes the likelihood by iterating between an
E-step and an M-step until convergence, where the random effects are treated
as “missing data”. For GLMM and NLME models, computation of the E-step
often requires numerical methods (e.g., Gauss-Hermite quadrature) or Monte
Carlo methods or MCMC methods, leading to various types of EM algorithms
such as the Monte Carlo EM algorithm (MCEM). The M-step may also be
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done sequentially, leading to variants of the EM algorithm such as the ECM
algorithm (see Section 3.4.3). The EM algorithms may also be called indirect
maximization methods.

The EM algorithm is general, stable, and conceptually simple. They may be
used for almost any mixed effects models with any distributions and any di-
mensions of the random effects, so they are widely used. A drawback of the EM
algorithms is intensive computation and slow convergence. McCulloch (1997)
and McCulloch, Searle, and Neuhaus (2008) provided detailed discussions of
Monte Carlo EM algorithms and Monte Carlo Newton-Raphson methods for
GLMMs. Walker (1996) proposed a Monte Carlo EM algorithm for NLME
models.

The approximate methods use Taylor expansions or Laplace approximations
to approximate the model or likelihood. They avoid intractable integrals in the
likelihoods so are computationally very efficient. However, unlike the forego-
ing “exact” methods, the approximations of these methods cannot be made ar-
bitrary accurate, and the accuracies of approximations may depend on the rich-
ness of within-individual data, the types of the response (e.g., discrete or con-
tinuous), and other factors. For GLMMs and NLME models, currently the most
widely used estimation methods are probably the approximate methods based
on first-order Taylor expansions or Laplace approximations, such as the PQL
method for GLMMs (Breslow and Clayton 1993) and the method of Lindstrom
and Bates (Lindstrom and Bates 1990), because these methods are widely im-
plemented in standard software such as R/Splus and SAS. The approximate
methods based on Taylor expansions and Laplace approximations are asymp-
totically equivalent (Demidenko 2004), and they can be derived using different
approaches.

The approximate methods may also be viewed as being based on one of the
following two approaches:

• linearization methods. The idea is to linearize the nonlinear models using
a first-order Taylor expansion. So the approach involves iteratively solving
certain LME models. This can be done in different ways. The most popular
procedure is perhaps that of Lindstrom and Bates (1990). A main advantage
of this approach is that available methods for LME models can be readily
incorporated.

• direct approximation. The idea is to directly approximate the integral in
the likelihood using a Laplace approximation, which is a natural way to
approximate an integral of the form

∫
e−l(b)db based on a Taylor expan-

sion of−l(b) about the value b̂ which maximizes l(b) (see, e.g., Wolfinger
1993; Wolfinger and Lin 1997). This method also avoids integration with
respect to the random effects. Lee, Nelder, and Pawitan (2006) proposed
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the so-called h-likelihood method which is an alternative implementation of
the Laplace approximation.

There are other approximate methods. For example, we may consider higher-
order Taylor or Laplace approximations, or approximate the first two moments
and then use a GEE-type approach (Vonesh et al. 2002; Davidian and Giltinan
2003).

In addition to the above three approaches, other estimation methods are avail-
able, such as simulated maximum likelihood methods and simulated methods
of moments (see, e.g., Jiang 1998; McCulloch et al. 2008). We do not discuss
details of these methods here.

In the next few sub-sections, we provide more detailed descriptions of the fore-
going three approaches, with a focus on NLME models as illustration (methods
for GLMMs are similar).

2.6.1 “Exact” Methods

By “exact” methods, we mean that one can approximate the exact likelihoods
as accurate as desired at the expense of greater computational intensity, so they
are not true exact methods in the strict sense. True exact estimation methods
are unavailable for GLMM and NLME models since their likelihoods generally
cannot be obtained analytically due to the intractable integrations.

The Gauss-Hermite quadrature method, or Gaussian quadrature method, is a
deterministic numerical integration technique which can be used to approxi-
mate intractable integrals with arbitrary accuracy. The idea is to approximate
the target integral by a weighted average of the integrand evaluated at suitably
chosen points over a grid, and the accuracy of the approximation increases
with the number of grid points (quadrature points). See Chapter 12 for a de-
tailed description. It is most useful for evaluation of low-dimensional integrals.
So it can be used to approximate the likelihood of a GLMM or a NLME model
when the dimension of the random effects is low.

Consider the NLME model (2.20) and (2.21) (page 55). It is convenient to re-
parameterize the random effects as follows. Let D = D1/2(D1/2)T be the
Cholesky decomposition of the covariance matrixD for the random effects bi.
We consider the following re-parameterization:

bi = D1/2b∗i , so b∗i ∼ N(0, I).

Let f(yi|xi,θ, b
∗
i ) be the density function of the response yi given the random

effects b∗i , and let f(b∗i ) be the density of b∗i . The likelihood to be evaluated is
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given by

L(θ|y) =
n∏

i=1

Li(θ|yi) =
n∏

i=1

∫
f(yi|xi,θ, b

∗
i )f(b∗i ) db

∗
i . (2.74)

First, consider the case of a one dimensional random effect (i.e., a scalar ran-
dom effect). The Gauss-Hermite approximation to Li(θ|yi) is given by

Li(θ|yi) ≈ Li,GH(θ|yi) =
m∑

j=1

wjf(yi|xi,θ, dj), (2.75)

where {d1, · · · , dm} are the m grid (quadrature) points and wj’s are appro-
priate weights (see Chapter 12). Likelihood inference can then be based on
the approximate likelihood

∏n
i=1 Li,GH(θ|yi). When the number m of the

quadrature points is large enough, approximation (2.75) can be sufficiently ac-
curate.

For multi-dimensional random effects, one can transform the integral into a
series of one-dimensional integrals (Davidian and Gallant 1993; Pinheiro and
Bates 1995). For example, for the NLME model (2.20) and (2.21) (page 55)
with Ri = σ2I , we have

Li(θ|yi) =
∫

(2πσ2)−
q
2 |D|−

1
2 exp

[
− 1

2σ2

(
yi − ui(β,bi)

)T
×
(
yi − ui(β,bi)

)]
exp

(
− 1

2σ2
bT

i D
−1bi

)
dbi

=
∫

(2πσ2)−
q
2 exp

[
− 1

2σ2

(
yi − ui(β, DT/2b∗i )

)T

×
(
yi − ui(β, DT/2b∗i )

)]
exp

(
− 1

2σ2
b∗Ti b∗i

)
db∗i

≈
m∑

j1=1

· · ·
m∑

jq=1

{
exp

[
− 1

2σ2

(
yi − ui(β, DT/2dj)

)T (
·
)]

×
q∏

k=1

wjk

}
,

where ui(β,bi) = E(yi|β,bi), and dj = (dj1 , · · · , djq
)T and wjk are the

abscissas and weights for the one-dimensional Gaussian quadrature method
based on the standard normal N(0, 1) kernel.

The numerical effort of the Gaussian quadrature methods increases exponen-
tially with the dimension of the integral, so the Gaussian quadrature meth-
ods are most useful for low-dimensional integrals. An improved method is the
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adaptive Gauss-Hermite quadrature which reduces the number of quadrature
points and thus the computational effort (Liu and Pierce 1994; Pinheiro and
Bates 1995). The idea is to center the grid of the random effects around their
estimates that maximize the posterior density of the random effects, which
leads to a great reduction in the number of grid points required to achieve a
similar accuracy. In this case, use of one grid point in the adaptive Gaussian
quadrature approximation leads to a Laplace approximation of the integral (see
Section 2.6.3).

We can also use a Monte Carlo method to approximate the likelihoodLi(θ|yi).
Let {b̃(1)

i , · · · , b̃(m)
i } be a sample of size m simulated from the distribution

f(b∗i ) of b∗i . Then, the likelihood Li(θ|yi) for individual i in (2.74) can be
approximated by

Li(θ|yi) ≈ Li,MC(θ|yi) =
m∑

j=1

f(yi|xi,θ, b̃
(j)
i ). (2.76)

This is straightforward since f(b∗i ) is known (b∗i ∼ N(0, I)), but a very large
m may be needed to provide a satisfactory approximation, especially when
the dimension of the integral is high. In principle, the approximation can be
arbitrary accurate if m is sufficiently large. Approximate likelihood estimation
can then be based on

∏n
i=1 Li,MC(θ|yi). Alternatively, importance sampling

methods can also be used (see Chapter 12), which is sometimes more efficient
than the foregoing simple Monte Carlo method.

Note that the Gauss-Hermite quadrature method may be viewed as a determin-
istic version of the Monte Carlo integration method: in Gauss-Hermite quadra-
ture method the samples and weights are fixed in advance while in Monte Carlo
method they are random.

2.6.2 EM Algorithms

The expectation-maximization (EM) algorithm (Dempster, Laird, and Rubin,
1977) is an iterative algorithm for finding MLEs in the presence of “missing
data”. It iterates between an E-step, which computes the conditional expec-
tation of the “complete-data” log-likelihood given the current parameter es-
timates and observed data, and an M-step, which maximizes the conditional
expectation in the E-step to update the parameter estimates. At each iteration,
the likelihood is non-decreasing. The algorithm iterates until convergence, and
the final parameter estimates are the MLE or a local maximizer. The EM al-
gorithm and extensions are very popular in likelihood estimation because they
are very general and stable. A detailed description of the EM algorithm will
be given in Chapter 3 (Section 3.4). McLachlan and Krishnan (1997) provided
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a comprehensive discussion. Here we focus on an Monte Carlo EM algorithm
for NLME models as an illustration. The approach for GLMMs are similar.

Consider NLME model (2.20) and (2.21) (page 55). By treating the random
effects bi as “missing data”, we have “complete data” {(yi,bi), i = 1, · · · , n},
where {yi, i = 1, · · · , n} are the observed data. Let θ = (β,η, D) denote all
parameters. The “complete-data” log-likelihood for individual i is given by

l
(c)
i (θ|yi,bi) = log f(yi|bi,β,η) + log f(bi|D).

Begin with a starting value θ(0). At k-th EM iteration, the E-step computes the
following conditional expectation

Q(θ|θ(k)) = E

[
n∑

i=1

l
(c)
i (θ|yi,bi)

∣∣yi,θ
(k)

]

= E

[
n∑

i=1

{(
log f(yi

∣∣bi,β,η) + log f(bi|D)
) ∣∣yi,θ

(k)
}]

,

where the conditional expectation is evaluated with respect to the conditional
distribution f(bi|yi,θ

(k)).

Unlike the EM algorithm for a LME model in Section 2.2.2, here the condi-
tional expectation Q(θ|θ(k)) does not have an analytic (closed-form) expres-
sion, because the NLME model is nonlinear in the random effects bi. To eval-
uate Q(θ|θ(k)), we may consider numerical integration methods such as the
Gauss-Hermite quadrature method or importance sampling methods when the
dimension of the random effects is low. In the following, we consider a general
Monte Carlo method to approximate the conditional expectation Q(θ|θ(k)).
The resulting EM algorithm is called a Monte Carlo EM algorithm.

The idea of the Monte Carlo EM algorithm is to simulate a large sample of the
“missing data” bi, say {b(1)

i ,b(2)
i , · · · ,b(M)

i }, from the conditional distribu-
tion f(bi|yi,θ

(k)) at k-th EM iteration. This sampling may be accomplished
using a MCMC method such as the Gibbs sampler or a rejection sampling
method (see Chapter 12) since

f(bi|yi,θ
(k)) ∝ f(yi|bi,θ

(k))f(bi|D(k)),

where f(yi|bi,θ
(k)) and f(bi|D(k)) are known distributions. Then, the condi-

tional expectation Q(θ|θ(k)) can be approximated by the following empirical
mean (average):

Q̃(θ|θ(k)) =
1
M

M∑
j=1

[
log f(yi|b(j)

i ,β,η) + log f(b(j)
i |D)

]
.

The M-step is then to maximize Q̃(θ|θ(k)) to produce an updated estimate
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θ(k+1). Thus, the M-step is like a complete-data maximization, so a standard
optimization procedure such as the Newton-Raphson method can be used.

In principle, the Monte Carlo approximation in the E-step can be made arbi-
trary accurate by increasing the number of Monte Carlo sample M , but the
computing time also grows rapidly as M increases. A good strategy is to in-
crease the value ofM as the iteration number k increases. The foregoing Monte
Carlo EM algorithm can be computationally intensive, especially when the di-
mension of the random effects is high. We will discuss more details of such
Monte Carlo EM algorithms in the context of missing data in Chapter 4. Note
that, in an iterative algorithm such as the EM algorithm, the choice of starting
values is important for GLMM and NLME models.

2.6.3 Approximate Methods

Numerical integration methods and Monte Carlo EM algorithms for likelihood
estimation for GLMM and NLME models can be computationally very inten-
sive and sometimes may even exhibit convergence difficulties, especially when
the dimension of the integrals (or random effects) is high. Therefore, compu-
tationally much more efficient approximate methods for GLMM and NLME
models are widely used and are implemented in standard statistical software
such as SAS and R/Splus. The key idea of these approximate methods is based
on Taylor series expansions or Laplace approximations. In this section, we de-
scribe these approaches from two viewpoints: linearization and direct approx-
imation. We also briefly discuss other approaches. Again, we focus on NLME
models for illustration, but similar methods can also be used in GLMMs (Bres-
low and Clayton 1993).

Linearization Methods

The idea of linearization methods is to take a first-order Taylor expansion
about estimates of parameters and random effects, which leads to a “work-
ing” LME model. One then updates parameter estimates from this LME model,
and iterates the algorithm until converge. An early procedure, called first-order
method, was proposed by Beal and Sheiner (1982), who took a Taylor series
expansion of the NLME model (2.20) and (2.21) (page 55) about bi = 0, the
mean of the random effects. An improved procedure, called first-order con-
ditional method, was proposed by Lindstrom and Bates (1990), who took a
Taylor series expansion about bi = b̂i, the empirical Bayes estimate of the
random effects. Lindstrom and Bates (1990) showed that their procedure per-
forms better than that of Beal and Sheiner (1982). The procedures may also
be derived using Laplace approximations (Wolfinger 1993; Wolfinger and Lin
1997). An advantage of the linearization procedures is that available methods
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for LME models, such as methods to speed up the EM algorithm and REML
estimates, can be readily incorporated.

In the following, we follow the procedure of Lindstrom and Bates (1990) with
some modification. We rewrite NLME model (2.20) and (2.21) (page 55) as a
single equation

yij = uij(xi,β,bi) + eij , j = 1, . . . , ni; i = 1, . . . , n,

where uij(·) is a nonlinear function. Let ui = (ui1, . . . , uini
)T . At each itera-

tion, denote the current estimates of (β,bi) by (β̂, b̂i), suppressing the itera-
tion number, where b̂i is the empirical Bayesian estimate of bi. The procedure
of Lindstrom and Bates (1990) is equivalent to iteratively solving the following
“working” LME model (Wolfinger 1993)

ỹi = Wiβ + Tibi + ei, (2.77)

where

ỹi = yi − ui(xi, β̂, b̂i) +Wiβ̂ + Tib̂i,

Wi =
∂ui(xi,β, b̂i)

∂βT

∣∣∣
β=β̂

, Ti =
∂ui(xi, β̂,bi)

∂bT
i

∣∣∣
bi=b̂i

.

At each iteration we obtain the updated estimates (β̂, b̂i) of the parameters
and random effects from the LME model (2.77) using standard methods de-
scribed in Section 2.2. Since the method is to iteratively solve LME models in
which the random effects can be integrated out from the likelihood, it avoids
the intractable integral in the likelihood of the NLME model and thus offers a
substantial computational advantage.

Pinheiro and Bates (1995) conducted an extensive simulation study and con-
cluded that the method of Lindstrom and Bates (1990) performs very well for
NLME models. In general, the performance of linearization methods may de-
pend on the number ni of within-individual measurements and the within and
between individual variations (Davidian and Giltinan 1995, 2003; Vonesh and
Chinchilli 1997). Note that, unlike the “exact” methods in Section 2.6.1, lin-
earization methods cannot be made arbitrary accurate.

Laplacian Approximations

Laplacian approximations are often used in Bayesian computation (e.g., Tier-
ney and Kadane 1986). A first-order Laplace approximation can be written as∫

ekp(v)dv =
(

2π
k

)γ/2

·
∣∣∣∂2p(v̂)
∂v2

∣∣∣− 1
2 · ekp(v̂) +O(k−1), (2.78)

where v is a γ-dimension vector, v̂ maximizes p(v), and ∂2p(v̂)/∂v2 =
∂2p(v)/∂v2

∣∣
v=v̂

. This approximation is obtained from a Taylor series ex-
pansion of p(v) about the value v̂ which maximizes p(v). Thus, Laplacian
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approximations can be used to approximate intractable integrals in the forms
of
∫
ekp(v)dv, so they can be used for approximate estimations in NLME and

GLMM models (Wolfinger 1993; Vonesh 1996; Wolfinger and Lin 1997; Lee
et al. 2006).

Consider a GLMM or NLME model with conditional density f(yi|xi,β,η, bi)
given the random effects bi. Let ui(xi,θ,bi) = E(yi|θ,bi). We follow the
approach of Lee et al. (2006). Treating the random effects bi as “missing data”,
the “complete-data” log-likelihood can be written as

lc(θ) ≡
n∑

i=1

l(i)c (θ,bi) ≡
n∑

i=1

{
log f(yi|xi,β,η, bi) + log f(bi|D)

}
.

Taking k = ni, kp(v) = l
(i)
c (θ, bi), γ =dim(bi), and v = bi in the Laplace

approximation (2.78), we can approximate the observed-data log-likelihood
l
(i)
o (θ) for individual i based on the following result (Lee et al. 2006)

l(i)o (θ) =
{
l(i)c (θ, bi)−

1
2

log
∣∣∣ 1
2π
D
(
l(i)c (θ, bi

)
, bi)

∣∣∣}
bi=b̂i

+O(n−1
i )

≡ pb̂i
(l(i)c (θ, bi)) +O(n−1

i ),

where D(l, ξ) = −∂2l/∂ξ2 and b̂i = b̂i(yi,θ) solves ∂l(i)c (θ, bi)/∂bi = 0.

Thus, the observed-data log-likelihood lo(θ) =
n∑

i=1

l
(i)
o (θ) for all individuals

in the sample can be approximated as

lo(θ) =
n∑

i=1

{
pb̂i

(l(i)c (θ, bi)) +O(n−1
i )
}

≡ pb̂(lc(θ, b)) + nO
[(

min
i
ni

)−1]
≈ pb̂(lc(θ, b)),

where pb̂(lc(θ, b)) =
n∑

i=1

pb̂i
(l(i)c (θ,bi)) is the first-order Laplacian approx-

imation to lo(θ). So the estimate θ̃ of θ which maximizes pb̂(lc(θ, b)) is an
approximate MLE.

Specifically, for the NLME model (2.20) and (2.21) (page 55) with Ri = σ2I ,
the observed-data likelihood L(θ|y) can be approximated as follows

L(θ|y) ≈ (2πσ2)−
N
2 |D|−

n
2

n∏
i=1

{∣∣∣∣∣∂2q(yi,θ, b̂i)
∂bi∂bT

i

∣∣∣∣∣
− 1

2

× exp

(
−q(yi,θ, b̂i)

2σ2

)}
,
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where N =
∑n

i=1 ni and

q(yi,θ, b̂i) = (yi − ui(xi,θ,bi))T (yi − ui(xi,θ,bi)) + bT
i D

−1bi.

In the above Laplacian approximation, it can be shown that, as mini ni grows
faster than n, the function pb̂(lc(θ, b)) approaches to the observed-data log-
likelihood function lo(θ). In other words, the approximation improves as the
number of within individual measurements increases. Vonesh (1996) showed
that the approximate estimates are consistent when both the number of mea-
surements within each individual and the sample size go to infinite.

The Laplacian approximation for GLMMs corresponds to the penalized quasi-
likelihood (PQL) (Breslow and Clayton 1993). It can also be obtained by iter-
atively solving a set of “working” LME models (Vonesh et al. 2002; Dean and
Nielsen 2007). Lee, Nelder, and Pawitan (2006) proposed a hierarchical likeli-
hood (h-likelihood) approach for approximate inference in GLMMs. The idea
is essentially to use Laplace approximations for estimation of the mean param-
eters by integrating out the random effects, and for estimation of the variance
components by integrating out the mean parameters and random effects.

We can also consider approximate inference for GLMM and NLME models
using a GEE approach (see Chapter 10 for a detailed description of GEE meth-
ods). For example, we can approximate the first two moments of the models
using a first-order Taylor expansion about bi = 0. We can then construct GEE-
type equations using the approximate first two moments. For NLME models,
the approximate mean is not of the GLM type and the approximate variance-
covariance matrix is not a “working” covariance matrix as in a standard GEE
method, but the GEE approach is quite general and can be broadly used.

Discussion

The approximate methods based on Taylor expansions or Laplace approxima-
tions are widely used because of their computational efficiencies and available
software. The performance of these approximate methods may depend on

• the number ni of within individual or cluster measurements and the sample
size n;

• the discreteness of the response variable y;
• the magnitudes of the variations of the within-individual measurements and

the between-individual measurements.
• some other factors such as nonlinearity of the models.

These approximate methods work very well for large values of ni and n, con-
tinuous responses, and small variabilities of the within-individual measure-
ments and the between-individual measurements. Pinheiro and Bates (1995)
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evaluated the performances of approximate methods and Gauss-Hermite quadra-
ture methods for NLME models, and Joe (2008) investigated the methods for
GLMMs. For NLME models, the approximate methods work very well even
when the number ni of within individual measurements is not large (Pinheiro
and Bates 1995; Hartford and Davidian 2000; Ko and Davidian 2000). For bi-
nary responses with sparse within individual measurements, these approximate
methods may not work well (Breslow and Lin 1995; Joe 2008). Higher or-
der Taylor expansions or Laplace approximations may provide improvements
(Solomon and Cox 1992; Raudenbush et al. 2000; Vonesh et al. 2002; Lee et
al. 2006).

Lai and Shih (2003) and Lai, Shih, and Wong (2006) proposed hybrid meth-
ods that combine Laplacian approximations and Monte Carlo simulations for
GLMM and NLME models. They proposed to use Monte Carlo approxima-
tions to the likelihoods for subjects with sparse observations and use Laplacian
approximation for the likelihoods of other subjects that satisfy a certain diag-
nostic check on the adequacy of Laplacian approximations.

In all the approximate methods, standard errors are obtained by assuming that
the approximations are exactly correct. Even when the approximate methods
work well, standard errors may be under-estimated (Davidian and Giltinan
1995). More reliable standard errors may be obtained by bootstrap methods
(Higgins, Davidian, and Giltinan 1997).

2.7 Further Topics

2.7.1 Model Selection and Further Topics

Model selection for mixed effects models includes selection of random effects
and selection of covariates. Standard model selection methods, such as the AIC
and BIC criteria and the likelihood ratio tests, can still be used for mixed ef-
fects models. However, special attention is required for mixed effects models
since even the simple definition of sample size may not be clear (it involves
both number of subjects and number of observations within each subject), so
one should be careful about their asymptotic properties. Recently, Jiang et al.
(2008) proposed so-called fence methods for mixed model selection. In prac-
tice, one can start with simple methods such as graphical tools. In this section,
we briefly discuss some simple approaches which may be used in practice.

Selection of Random Effects

For longitudinal or clustered data, random effects are used to incorporate the
correlation between the repeated observations within each individual and to
address the variation of regression parameters across individuals or clusters.
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Thus, a simple method to select random effects is to check the variabilities
of regression parameters across individuals. If a regression parameter varies
substantially across individuals, a random effect may be introduced for this
parameter, i.e., this parameter is allowed to be individual-specific. Otherwise,
a random effect may not be necessary for this parameter.

More specifically, if there are sufficient repeated observations within each in-
dividual and the model is not complicated, one can fit a regression model to
the repeated observations within each individual separately, using standard re-
gression models for cross-sectional data. This leads to estimates of individual-
specific parameters for each individual. We then compare these individual-
specific parameter estimates across all individuals, either via graphical dis-
plays or via individual confidence intervals, and check the variabilities of these
individual-specific estimates and decide the need of random effects. As an ex-
ample, consider the children growth data in Section 1.3.4 (page 15). We can
see from Figure 1.6 that the individual intercepts vary greatly across children
but the individual slopes vary little across children. So we may consider a LME
model with random intercept but fixed slope for modeling this dataset. Pinheiro
and Bates (2002) showed more examples of this simple approach.

More formally, we may choose the random effects based on standard model
selection criteria such as the Akaike information criterion (AIC) (Sakamoto,
Ishiguro, and Kitagawa 1986), the Bayesian information criterion (BIC) (Schwarz
1978), and the likelihood ratio test (LRT). The AIC and BIC are defined as

AIC = −2l(θ̂) + 2p,

BIC = −2l(θ̂) + p log(N),

where l(θ̂) is the maximized log-likelihood under the fitted model, θ̂ is the
MLE of θ, p is the number of parameters in the model, and N is the total
number of observations used to fit the model. When comparing two models,
the model with smaller AIC or BIC values is preferred.

When comparing two nested models, we may also consider the well-known
likelihood ratio test (LRT), which may be used to test if one model fits signifi-
cantly better than the other. The LRT statistic is defined as

T = −2 log(L1(θ̂1)/L2(θ̂2)),

where L1 and L2 are the likelihoods and θ̂1 and θ̂2 are MLEs of θ under model
I and model II respectively. Under the null hypothesis that the two models fit
equally well and some regularity conditions, the LRT statistic asymptotically
follows a χ2-distribution with degrees of freedom being the difference in the
numbers of parameters in the two models. One of the regularity conditions is
that the parameters are not on the boundary of the parameter space, which may
be violated in testing variance components as shown below.
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Consider the LRT for testing if some or all random effects should be included
in the model. Suppose that the random effects bi ∼ N(0, D), where for
simplicity the covariance matrix D is assumed to be diagonal with elements
d = (d11, d22, · · · , dqq). These diagonal elements characterize the magnitudes
of unexplained variation in the corresponding individual-specific parameters.
For example, a large value of djj (say) indicates a great variation of the j-th
component of βi in (2.21) (page 55), suggesting a possible need of a random
effect for this parameter. In general, we may use the LRT to test

H0 : ds = 0 versus H1 : ds > 0 (2.79)

where ds is a subset of d. If we rejects H0, we should keep the corresponding
random effects in the model; otherwise, no random effects are needed for the
corresponding parameters.

For the testing problem (2.79), the regularity conditions for the asymptotics of
the LRT do not hold, because the parameters ds are on the boundary of the
parameter space of d under H0, where the parameter space for d is the pos-
itive orthant D+ = {d : djj ≥ 0, j = 1, · · · , q}. Thus, the LRT statistic T
does not follow a χ2 distribution asymptotically. The testing problem (2.79)
is an example of order-restricted tests or multivariate one-sided tests which
have been well developed. Silvapulle and Sen (2004) and van Eeden (2006)
provided recent review of the literature in order-restricted or constrained sta-
tistical inference.

Under some regularity conditions, asymptotically the LRT statistics for order-
restricted or constrained hypotheses typically follow a mixture of χ2 variates
or a weighted average of χ2 variates, called a χ̄2 distribution, rather than a sin-
gle χ2 distribution as in the standard unrestricted cases. Specifically, consider
testing the following order-restricted hypotheses

H0 : Rθ = 0 versus H1 : Rθ ≥ 0, (2.80)

where θ denotes the parameters in the model f(y,θ), and R is a known full-
rank matrix of constants with order r×p (r ≤ p). The LRT statistic for testing
H0 versus H1 is given by

LRT = 2 [sup{l(θ) : Rθ ≥ 0} − sup{l(θ) : Rθ = 0}] ,

where l(θ) = log f(y,θ) is the log-likelihood. Then, under some regularity
conditions (see Silvapulle and Sen 2004, page 146), the asymptotic null distri-
bution of the LRT is the following χ̄2 distribution

lim
n→∞

P (LRT ≥ c | H0) =
r∑

i=0

wi

(
r,RI(θ0)−1RT

)
P (χ2

i ≥ c),

where c is any constant,wi(·) is a (usually complicated) weight function (some-
times called level probability), χ2

i is the usual χ2-distribution with degrees of
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freedom i, and I(θ) = −E(∂2 log f(y,θ)/∂θ2) is the usual information ma-
trix of the model.

For many order-restricted testing problems, exact p-values may be difficult to
compute due to the complicated weight functions, especially in the presence of
nuisance parameters. However, lower and upper bounds of the p-values or ap-
proximate p-values are relatively easy to obtain (e.g., Perlman 1969; Perlman
and Wu 2002; Tamhane and Logan 2002, 2004; Silvapulle and Sen 2004). Con-
strained inference for LME models was considered in Stram and Lee (1994),
Silvapulle 1997b, and Verbeke and Molenberghs (2000). Note that care must
be taken for multivariate constrained tests to avoid potentially misleading con-
clusions (Silvapulle 1997a; Perlman and Wu 1999a).

Finally, note that an advantage of order-restricted tests (2.80) over un-constrained
tests, such as the (two-sided) test H0 : Rθ = 0 versus H1 : Rθ 6= 0, is some
power gain from incorporating known restrictions on parameter space into the
inference.

Selection of Covariates

For covariate selection, we consider NLME models as illustration, since ap-
proaches for other mixed effects models are similar. In NLME modeling, an
important objective is to understand how the individual-specific parameters βi

in the second stage (2.21) of a NLME model (see page 55) vary across in-
dividuals and whether some of this variation may be explained by individual
characteristics represented by covariates xi. That is, one needs to determine an
appropriate form of h(·) in (2.21):

βi = h(xi,β,bi),

as in ordinary regression modeling. Once the second-stage model (2.21) is de-
termined, the random effects represent the variations not explained by the co-
variates.

A simple approach to select covariates in (2.21) is as follows: (i) fit a NLME
model (2.20) – (2.22) without any covariates in (2.21), and obtain empirical
Bayes estimates of the random effects b̂i; (ii) plot the components of b̂i against
each covariate in xi; and (iii) identify important covariates from the plots (e.g.,
ones with systematic patterns) and plausible functional form of h(·) in model
(2.21), since the estimates b̂i contain information about the covariates. This
simple approach may be useful for initial screen when there is a large number
of potential covariates, since in this case a formal variable selection method
for NLME models may exhibit convergence problems. Wu and Wu (2002a)
demonstrated such an approach. Formal variable selection methods include
AIC/BIC criteria and LRT. Jiang et al. (2008) proposed an alternative formal
model selection method and studies its theoretical properties.

Further Topics
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There has been an explosion of research in mixed effects models in recent
years. It is difficult to give a complete review. Here we briefly discuss a few
selected topics.

In mixed effects models, we typically assume that the random effects follow
a multivariate normal distribution N(0, D). In practice, sometimes this as-
sumption may not hold since the true random effects distribution may have
heavier tails or skewed or do not follow any parametric distributions. Lai and
Shih (2003) proposed a nonparametric estimation method for NLME models in
which no distributional assumption is made for the random effects. They con-
sidered a nonparametric maximum likelihood method in which the likelihood
function involves sums instead of integrals, so it offers substantial computa-
tional advantages in addition to the robustness of distributional assumption.
They also developed asymptotic results for their proposed method. LME mod-
els with multivariate t-distributions in the random effects or in the random
errors are discussed in Pinheiro et al. (2001) and Song et al. (2007).

To accommodate outliers in the data, Yeap and Davidian (2001) proposed ro-
bust methods for NLME models, and Sinha (2004) considered robust methods
for GLMMs. We will give a detailed discussion of these robust methods in
Chapter 9. Missing data, censored data, and measurement errors are common
in longitudinal studies. Mixed effects models incorporating these incomplete
observations are discussed in details in Chapters 4 – 6.

Model diagnostics for mixed effects models are important but the literature
is somewhat limited. For LME and NLME models, model diagnostics can be
based on the usual residuals (i.e., the differences between the observed val-
ues and fitted values), and normal Q-Q plots can be used to check normal-
ity assumptions (Davidian and Giltinan 1995; Pinheiro and Bates 2002). For
GLMMs, Pearson or deviance residuals may be used (McCullagh and Nelder
1989). Recent research includes Tchetgen and Coull (2006), who derived a test
for random effects distributions, and Waagepetersen (2006), who considered
tests for normality. Further research in this area is needed.

2.7.2 Choosing a Mixed Effects Model and Method

We have reviewed various mixed effects models for longitudinal or clustered
data. In practice, the choice of a mixed effects model should be based on the
data and scientific objectives. For a mixed effects regression model, one would
need to choose a response variable first. If the response is a continuous vari-
able, one would naturally consider a LME model or a NLME model, which as-
sumes normality for the response variable (or a transformation of the response).
A LME model is often chosen empirically based on the observed data with-
out theoretical justifications, while a NLME model is typically chosen based
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on some understanding of data-generation mechanisms, with some theoretical
justifications, and a NLME model is often preferred if it can be derived and
justified. If the response is binary or discrete, a GLMM can be considered. If
the response is the time to an event of interest, a survival model can be used.
If the observed longitudinal trajectories are complex, semiparametric or non-
parametric mixed effects models are more flexible than parametric models and
may thus be preferred.

Selections of random effects and covariates in a mixed effects model have been
discussed in Section 2.7.1. In a preliminary analysis, random effects can be
chosen based on the observed variations between individuals or clusters, al-
though some of these variations may be partially explained by covariates. In
data analysis, it is important to check if the final model indeed fits the ob-
served data well. In other words, model diagnostics are important, which are
often based on graphical tools such as residual plots.

We have also discussed a number of estimation methods for GLMM and NLME
models. The choice of an estimation method mainly depends on computational
burden. If computation is not an issue, one should choose exact or nearly exact
methods. For GLMM and NLME models, if the dimension of random effects
is small, one may consider nearly exact methods such as the Gauss-Hermite
quadrature method. If the dimension of random effects is moderate, one may
consider a Monte Carlo EM algorithm. If the dimension of random effects is
moderate to large, computation is typically an issue, so computationally more
efficient approximate methods are highly recommended. The performance of
these approximate methods depends on the types of the response, the mag-
nitudes of between and within individual variations, the nonlinearity of the
models, and other factors. Thus, it would be desirable to use two or more meth-
ods and then compare the results. Alternatively, one may use an approximate
method to obtain good starting values for more exact numerical or Monte Carlo
iterative methods.

2.8 Software

Standard regression models for cross-sectional data, such as linear models,
generalized linear models, and nonlinear models, are widely implemented in
most statistical software, including R or Splus, SAS, and SPSS. For example,
in R or Splus, the corresponding functions are lm(), glm(), and nl() respec-
tively. The book by Venables and Ripley (2003) “Modern Applied Statistics
with S-PLUS” (the MASS package) provided detailed descriptions. A function
for fitting multi-level models in R is bugs(). Latest R implementations and
packages can be found in the R webpage at www.r-project.org/.

Standard mixed effects models are also implemented in many statistical soft-
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ware. The following packages in Splus or R can be used to fit LME, NLME,
and GLMM models respectively: function lmer() in the lme4 package, func-
tions lme() and nlme() in the nlme package, and function glmmPQL() in the
MASS package. These packages are mainly based on the approximate meth-
ods of Lindstrom and Bates (1990) and Breslow and Clayton (1993). Standard
errors are obtained assuming that the approximations are exactly correct. The
book by Pinheiro and Bates (2002) provided a detailed description of fitting
LME and NLME models, including many examples. The R function glmm()
fits a GLMM with a random intercept using a normal mixing distribution com-
puted by Gauss-Hermite integration. The R packages mgcv and gamm can be
used to fit generalized additive models and generalized additive mixed mod-
els respectively. In Splus or R, the function integrate() or integrate2() can be
used for numerical integration based on the adaptive quadrature method.

Current versions of SAS include mixed, nlmixed, and glimmix procedures
for fitting LME, NLME, and GLMM models. An attractive feature of proc
nlmixed in SAS is that it includes numerical integration method (the default is
adaptive Gaussian quadrature) which allows “exact” likelihood computation,
in addition to the approximate methods similar to nlme in Splus or R. The
SAS nlinmix macro with the expand=zero option implements the first-order
approximation (Beal and Sheiner 1982) using the GEE method, and the SAS
nlinmix macro with the expand=eblup option implements the first-order con-
ditional method (Lindstram and Bates 1990).

Other software for fitting mixed effects models include SPSS (the mixed com-
mand), STATA (the xt set of commands such as xtmixed), and HLM and ML-
Win and others. In pharmacokinetics and pharmacodynamics (PK/PD) model-
ing, the NONMEM package for fitting NLME models is popular. For beginners,
an easy software for fitting NLME models is WinNonmix.

When fitting nonlinear models, the choice of starting values is very impor-
tant. Starting values may be obtained using some simple methods. One should
try different starting values in a model fitting. Another potential problem for
fitting nonlinear or generalized linear mixed models is convergence. Since it-
erative algorithms are used to fit these models, the algorithms sometime may
not converge if the starting values are poorly chosen or if the sample size is
not large but the number of parameters is large or other problems. When an
algorithm does not converge, one can try different starting values or simplify
the models to reduce the number of parameters.





CHAPTER 3

Missing Data, Measurement Errors,
and Outliers

3.1 Introduction

In longitudinal studies, observed data are often incomplete since it is difficult
to observe all data for every variable at each measurement time, especially if
the studies last a long time. Incomplete data are also common in other types
of studies, including cross-sectional studies. In many studies, data may also be
censored or mis-measured. Specifically, the following problems are common
in practice: (i) missing data: the data are completely missing, (ii) censored data:
the true data are not observed but they are known to be in certain ranges, (iii)
mis-measured data: the true data are not observed but their mis-measured ver-
sions are observed, (iv) outliers: the observed data may or may not be the true
values but they are inconsistent with majority of the observed data. For last
three cases, although the true data may not be observed, partial information is
available for the true values so they may also be called incomplete data. To
avoid confusion, we use the term missing data to refer to data that are com-
pletely missing and use the term incomplete data to refer to the more general
cases, i.e., one of the above four cases. In this chapter, we review some com-
monly used general methods for incomplete data problems.

In the presence of missing data, it is important to choose appropriate methods
for data analysis since simple or naive methods may lead to biased results.
For example, if a subject withdraws from a study due to conditions related to
the study, discarding or ignoring the missing data will lead to biased analyses.
Thus, one should first check possible reasons of missing data or how the data
are missing, i.e., the possible missing data mechanisms. Choices of appropriate
methods for data analysis are then based on the missing data mechanisms. In
practice it is often difficult to determine the missing data mechanisms, since
the data analyst may not be the one who collects the data. In this case, one may
analyze the data under several plausible missing data mechanisms and then
check if the results differ substantially. This is called sensitivity analysis.

99
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Censored data may be viewed as a special type of missing data in which the
censored values are unobserved but are known to be in certain ranges. Censor-
ing arises in studies where certain variables may have upper and/or low limits
of detection. For example, in some AIDS studies viral loads may have low de-
tection limits so that viral loads below the detection limits cannot be measured.
Survival data or event time data are also examples of censored data. Due to the
unique features of censored data, special methods are needed to analyze data
with censoring.

Measurement errors in variables are common in practice. For example, blood
pressure, fat intake in nutritional studies, and depression scores, may all be
measured with errors, since it is usually difficult to measure these variables
accurately. In the presence of measurement errors, the observed data are not
the true values but mis-measured ones. If the observed data are measured with
errors but are treated as true values, statistical analysis may be biased. For
example, in regression models the covariates are usually treated as fixed or
accurately measured. If the covariates are in fact measured with errors, sta-
tistical inference will be misleading, e.g., a significant covariate may seem to
be non-significant. Thus, covariate measurement errors must be addressed for
valid inference. To address measurement errors, we often require replicates or
validation data. In longitudinal studies, the repeated observations within each
individual may be viewed as replicates.

Outliers also arise frequently in practice. Outliers may be mis-measured values
(e.g., recording errors) or may even be true values. Here we view outliers as in-
complete data in a broad sense. It is known that maximum likelihood estimates
are sensitive to outliers, i.e., a few outliers in the data may have great effects
on the estimates such as misleading estimates and inflated standard errors. For
multi-dimensional data, it may be difficult to detect outliers. Thus, we should
perform robust analysis in which we can either assume heavy-tail distributions
to accommodate outliers or use robust methods to downweight outliers.

There is an extensive literature on the analyses of incomplete data. For exam-
ple, Little and Rubin (2002) provided an overview of missing data methods,
Carroll et al. (2006) reviewed commonly used methods for measurement er-
rors, and Maronna, Martin, and Yohai (2006) discussed recent developments
of robust methods. However, a comprehensive review of incomplete data prob-
lems in mixed effects models seems unavailable, although incomplete data
problems are especially common in the applications of these models.

In this chapter, we provide a review of general methods for incomplete data
problems in regression models. We focus on basic concepts and approaches.
Technical details and extensions to mixed effects models will be discussed in
the following chapters.



MISSING DATA, MEASUREMENT ERRORS, AND OUTLIERS 101

3.2 Missing Data Mechanisms and Ignorability

3.2.1 Missing Data Mechanisms

When analyzing data with missing values, one first needs to consider possible
missing data mechanisms. Rubin (1976) defined the following three missing
data mechanisms:

• missing completely at random (MCAR): missingness depends neither on the
observed data nor on the unobserved data,

• missing at random (MAR): missingness may depend on the observed data
but not on the unobserved data,

• missing not at random (MNAR): missingness may depend on the observed
data and on the unobserved data.

For example, if a student did not hand in an assignment, the possibilities are (i)
he forgot it, then the missing data is MCAR since the missingness is unrelated
to any observed or missing data; (ii) he had done very well on all previous as-
signments so felt no need to do this assignment since not all assignments were
counted, then the missing data is MAR since the missingness is related to his
previous assignment marks (observed data) but not to the missing assignment;
and (iii) he did not know how to do the assignment, then the missing data is
MNAR since the missingness is related to the missing assignment (he would
get a low mark if he did hand in the assignment). There may be other possibil-
ities, but the missing data mechanism is either MCAR or MAR or MNAR.

When missing data are MCAR, we can view the individuals in the sample
with completely observed data as a random (or representative) subsample of
the population. Thus, the commonly used complete-case (CC) method, which
discards all individuals with missing data, is still valid and leads to unbiased
results. The only loss is efficiency, due to discarding some data, which leads
to a smaller sample size. For multivariate data or longitudinal data, the loss of
efficiency can be substantial since many individuals may have to be discarded.
When the missing data are not MCAR (either MAR or MNAR), individuals
with complete data cannot be treated as a random or representative subsample
of the population, so the CC method may lead to biased results.

Note that MCAR is a very strong assumption, which may not be reasonable
in many cases. In practice, MAR may be a more reasonable assumption, espe-
cially if one includes more observed variables in the analysis. In many cases,
MNAR is a possibility, and such possibility should not be ignored as the miss-
ing data contain valuable information, i.e., the missingness is informative. Note
that MNAR and MAR are not testable based on the observed data, so sensitiv-
ity analyses under various possible missing mechanisms are important. It is
possible to test the MCAR assumption.
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For missing covariates in regression models, MCAR means that the proba-
bility of missing a covariate value depends neither on the observed covari-
ates/responses nor on the missing covariate. MAR means that the probability
of missing a covariate value may depend on the observed values of the co-
variates or responses but not on the missing values of the covariates. MNAR
means that the probability of missing a covariate value depends on the missing
or unobserved values and may also on the observed covariates or responses.

In summary, if individuals with missing data differ from individuals with com-
plete data in some systematic ways, the individuals with missing data cannot be
viewed as a random or representative subsample of the population, so the miss-
ing data mechanism is unlikely to be MCAR. Statistical analysis with MCAR
missing data is the simplest, but MCAR is also the strongest assumption.

3.2.2 Ignorability

In practice, it is often difficult to determine missing data mechanisms. If one
chooses likelihood methods for data analysis, however, the missing data mech-
anisms can be ignored or the missingness is ignorable if the missing data are
either MCAR or MAR and if the model parameters satisfy a reasonable as-
sumption (Rubin 1976). The assumption on the parameters for ignorability is
that the parameters in the model of interest and the parameters in the assumed
missing data model (missing data mechanism) are distinct (i.e., the two models
do not share any parameters). This distinctness assumption is often reasonable
and will be assumed throughout the book. If the missing data are MNAR, the
missing data mechanism is non-ignorable, and in this case we must incorporate
the missing data mechanism in likelihood inference. Little and Rubin (2002)
provided a more detailed discussion on ignorability.

Ignorability is a major advantage of likelihood methods for missing data prob-
lems. In many cases the MAR assumption may be realistic, and in these cases
likelihood inference can proceed based on the observed data, ignoring the
missing data mechanism. Other methods may not share this property. For ex-
ample, if we use the generalized estimating equation (GEE) methods for infer-
ence, the missing data mechanism cannot be ignored even if the missing data
are MAR (see Chapter 10).

To illustrate the concept of ignorability, consider missing covariates problems
in regression models. For simplicity, we consider missing data in time-independent
(e.g., baseline) covariates in a regression model for longitudinal data, without
random effects. For individual i, let yi = (yi1, yi2, · · · , yim)T be the response
measurements and let xi = (xi1, xi2, · · · , xip)T be p time-independent co-
variates with possible missing data, i = 1, 2, · · · , n. Let the regression model
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be f(yi|xi,β,σ), where the parameters β are regression coefficients and σ
contains variance-covariance parameters.

When there are missing data in covariates xi, we should assume a model
f(xi|α) for the covariates in order to address the missing data. Write xi =
(xobs,i,xmis,i), where xobs,i contains the observed components of xi and xmis,i

contains the missing components of xi. Let

rij =
{

1 if xij is observed,
0 if xij is missing, i = 1, · · · , n, j = 1, · · · , p. , (3.1)

be a missing data indicator. For simplicity, we assume that the rij’s are inde-
pendent of each other, although in practice they may be correlated. To approx-
imate a possible missing data mechanism, we assume a model for the missing
data indicator f(rij |xi,φ), which describes how the probability of missing a
covariate value depends on the observed and unobserved values.

If the missing data are MCAR, the value of rij does not depend on any ob-
served or missing data, so we have

P (rij = 1) ≡ f(rij |xi,φ) = f(rij |φ).

In this case the missing data mechanism, or the model f(rij |φ), can be ignored
in statistical inference. If the missing data are MAR, the value of rij does not
depend on xmis,i but may depend on xobs,i, so we have

P (rij = 1) ≡ f(rij |xi,φ) = f(rij |xobs,i,φ),

In this case, if the parameters φ are distinct from the parameters (α,β,σ),
the missing data mechanism can again be ignored in likelihood inference. The
distinctness of the parameters is often a reasonable assumption in practice.
Therefore, both MCAR and MAR are ignorable in likelihood inference, and
we do not need to assume a missing data model for rij . In other words, under
MCAR or MAR, statistical inference can simply be based on the observed-data
likelihood

Lo(α,β,σ) =
n∏

i=1

∫
f(yi|xi,β,σ)f(xi|α) dxmis,i,

which leads to valid inference.

If the missing data are MNAR, the value of rij may depend on xmis,i and
xobs,i, so we have

P (rij = 1) ≡ f(rij |xi,φ) = f(rij |xobs,i,xmis,i,φ).

In this case the missing data mechanism is non-ignorable, so likelihood infer-
ence must incorporate the missing data model f(rij |xi,φ). In other words,
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inference should be based on the likelihood

L(β,σ,α) =
n∏

i=1

∫
f(yi|xi,β,σ)f(xi|α)f(ri|xi,φ) dxmis,i,

where ri = (ri1, · · · , rip). The missing data model f(rij |xi,φ) is not testable
based on the observed data, and different missing data models may fit the ob-
served data equally well. Therefore, when the missing data are MNAR, it is
important to perform sensitivity analysis, i.e., one assumes different missing
data models and then checks if the resulting estimates are similar or not.

The parametersφ in the missing data model and the parametersα in the covari-
ate model are usually not of primary inferential interest, i.e., they are nuisance
parameters, since they are assumed just to address missing data. Therefore,
we should avoid large or complicated models for f(rij |xi,φ) and f(xi|α)
to avoid too many nuisance parameters. Too many nuisance parameters may
affect precision of the main parameter estimates β̂ and may lead to computa-
tional difficulties.

3.3 General Methods for Missing Data

3.3.1 Naive Methods

In this section we briefly review some naive methods which are commonly
used for handling missing data in practice. These methods are very simple, so
they are widely used. However, these naive methods often lead to inefficient or
biased results, so they should be avoided whenever possible or be used when
there is only a small portion of missing data.

The Complete-Case (CC) Method

The simplest and perhaps the most widely used method for missing data is
the CC method, which simply discards all individuals with missing values.
As discussed in Section 3.2, if the missing data are MCAR, individuals with
missing values may be viewed as a random subsample of the original sample,
so discarding these individuals will not lead to biased results but will lead
to a loss of efficiency. When the missing data are not MCAR (i.e., MAR or
MNAR), discarding individuals with missing values may lead to biased results
since these individuals may differ from individuals with complete data in some
systematic ways. Thus, the CC method is valid only when the missing data are
MCAR.

Note that MCAR is a very strong assumption which is often invalid in prac-
tice, so the CC method often lead to biased results, but the bias may be small
if the missing rate is low. For multivariate data or longitudinal data, the CC
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method may discard a large number of observations, so the loss of efficiency
or bias may be substantial. Moreover, some data may be expensive to obtain,
so discarding data is generally not recommended.

The Last-Value-Carried-Forward (LVCF) Method

A commonly used missing data method for longitudinal data is the so-called
last-value-carried-forward (LVCF) method. The LVCF method imputes a miss-
ing value by the last observed value from the same individual. This method is
very simple and does not discard any data. However, the LVCF method has at
least two obvious drawbacks: i) if longitudinal trajectories vary greatly over
time and the measurements are far apart, the imputed values can be very differ-
ent from the (unobserved) true values, and ii) the missing data uncertainty is
not taken into account. Carpenter et al. (2004) and Cook, Zeng, and Yi (2004)
provided nice discussions of the LVCF method. Thus, the LVCF method is
usually not recommended for missing data in longitudinal studies.

The Mean Imputation Method

Another simple imputation method is called the mean-imputation method, which
imputes a missing value by the mean of observed data. The mean-imputation
method is also very simple, but it shares similar drawbacks as the LVCF method,
so it is generally not recommended.

Both the LVCF method and the mean imputation method are examples of sin-
gle imputation methods, i.e., they impute a missing value by a single (guessed)
value. There are other single imputation methods for missing data, such as
baseline-value-carried-forward method and imputation methods based on con-
ditional means or regression models. Some of these single imputation methods
may produce unbiased estimates. However, a major drawback of these sim-
ple single imputation methods is that they fail to incorporate the missing data
uncertainty. That is, if a value is missing, there is some uncertainty about the
true value (i.e., the true value may take many possible values). Therefore, these
simple single imputation methods may produce estimates with under-estimated
standard errors (since they do not incorporate the missing data uncertainty), so
statistical inference based on these single imputation methods may be mis-
leading (e.g., p-values may be smaller than they should be), especially when
the missing rate is not low.

For more reliable inference, the missing data uncertainty must be taken into
account. The following approaches can be used to incorporate missing data
uncertainty when an imputation method is used:

• impute each missing value by several possible values based on an imputa-
tion model, which is used to predict the missing value based on the observed
data, and then combine the results to obtain a single overall inference. This
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approach is called the multiple imputation method, which will be described
in details in Section 3.5.

• impute a missing value by a single predicted value based on an imputa-
tion model, and then adjust the variances of the estimates using theoretical
results or resampling methods (e.g., bootstrap or jackknife) to reflect the
missing data uncertainty.

Both approaches adjust the variances of parameter estimates to incorporate the
uncertainty due to missing data, so they lead to more reliable inference. The
choice of imputation models is important – one should try to choose a model
that can best predict the missing data based on the observed data. We will
further discuss these methods in Section 3.3.2.

There are other simple or naive methods for missing data. Little and Rubin
(2002) provided a comprehensive overview and discussion.

3.3.2 Formal Methods

As noted in Section 3.3.1, commonly used simple or naive methods for missing
data may lead to biased results and are generally not recommended, especially
if the missing rate is not low. To address missing data appropriately, we should
use more formal methods. These formal methods are often model based, i.e.,
they are often based on an assumed model for the data. In this section, we
briefly review the following four formal methods:

• likelihood inference using EM algorithms,
• single imputation methods with variance adjustments,
• multiple imputation methods,
• Bayesian methods,
• weighted GEE methods.

In this book, we will mainly focus on EM algorithms for likelihood inference
since likelihood methods are standard inferential tools for mixed effects models
and have many desirable properties.

Likelihood Inference Using EM Algorithms

Likelihood methods are standard approaches for statistical inference, espe-
cially for mixed effects models. A major reason is that likelihood theory is
well developed and maximum likelihood estimates (MLEs) have very attrac-
tive asymptotic properties, such as asymptotic normality and asymptotic most
efficiency, under some regularity conditions. For missing data problems, like-
lihood methods are particularly appealing because both MCAR and MAR are
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ignorable in likelihood inference. Moreover, likelihood methods for mixed ef-
fects models allow unbalanced data in the response, i.e., if there are missing
data in the responses with MCAR or MAR mechanisms, likelihood inference
for mixed effects models can proceed in the usual way, ignoring the missing
data.

In the case of missing covariates, if the missing data are MCAR or MAR,
we only need to consider the observed data likelihood without specifying the
missing data mechanisms. When the missing data are MNAR, the modification
is straightforward since one only needs to incorporate a missing data model.

The EM algorithm is an iterative algorithm used to compute MLEs in the pres-
ence of missing data or unobservables. The EM algorithm is very general and
stable, and it is guaranteed to converge to a local maxima. Therefore, EM al-
gorithms are widely used for likelihood inference in the presence of missing
data or unobservable quantities. We discuss details of the EM algorithm in
Section 3.4.

Single Imputation Methods with Variance Adjustments

A single imputation method imputes a missing value by a single predicted
value. The mean-imputation method and the LVCF method in Section 3.3.1 are
both examples of single imputation methods. There are other single imputation
methods, such as that based on regression models which use all observed data
to predict the missing values. A well chosen imputation model may produce
unbiased or approximately unbiased estimates. However, a major drawback
of simple single imputation methods is that they fail to incorporate missing
data uncertainty, so the variances or standard errors of the resulting estimates
are under-estimated. Moreover, these methods may fail to lead to consistent
estimates.

In some cases, one may be able to derive theoretical asymptotic standard errors
which incorporate the missing data uncertainty (e.g., Schafer and Schenker
2000). However, these methods seem not generally applicable in other cases.
More generally, we can obtain valid standard errors use well-known re-sample
methods such as the bootstrap and jackknife to incorporate the missing data
uncertainty (Rao and Shao 1992; Fay 1996; Shao 2002). Alternatively, multiple
imputation methods appear to be more widely used since they are very general
and are implemented in standard software.

Multiple Imputation Methods

Multiple imputation methods (Rubin 1987) impute more than one predicted
values for each missing value to incorporate missing data uncertainty, where
the imputations are generated based on a predictive distribution of the missing
data given the observed data. This leads to several complete datasets. Each
complete dataset is analyzed separately using standard complete-data methods
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as if there were no missing data. The results from the complete-data analyses
are then combined. Once missing data are imputed, various analyses can be
done by different analysts.

The major advantages of multiple imputation methods are i) missing data un-
certainty is incorporated, ii) standard complete-data methods can be used, iii)
the final results may be robust against the assumed imputation model when the
missing rate is low since the observed data are not affected by the imputation
model, and iv) different analyses can be performed on the multiply imputed
dataset. Rubin (1987) provided the theory and justification of multiple imputa-
tion methods. More details of multiple imputation methods will be provided in
Section 3.5.

Bayesian Methods

Bayesian methods incorporate prior information from similar studies, so they
provide additional information for parameter estimates. Bayesian methods are
particular appealing when there are too many parameters, which is often the
case for missing data analyses, or when the sample size is not large. When
non-informative priors are used, Bayesian methods are equivalent to likelihood
methods (see Chapter 11). Ibrahim et al. (2002) showed a Bayes analysis for
missing data in GLMs.

Bayesian methods are often implemented via Markov Chain Monte Carlo (MCMC)
methods such as the Gibbs sampler, so they may be computationally intensive.
There have been extensive developments of Bayesian methods in the last few
decades, due to availability of modern computers and breakthrough in compu-
tational tools such as the MCMC methods which make Bayesian computation
feasible. We will discuss Bayesian methods in more details in Chapter 11.

Weighted GEE

The EM algorithms, single or multiple imputation methods, and Bayesian meth-
ods are generally model-based and distributional assumptions are often re-
quired. So the results may be sensitive to the assumed models and distribu-
tions. Generalized estimating equations (GEE) methods are only based on the
first two moments, without distributional assumptions. Moreover, if the mean
structure is correctly specified, the mean parameters can be consistently esti-
mated even if the covariance structure is mis-specified, and GEE estimates are
asymptotically normal (Liang and Zeger 1986). Therefore, GEE methods are
popular in the analyses of longitudinal data or clustered data.

In the presence of missing data, one can modify the GEE equations to weight
the completely observed cases by the inverse of the missing probability, and the
resulting estimates are still consistent (Robins et al. 1994, 1995). Recent work
includes Ibrahim et al. (2005), Carpenter et al. (2006), and Yi (2008), among
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others. The weighted GEE method becomes less tractable when there are mul-
tiple missing variables and when the missing data patterns are non-monotone
(see Table 3.1). For GEE methods the missing data mechanism MAR is not
ignorable. Thus, if the missing data are not MCAR, one should incorporate the
missing data mechanisms in GEE methods. GEE models and weighted GEE
methods will be discussed in details in Chapter 10.

Other Methods

There are other methods for missing data analyses. Little and Rubin (2002) pro-
vided a comprehensive overview. For likelihood inference, analytic (or closed-
form) MLEs can be obtained in some special cases, so the EM algorithm may
not be needed. For example, for multivariate normal data or multinomial data
with monotone missing data patterns (see Table 3.1), analytic expressions of
MLEs can be obtained, since in this case the observed-data likelihood can be
factored – see Little and Rubin (2002) for details and examples. Even if the
missing data patterns are non-monotone (see Table 3.1), analytic expressions
of MLEs may still be obtained under certain conditional independence assump-
tions, since in this case the observed-data likelihood can again be factored (An-
dersson and Perlman 1993; Perlman and Wu 1999). These conditional indepen-
dence assumptions are often made in graphical models (Lauritzen 1996).

In most practical situations, however, the missing data patterns are non-monotone
and certain conditional independence assumptions are not reasonable, so an-
alytic solutions are unavailable and the EM algorithms should be used. In re-
gression models with missing data, analytic expressions of MLEs are generally
unavailable, even if the missing data patterns are monotone. Therefore, itera-
tive algorithms such as the Newton-Raphson method and the EM algorithms
are needed for maximum likelihood estimation.

3.3.3 Sensitivity Analysis

When the missing data are MNAR or non-ignorable, an assumed missing data
model is not testable based on the observed data, since no data are available to
verify the dependence of the missingness on the unobserved data. In fact, every
MNAR model has an MAR counterpart in the sense that both models produce
exactly the same fit to the observed data, but the two models may lead to dif-
ferent inferences (Molenberghs and Kenward 2007). Therefore, it is important
to perform sensitivity analysis in which one considers several plausible miss-
ing data models and then checks the sensitivity of the results to the assumed
models.

A simple approach for sensitivity analysis is to consider several plausible MNAR
models which assume various dependencies of the missingness on the unob-
served and observed data. Then, one can check if the analysis results are robust



110 MIXED EFFECTS MODELS FOR COMPLEX DATA

Table 3.1 Monotone and non-monotone missing data patterns

Monotone pattern Non-monotone pattern
ID X1 X2 X3 X4 X1 X2 X3 X4

1 O O O O O O O O
2 O O O M O M O M
3 O O O M O O M M
4 O O M M M O O O
5 O O M M M M O O
6 O O M M O O O M
7 O M M M M M O O
· · ·

Notation: ID – subject ID number, M – missing, O – observed.

to the assumed MNAR models. Alternatively, one could consider different dis-
tributions assumed for the models. Note that, parameter identifiability can be
an issue for MNAR models, so one should not choose too complicated missing
data models.

There are more formal methods for sensitivity analysis, such as local and global
influence methods. Molenberghs and Kenward (2007) provided a detailed dis-
cussion on sensitivity analysis and provided some nice examples.

3.3.4 Selection Models versus Pattern-Mixture Models

There are two general model-based frameworks for missing data analyses: se-
lection models and pattern-mixture models (Little and Rubin 2002). We briefly
describe these two approaches using missing covariates in regression models
as an illustration. We follow the notation and setup in Section 3.2.

The selection model approach factors the joint density of the data (yi,xi, ri)
as follows:

f(yi,xi, ri|θ,φ) = f(yi,xi|θ)f(ri|yi,xi,φ)
= f(yi|xi,β,σ)f(xi|α)f(ri|yi,xi,φ), (3.2)

where θ = (β,σ,α). In factorization (3.2), f(yi|xi,β,σ) is the regression
model of interest, f(xi|α) is the assumed covariate model which is used to ad-
dress missing data in covariates, and f(ri|yi,xi,φ) is the missing data model
which specifies how the missingness of the covariates depends on the observed
and missing data. If the missing data are MAR, we have

f(ri|yi,xi,φ) = f(ri|yi,xobs,i,φ).
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If the missing data are MNAR, we have

f(ri|yi,xi,φ) = f(ri|yi,xobs,i,xmis,i,φ).

Therefore, the selection model approach is natural for likelihood inference,
and it offers much flexibility for modeling the missing data mechanisms. A
drawback is that the missing data model f(ri|yi,xi,φ) is not testable based
on the observed data, so sensitivity analysis is required.

The pattern-mixture model approach factors the joint density of the data (yi,xi, ri)
as follows

f(yi,xi, ri|θ,φ) = f(yi,xi|ri,θ)f(ri|φ)
= f(yi|xi,β,σ)f(xi|ri,α)f(ri|φ), (3.3)

assuming that yi is independent of ri given covariates xi. Factorization (3.3)
indicates that a different covariate model is needed for each missing data pat-
tern. An advantage of the pattern-mixture model is that we can avoid specify-
ing how the missingness of the covariates depends on the observed and missing
data, which is not testable based on the observed data, since the missing data
model f(ri|φ) does not require such specification.

In this book we focus on the selection model approach for missing data prob-
lems since it appears to be more convenient for likelihood inference. Detailed
discussions of pattern-mixture models can be found in Little (1993, 1994),
Hogan and Laird (1997), and Little and Ruben (2002).

3.3.5 Choosing a Method for Missing Data

In statistical analyses with missing data, some naive methods such as the CC
method and the LVCF method have been widely used due to their simplicity,
but these naive methods are generally not recommended since they may lead
to biased or misleading results. The consequences of using a naive method
in practice depend on the fraction of missing data and missing data mecha-
nisms. For example, if the fraction of missing data is low and the missing data
mechanism is MCAR, the most commonly used CC method can lead to valid
analysis, although it may not be efficient since some data are discarded. If the
missing data mechanism is not MCAR, however, the CC method may lead to
biased results. Note that MCAR is a very strong assumption and is often not
valid in many cases. Therefore, a formal method for missing data should be
used whenever possible in order to avoid biased results, especially when the
missing rate is not low and the missing data mechanism is not MCAR.

The EM algorithms and multiple imputation methods are perhaps most widely
used formal methods for missing data analyses. The EM algorithm has the ad-
vantages of generality and easy adaption to different missing data mechanisms
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and arbitrary missing data patterns, but it usually requires custom programming
and it may be sensitive to the assumed models. Multiple imputation methods
can take advantages of existing complete-data methods and software, and they
are relatively robust against the assumed imputation models if the missing rate
is not high. Thus, if the missing rate is not high, in a preliminary analysis one
can use a general multiple imputation method to quickly impute missing data
and then use standard methods and software for complete-data analysis. For
example, one may use a multivariate normal model to create multiple impu-
tations for missing data in continuous response and covariates in a regression
model and then proceed standard regression analysis based on complete data.
However, for a more thorough and formal analysis, creating proper multiple
imputations for more complex models such as GLMM and NLME models may
be challenging and requires custom programming, and combining multiple re-
sults from multiple imputations may not be trivial. If the assumed models hold,
the EM algorithm may be preferred for a more formal analysis, which focuses
on a specific analysis and may be viewed as a multiple imputation method
with infinite many imputations. If different analyses are to be performed on the
same dataset, as for many survey data, multiple imputation methods may be
preferred.

For a single imputation method, one should make sure that the results are un-
biased and missing data uncertainty is incorporated, which can be challeng-
ing in some cases. Weighted GEE methods are robust against distributional
assumptions and may use standard software which allows weights. However,
for complex models with non-MCAR missing data mechanisms and arbitrary
missing data patterns, implementations of weighted GEE methods may not be
straightforward. Moreover, weighted GEE methods are usually not the most
efficient. In some sense, Bayesian methods are perhaps most general, and soft-
ware such as WinBUGS is readily available for standard problems. However,
for more complex models or problems, implementations of Bayesian methods
for missing data can be computationally challenging or tedious.

3.4 EM Algorithms

3.4.1 Introduction

The expectation-maximization (EM) algorithm (Dempster, Laird, and Rubin
1977) is an iterative procedure used to compute maximum likelihood estimates
in the presence of missing data or unobservables. It has become extremely
popular in the last few decades, and it has also been widely used outside the
missing data area. The popularity of the EM algorithm compared with other
numerical methods such as Newton-Raphson methods is EM’s superior stabil-
ity properties and easy for implementation. Specifically, the advantages of the
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EM algorithm include (i) its convergence is stable and each iteration increases
the likelihood, (ii) the M-step involves only complete-data maximization so it
is often computationally straightforward, and (iii) it is very general and can be
used in almost any maximum likelihood estimation problems with unknown
quantities. A disadvantage is that the EM algorithm may be slow to converge
for many problems. In recent years, there has been extensive research on the
EM algorithm itself, such as methods to speed up convergence and extensions
of the standard EM algorithm. McLachlan and Krishnan (1997) provided a
comprehensive review of these developments.

An EM algorithm iterates between an E-step and an M-step as follows:

• E-step: computes the conditional expectation of the “complete-data” log-
likelihood given the observed data and the current parameter estimates,
where the “complete-data” contain both the observed data and the missing
data,

• M-step: maximizes the conditional expectation in the E-step with respect to
the unknown parameters to produce updated estimates of the parameters.

Given some starting values, we iterate between the E-step and the M-step until
the parameter estimates converge. It can be shown that, under some reasonable
regularity conditions, each EM iteration increases the likelihood, so the EM
algorithm is guaranteed to converge to a local maxima (Wu 1983). Since the
EM algorithm only converges to a local maxima, when the likelihood may have
multiple modes, it is important to choose good starting values or try different
starting values to make sure that the EM algorithm eventually converges to a
global maxima.

In the following, we present some simple examples to illustrate the EM algo-
rithms.

Example 3.1 An EM algorithm for normal data

Let y1, y2, · · · , yn be an i.i.d. sample from normal distribution N(µ, σ2), and
let θ = (µ, σ2) be the unknown parameters. Suppose that y1, y2, · · · , yr are
observed, but yr+1, yr+2, · · · , yn are missing, where r < n. Assume that the
missing data are MAR or MCAR. Let yobs = (y1, y2, · · · , yr) be the observed
data and let ymis = (yr+1, yr+2, · · · , yn) be the missing data. The “complete
data” is then ycom = (yobs,ymis) = (y1, y2, · · · , yn). The observed data log-
likelihood is given by

lobs(θ) = −r
2

log(2πrσ2)− 1
2

r∑
i=1

(yi − µ)2

σ2
,
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and the “complete-data” log-likelihood is given by

lcom(θ) = −n
2

log(2πnσ2)− 1
2

n∑
i=1

(yi − µ)2

σ2
.

Let θ(k) be the parameter estimate from the (k − 1)th EM iteration, k =
1, 2, 3, · · ·. At k-th EM iteration, the E-step computes the conditional expec-
tation of the “complete-data” log-likelihood given the current parameter esti-
mates θ(k) and the observed data yobs, i.e., the E-step computes

Q(θ|θ(k)) = E
(
lcom(θ)|θ(k),yobs

)
=

[
−n

2
log(2πnσ2) +

nµ2

2σ2

]
− 1

2σ2

[
E

(
n∑

i=1

y2
i

∣∣θ(k),yobs

)

−2µE

(
n∑

i=1

yi

∣∣θ(k),yobs

)]
,

where

E

(
n∑

i=1

yi|θ(k),yobs

)
=

r∑
i=1

yi + (n− r)µ(k), (3.4)

E

(
n∑

i=1

y2
i |θ(k),yobs

)
=

r∑
i=1

y2
i + (n− r)(µ(k)2 + σ(k)2). (3.5)

The M-step of the EM algorithm then updates the parameter estimates by max-
imizing Q(θ|θ(k)) with respect to θ, which leads to

µ(k+1) =
1
n
E

(
n∑

i=1

yi

∣∣θ(k),yobs

)
=

1
n

[
r∑

i=1

yi + (n− r)µ(k)

]
,

(σ(k+1))2 =
1
n
E

(
n∑

i=1

y2
i

∣∣θ(k),yobs

)
− (µ(k+1))2

=
1
n

[
r∑

i=1

y2
i + (n− r)(µ(k)2 + σ(k)2)

]
− (µ(k+1))2.

Iterate the E-step and the M-step (for k = 1, 2, 3, · · ·) until convergence, we
obtain the following MLEs

µ̂ =
1
r

r∑
i=1

yi, σ̂2 =
1
r

r∑
i=1

y2
i − µ̂2.

Note that in this example the EM algorithm is in fact not needed. We use it as
an illustration of the EM algorithm, since it is simple and contains the essential
ideas of the EM algorithm.
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Table 3.2 Estimates for the distress data based on different missing data methods

Parameter CC Method LVCF Method EM Algorithm
Estimate S.E. Estimate S.E. Estimate S.E.

µ1 1.07 0.060 1.13 0.045 1.13 0.044
µ2 0.94 0.060 1.01 0.044 1.02 0.043
µ3 0.84 0.057 0.91 0.043 0.89 0.041
µ4 0.80 0.050 0.89 0.040 0.87 0.035
µ5 0.75 0.055 0.87 0.042 0.83 0.039

Example 3.2 Mental distress data

Consider the GSI scores in the mental distress data described in Section 1.3.1
of Chapter 1 (see page 8). There are five measurements for each subject, and
the proportions of missing data are 3.7%, 14%, 19.2%, 38.7%, and 36.2% at
baseline, 3, 6, 18, and 60 months respectively. The missing data pattern is non-
monotone. The missing data are assumed to be MAR for simplicity. We also
assume that the GSI measurements at the five time points follow a multivariate
normal distributionN(µ,Σ), whereµ = (µ1, · · · , µ5) and Σ is a 5×5 unstruc-
tured covariance matrix. We consider estimating µ using the complete-case
(CC) method, the last-value-carried-forward (LVCF) method, and the likeli-
hood method base on the EM algorithm.

There are 261 subjects in the study, and 142 (54.4%) of them have missing data
at one or more time points. So the CC method deletes 54.4% of the subjects,
of which many have observed values, so the CC method is very inefficient and
it may also be biased if the missing data are not MCAR. The LVCF method
uses all observed data, but it imputes the last observed value for each missing
value, so it ignores the missing data uncertainty and may also be biased. The
EM algorithm also uses all observed data, and it leads to valid inference.

Table 3.2 gives the estimates of µj’s and the associated standard errors. We see
that the CC method is the worst, compared with EM estimates. Note that the
performances of the CC and LVCF methods depend on the fractions of missing
data. For example, the fractions of missing data are larger at times t4 or t5 than
that at earlier times, so the estimates (standard errors) µ̂4 or µ̂5 based on the
CC and LVCF methods are more biased than estimates (µ̂1, µ̂2, µ̂3) at early
time points.
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3.4.2 An EM Algorithm for Missing Covariates

In this section, we further illustrate the EM algorithm for the missing covariate
problem presented in Section 3.2 (page 101). We follow the notation in Section
3.2. Let the time-independent covariates for individual i be xi, which contains
missing values. Since the covariates have missing data, we assume a covariate
model f(xi|α) for likelihood inference. For completely observed covariates,
no model assumptions are needed so these covariates are suppressed.

We consider the selection model approach for missing data and write the joint
density for (yi,xi, ri) as follows

f(yi,xi, ri|θ,φ) = f(yi|xi,β,σ)f(xi|α)f(ri|yi,xi,φ), (3.6)

where θ = (β,σ,α). For simplicity, we assume that the missing data in co-
variates are ignorable (i.e., MCAR or MAR), so we can ignore the missing data
model (mechanism) f(ri|yi,xi,φ) in the following likelihood inference. The
likelihood for the observed data {(yi,xobs,i), i = 1, 2, · · · , n} is given by

Lobs(θ) =
n∏

i=1

∫
[f(yi|xi,β,σ)f(xi|α)] dxmis,i, (3.7)

and the observed-data loglikelihood is lobs(θ) = logLobs(θ). The observed-
data likelihood Lobs(θ) generally does not have a closed form expression, ex-
cept for linear models. So we use the EM algorithm to find the MLE of θ as
follows:

The “complete data” is

{(yi,xi), i = 1, 2, · · · , n} = {(yi,xobs,i,xmis,i), i = 1, 2, · · · , n},

and the “complete data” log-likelihood is given by

lcom(θ) =
n∑

i=1

[log f(yi|xi,β,σ) + log f(xi|α)] . (3.8)

Let θ(0) be the starting value. At k-th EM iteration, k = 0, 1, 2, · · · , the E-step
computes the conditional expectation of the complete-data loglikelihood given
the observed data and the current parameter estimates, i.e.,

Q(θ|θ(k)) = E
(
lcom(θ)

∣∣yi,xobs,i,θ
(k)
)

=
n∑

i=1

∫ [
log f(yi|xi,β,σ) + log f(xi|α)

]
×f(xmis,i|yi,xobs,i,θ

(k)) dxmis,i.

For linear models, computation of Q(θ|θ(k)) is straightforward and reduces
to computation of sufficient statistics. However, for nonlinear or generalized
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linear models, computation of Q(θ|θ(k)) is usually tedious and may involve
numerical or Monte Carlo methods.

The M-step of the EM algorithm is to maximizeQ(θ|θ(k)) with respect to θ to
produce an updated estimate θ(k+1). The M-step can usually be accomplished
by standard optimization procedures such as the Newton-Raphson method. It-
erating between the E-step and the M-step, we can show that the likelihood
is increasing (or non-decreasing) at each iteration, so eventually the EM algo-
rithm will converge to a, possibly local, maximum.

For mixed-effects models, we can treat the unobservable random effects as
additional “missing covariates”. Then the EM algorithm described above can
be modified in a straightforward way. Specifically, consider a mixed-effects
model with missing covariates (MAR). The observed data likelihood is now
given by

L∗obs(θ) =
n∏

i=1

∫ ∫
[f(yi|xi,bi,β,σ)f(xi|α)f(bi|D)] dxmis,i dbi, (3.9)

where θ = (β,σ,α, D). The E-step of the EM algorithm at the k-th iteration
can be written as

Q∗(θ|θ(k)) =
n∑

i=1

∫ ∫ [
log f(yi|xi,bi,β,σ) + log f(xi|α)

+ log f(bi|D)
]
f(xmis,i,bi|yi,xobs,i,θ

(k)) dxmis,i dbi.

Computation of Q∗(θ|θ(k)) becomes more tedious since it involves an in-
tractable integral with a higher dimension. We will discuss more details in
Chapter 4.

3.4.3 Properties and Extensions

In this section, we briefly discuss some properties of the standard EM algorithm
and its extensions.

At the k-th iteration of the EM algorithm, we have

Q(θ(k+1)|θ(k)) ≥ Q(θ|θ(k)), k = 0, 1, 2, · · · ,

since θ(k+1) maximizes Q(θ|θ(k)). In fact, it can be shown that the observed
data likelihood increases at each EM iteration, so the EM algorithm is guaran-
teed to convergence to a (possibly local) maximum (Wu 1983).

The rate of convergence of the EM algorithm depends on the fraction of miss-
ing information. Specifically, let

Iobs(θ) = −∂
2lobs(θ)
∂θ∂θT

,
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Icom(θ) = −E
(
∂2lcom(θ)
∂θ∂θT

)
, Imis(θ) = −E

(
∂2lmis(θ)
∂θ∂θT

)
be the information matrix for the observed data, the expected information ma-
trix for the complete data, and the expected information matrix for the missing
data respectively, where all the expectations are taken given the observed data
and lmis(θ) is defined in a similar way as lobs(θ). Then, the missing infor-
mation principle says that the complete information equals to the sum of the
observed information and the missing information, i.e.,

Icom(θ) = Iobs(θ) + Imis(θ). (3.10)

Let θ̂ be the MLE of θ, and let

K(θ̂) = Icom(θ̂)−1Imis(θ̂)

be the proportion of missing information. Then, it can be shown that

θ(k+1) − θ̂ ≈ K(θ̂)(θ(k) − θ̂),

and the rate of convergence

r = lim
k→∞

||θ(k+1) − θ̂||
||θ(k) − θ̂||

is the largest eigenvalue of K(θ̂) (McLachlan and Krishnan 1997). Therefore,
the rate of convergence of the EM algorithm depends on the proportion of
missing information.

A major disadvantage of the EM algorithm is that it is often slow to converge.
Various methods to speed up the EM algorithm have been proposed (e.g., Meng
and van Dyk 1997, 1998; Liu, Rubin, and Wu 1998). One particularly popu-
lar approach is to introduce working parameters in the models to reduce the
proportion of missing information, called a parameter-expansion (PX) EM al-
gorithm (Liu, Rubin, and Wu 1998).

Note that the EM algorithm does not automatically produce the standard er-
rors of the MLEs. In the presence of missing data, a well-known formula for
computing the variance-covariance matrix of the MLEs is proposed by Louis
(1982) based on the following observed information matrix

Iobs(θ̂) = Imis(θ̂)− E
[
Scom(θ̂)Scom(θ̂)T |yobs

]
,

where Scom(θ) = ∂lcom(θ)/∂θ. Thus, the variances of the components of θ̂
can be estimated by the diagonal elements of I−1

obs(θ̂).

Many extensions of the standard EM algorithm have been proposed in the lit-
erature, which have greatly expanded the applicability of EM algorithms. For
example, for missing data problems, the E-step is often difficult to compute
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since it typically involves intractable multi-dimensional integrals. A popular
approach is to approximate the expectation in the E-step using Monte Carlo
methods, leading to Monte Carlo EM algorithms (Wei and Tanner 1990; Booth
and Hobert 1999; Fort and Moulines 2003; Caffo, Jank, and Jones 2005). De-
tailed examples of Monte Carlo EM algorithms can be found in Chapter 4.
When the M-step is difficult to compute, we may consider a modified EM algo-
rithm, called the ECM algorithm (Meng and Rubin 1993), in which the M-step
is replaced by a sequence of constrained maximization (CM) steps, with each
step being a maximization over a subset of parameters while holding others
fixed. McLachlan and Krishnan (1997) and Little and Rubin (2002) provided a
comprehensive review of various extensions of the standard EM algorithm.

3.5 Multiple Imputation

3.5.1 Introduction

Multiple imputation methods are also widely used for missing data problems,
especially in sample survey. A multiple imputation method incorporates the
missing data uncertainty by imputing several predicted values for each miss-
ing value. Standard methods for complete data can be used to analyze the im-
puted datasets. The advantages of multiple imputation methods are i) standard
complete-data methods can be used for analysis; ii) missing data uncertainty is
incorporated; iii) the imputed complete datasets can be used for various anal-
yses, i.e., the models used for creating multiple imputation are not necessary
the same as the models used for data analysis; and iv) software for multiple
imputation is widely available.

A multiple imputation method consists of the following three steps:

STEP 1. Simulate m plausible values for each missing value based on an
assumed imputation model, leading tom “complete datasets”, wherem > 1
is a positive integer (common choices are m = 4, 5, 6).
STEP 2. Each of the m “complete datasets” from Step 1 is analyzed sepa-
rately using standard complete-data methods, leading to m analysis results.
STEP 3. The m results from Step 2 are combined in an appropriate way,
leading to one overall final result.

In Step 1, the missing values are generated from an assumed imputation model,
which is typically the predictive distribution of the missing data given the ob-
served data. For example, for missing covariates in a regression model, we may
generate xmis from the predictive distribution f(xmis|yi,xobs). However, this
step may not be easy since it requires integrating over unknown parameters.
Simpler imputation methods may be used but the imputations may be improper
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in the sense that they may not provide valid frequentist inference (Little and
Rubin 2002). A proper imputation may be achieved via a Bayesian framework
(see Section 3.5.2). The number of imputation m does not have to be large –
usually m = 5 or 6 imputations will lead to satisfactory results (Rubin 1987;
Schafer 1997).

Step 2 is usually straightforward since we can just use available standard meth-
ods for complete data as if there were no missing data. For Step 3, formulas
are available to appropriately combine the m results, either combining several
estimates or combining several test statistics (Rubin 1987; Little and Rubin
2002). Some of the well-known formulas are given in Section 3.5.2.

Example 3.3 Multiple imputation for normal data

Suppose that {(x11, x12), (x21, x22), · · · , (xn1, xn2)} is an i.i.d. sample from
a bivariate normal distribution N(µ,Σ), where

µ =
(
µ1

µ2

)
, Σ =

(
σ11 σ12

σ21 σ22

)
,

and some data are missing. We consider a multiple imputation method to im-
pute the missing data. For simplicity, we consider the case where all xi1 are
observed but some xi2 are missing.

To generate imputations for the missing xi2’s, we may consider the following
predictive distribution of xi2 given xi1:

(xi2|xi1,θ) ∼ N((µ2 − σ12µ1/σ11) + (σ12/σ11)xi1, σ22 − σ2
12/σ11),

where θ = (µ1, µ2, σ11, σ12, σ22). Since θ is unknown, we are unable to simu-
late xi2 from f(xi2|xi1,θ). A simple approach is to estimate θ by θ̂ using, say,
the complete-case method, and then we substitute θ by θ̂ and draw the missing
xi2 from distribution f(xi2|xi1, θ̂). However, such an imputation method is
improper since the uncertainty in estimating θ is not propagated (Rubin 1987,
Chapter 4). A proper imputation method should draw xi2 from f(xi2|xi1) via
the data augmentation method (see Section 3.5.2). Note that another simple
method is to draw xi2 from its marginal distribution xi2 ∼ N(µ2, σ2), with
the unknown parameters estimated by some naive methods, but such a method
fails to incorporate the correlation between xi1 and xi2.

3.5.2 Multiple Imputation Methods

In this section, we describe a general approach for generating proper multi-
ple imputations that leads to valid frequentist inference. The method is imple-
mented via a Bayesian framework, although a multiple imputation method is
often a frequentist one.
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We again consider missing covariates in regression models, as in the previ-
ous sections. Let β be a (p × 1) vector of parameters of interest, such as the
regression coefficients. Let y = {y1,y2, · · · ,yn} be the responses and x =
{x1,x2, · · · ,xn} be the covariates with missing values. Let β̂ = h1(y,xobs,xmis)
be the statistic that would be used to estimate β if there were no missing data,
where h1 is some known function. Let V =Var(β̂) = h2(y,xobs,xmis) be the
variance of β̂, where h2 is some known function.

A simple multiple imputation method is to generate xmis from the predictive
distribution f(xmis|y,xobs, θ̃), where the estimate θ̃ may be obtained using
some naive methods such as the complete-case method. However, such a mul-
tiple imputation method is improper in the sense that it does not provide valid
frequentist inference, since the uncertainty in estimating θ is not propagated
(Little and Rubin 2002). Frequency-valid multiple imputations can be obtained
via proper imputations, which generates xmis from the predictive distribution
f(xmis|y,xobs) and can be accomplished through the following Bayesian ar-
guments.

Note that the predictive distribution of the missing data given the observed data
can be written as

f(xmis|y,xobs) =
∫
f(xmis|y,xobs,θ)f(θ|y,xobs)dθ,

where the unknown parameters θ contain β. To generate proper multiple im-
putations of xmis from the predictive distribution f(xmis|y,xobs), we can first
simulate θ∗ from f(θ|y,xobs), and then simulate x∗mis from f(xmis|y,xobs,θ

∗),
and then we iterate the procedure for a warm-in period until the simulated se-
quences stabilized.

Specifically, we can use the following data augmentation method (Tanner and
Wong 1987; Schafer 1997; Little and Rubin 2002). Given a starting value θ(0),
at iteration k (k = 1, 2, 3, · · ·), we first simulate

x(k)
mis ∼ f(xmis|y,xobs,θ

(k−1)) ∝ f(y|x,θ(k−1))f(x|θ(k−1)),

which can be accomplished via rejection sampling methods since the density
functions f(y|x,θ(k−1)) and f(x|θ(k−1)) are known. Then we simulate

θ(k) ∼ f(θ|y,xobs,x
(k)
mis),

which is the posterior distribution of θ. Thus, we obtain a sequence of sim-
ulated values {(x(k)

mis,θ
(k)), k = 0, 1, 2, · · ·}, which is a Markov chain. The

Markov chain will converge to the stationary distribution f(xmis,θ|y,xobs)
after a burn-in period. After a burn-in period, let the last values be (x∗mis,θ

∗).
Then, we have

θ∗ ∼ f(θ|y,xobs), x∗mis ∼ f(xmis|y,xobs).
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That is, x∗mis is a proper imputation of the missing xmis from the predictive
distribution f(xmis|y,xobs). Repeating the foregoing procedure m times, we
create m proper imputations {x(1)

mis, · · · ,x
(m)
mis} for the missing values xmis.

Once we generate m imputations, we have m “complete datasets”:

{y,xobs,x
(l)
mis}, l = 1, 2, · · · ,m.

Let β̂
(l)

= h1(y,xobs,x
(l)
mis) be the estimate ofβ and V (l) = h2(y,xobs,x

(l)
mis)

be the variance of β̂
(l)

based on the l-th “complete dataset”, obtained using
available complete-data methods. Following Rubin (1987), we can combine
the m estimates and obtain the overall estimate of β as follows

β̄ =
1
m

m∑
l=1

β̂
(l)
, (3.11)

and the overall estimated variance of β̄

V̂ ar(β̄) =
(

1 +
1
m

)
B +W, (3.12)

where

B =
1

m− 1

m∑
l=1

(β̂
(l)
− β̄)2, W =

1
m

m∑
l=1

V (l)

are the between-imputation variance and the within-imputation variance re-
spectively. Therefore, in a multiple imputation method, the final overall es-
timate is simply the average of the m individual estimates from the m im-
puted “complete” datasets, and the overall variance is the sum of the between-
imputation variance B and the within-imputation variance W . The between-
imputation variance B reflects the missing data uncertainty.

Suppose that (β̄ − β)/
√
W ∼ N(0, 1) approximately, assuming that β is a

scalar for simplicity. It can be shown that (Rubin 1987)

β̄ − β√
V̂ ar(β̄)

∼ t(v) (3.13)

approximately, where

v = (m− 1)
(

1 +
W

(1−m−1)B

)2

.

Note that the value r = (1 + m−1)B/W measures the relative increase in
variance due to missing data.

For inference, hypothesis testing can be based on the following overall statistic

T = (β̄ − β)T V̂ ar(β̄)−1(β̄ − β).
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Note that, due to the multiple imputations, the statistic T no longer follows a
χ2 distribution asymptotically. Thus Li et al. (1991) proposed the following
overall statistic

T ∗ =
T

p(1 + r)
, (3.14)

where

r =
1
p

(
1 +

1
m

)
tr(BW−1)

is the average relative increase in variance due to missing data. Li et al. (1991)
showed that the statistic T ∗ follows an F (p, w) distribution asymptotically,
where

w = 4 + (τ − 4)
(

1 +
1− 2τ−1

p

)2

, τ = p(m− 1).

Thus, we can use the statistic T ∗ to perform an overall hypothesis testing for
multiply imputed datasets. Alternatively, one can also combine the m individ-
ual test statistics from the m imputed “complete datasets”, and then combine
the m test statistics. See Meng and Rubin (1992) for such an approach.

Other Multiple Imputation Methods

There are many other multiple imputation methods in the literature. A com-
mon approach is to use regression models to create imputations for the missing
data, in which the variable with missing data is treated as a response and other
observed variables as predictors. For continuous variables with missing data,
one may choose linear regression models. For binary variables with missing
data, one may consider logistic regression models, while for categorical vari-
ables with more than two categories one may consider multinomial regression
models or ordered logistic regression models.

Here we briefly describe one such approach based on chained equations, which
creates imputations variable-by-variable (Raghunathan et al. 2001; van Buuren
et al. 2006). Specifically, the idea is to specify an imputation model for each
variable separately, using other variables as predictors. For each variable with
missing data, an imputation is generated for the missing data based on the as-
sumed imputation model, and then the imputed value is used in the imputation
of the next variable. The method iterates the procedure using a Gibbs sampling
approach until convergence. Repeating the algorithm m times to generate m
imputations for each missing value. For this method, one should check the
sensitivity of the order of the variables.

For many of multiple imputation methods in the literature, it may be difficult
to check if these methods generate proper imputations, so further research is
needed to study the validity of these methods. If the missing data rate is low,
these multiple imputation methods may still produce reasonable results since
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a multiple imputation method only imputes the missing values while the ob-
served values remain unchanged. When the missing data rate is moderate or
high, the choice of imputation models is critical.

3.5.3 Examples

In the following we present two examples which further illustrate multiple im-
putation methods.

Example 3.4 (Example 3.3 continued)

Return to Example 3.3 (see page 120). We choose m = 6 imputations for each
missing value. Let {x(l)

j2 , l = 1, 2, · · · , 6} be the 6 imputed values for each

missing xj2 for some j’s. Let {x(l)
i = (xi1, x

(l)
i2 ), i = 1, 2, · · · , n} be the l-th

“complete dataset”, where x(l)
i2 = xi2 if xi2 is observed, l = 1, 2, · · · , 6. Let

µ̂(l) =
1
n

n∑
i=1

x(l)
i , Σ̂(l) =

1
n− 1

n∑
i=1

(x(l)
i − µ̂(l))(x(l)

i − µ̂(l))T

be respectively the estimates of µ and Σ based on the l-th “complete dataset”.
Then, the overall estimate of µ is given by

µ̄ =
1
6

6∑
l=1

µ̂(l),

with overall estimated variance

V̂ ar(µ̄) =
7
6

[
1
5

6∑
l=1

(µ̂(l) − µ̂)

]
+

1
6

6∑
l=1

Σ̂(l),

which incorporates both the between imputation variation and the within im-
putation variation.

Example 3.5 Multiple imputation for mental distress data (Example 3.2 con-
tinued)

For the mental distress data, in Example 3.2 (page 115) we considered the CC
method, the LVCF method, and the EM algorithm for estimating parameters
µj’s. We noted that the three methods give different estimates and the EM
algorithm should be the only valid method among the three methods. Now we
consider using a multiple imputation method to estimate the parameters. We
consider m = 3 and m = 6 multiple imputations.

Table 3.3 shows the results of multiple imputations and the EM algorithm (we
may view the EM algorithm as a multiple imputation method with infinite
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Table 3.3 Estimates for the distress data based on multiple imputations.

Parameter MI (m = 3) MI (m = 6) EM Algorithm
Estimate S.E. Estimate S.E. Estimate S.E.

µ1 1.13 0.044 1.13 0.045 1.13 0.044
µ2 1.01 0.049 1.02 0.043 1.02 0.043
µ3 0.88 0.040 0.89 0.042 0.89 0.041
µ4 0.86 0.043 0.87 0.038 0.87 0.035
µ5 0.85 0.050 0.84 0.048 0.83 0.039

MI: multiple imputation, and m is the number of multiple imputations.

many imputations). We see that even a small number of imputations m = 3
produces reasonable estimates, compared with EM estimates. A larger num-
ber of imputations m = 6 gives better estimates but the improvement is not
substantial. Thus, in practice the number m of imputations in a multiple im-
putation method does not have to be large. Typically, m = 4, 5, and 6 are
common choices.

Note also that the performance of a multiple imputation method depends on the
fraction of missing data. For example, the fractions of missing data are larger at
later measurement times t4 or t5 than that at earlier time points, so the standard
errors of µ̂4 or µ̂5 based on the multiple imputation method are also larger
(compared with EM estimates), which reflects the missing data uncertainty.

3.6 General Methods for Measurement Errors

3.6.1 Covariate Measurement Errors

In a standard regression model, covariates are usually assumed as fixed or accu-
rately measured. In practice, however, some covariates may be measured with
errors, such as blood pressure and CD4 counts. Thus, the observed covariate
values are not their true values but mis-measured one. Here we call such ob-
served data as incomplete data, but they are different from missing data. When
data are missing, no information is available for the true values. When data are
measured with errors, however, some information is available since we have
the observed versions of the true values. Therefore, statistical methods for mea-
surement errors are different from those for missing data, but the methods also
share some similarities since data are incomplete in both cases.

If covariate measurement errors in regression models are ignored, parameter
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estimates may be biased, hypothesis testing may lose some power, and inter-
esting features in the data may be masked (Carroll et al. 2006). Specifically, if
covariate measurement errors are not addressed, true covariate effects may be
undetected or under-estimated. Thus it is important to address covariate mea-
surement errors in regression models.

To address measurement errors, we typically assume a model for the relation-
ship between mis-measured values and true (but unobserved) values, called a
measurement error model. There are two types of commonly used measure-
ment error models:

• classical measurement error models,
• Berkson measurement error models,

which are briefly described as follows.

Let xij be the observed but possibly mis-measured covariate value and let x∗ij
be the unobserved true covariate value for individual i at measurement time
tij , i = 1, 2, · · · , n; j = 1, 2, · · · , ni. Let yij and zij be the response and
accurately measured covariates for individual i at time tij respectively. The
classical measurement error model assumes

xij = x∗ij + eij , E(eij |x∗ij) = 0, (3.15)

i.e., the observed value equals to the true value plus measurement error. The
Berkson measurement error model (Berkson 1950) assumes

x∗ij = xij + eij , E(eij |xij) = 0, (3.16)

i.e., the true value equals to the observed value plus measurement error. In
classical measurement error models the variability of the observed values is
larger than the variability of the true values, while in Berkson measurement er-
ror models the variability of the true values is larger than the variability of the
observed values, assuming independence of eij and x∗ij in (3.15) and indepen-
dence of eij and xij in (3.16). In practice, both situations may arise, and the
choice of the models is often not difficult given the specific application under
consideration. We will further discuss this issue in Chapter 5. Also see Carroll
et al. (2006) for a more detailed discussion of these models.

The measurement error is called nondifferential if

f(yij |xij , x
∗
ij , zij) = f(yij |x∗ij , zij),

i.e., given the true covariate x∗ij and other covariates zij , the observed covariate
xij is independent of the response yij (i.e., xij contains no extra information
about the response). In this case, we also call the observed value xij a surro-
gate of the true value x∗ij . We will focus on nondifferential measurement error
models.
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To correct covariate measurement errors in regression models, we usually need
the following additional information: i) validation data, in which some true
covariates x∗ij are observed; or ii) replication data, in which replicates of the
observed covariates xij are available; or iii) instrumental data, in which an-
other variable related to xij is observed. In longitudinal studies, fortunately
the repeated observations with each individual may be viewed as replication
data, so measurement errors in time-dependent covariates can be partially ad-
dressed in a longitudinal model without extra information. See Chapter 5 for
more details.

3.6.2 General Methods for Measurement Errors

There has been extensive research in measurement error problems. Fuller (1987)
gave an earlier review. For recent reviews, see Gustafson (2004) and Carroll et
al. (2006).

Generally there are two common approaches for covariate measurement errors
in regression models:

• functional modeling, where no distributional assumption is made for the
true covariate x∗ij . Commonly used methods include regression calibration
and simulation extrapolation (SIMEX).

• structural modeling, where a model or distribution is typically assumed for
the true covariate x∗ij . Commonly used methods include likelihood methods
and Bayesian methods.

Functional modeling is robust to misspecification of the covariate distribution
for x∗ij , but structural modeling may be more efficient if the model or distri-
butional assumption holds. In particular, likelihood methods are often based
on the structural modeling approach. Since we focus on likelihood inference
for mixed effects models in this book, we will mainly consider the structural
modeling approach in Chapter 5.

In functional modeling, the two most commonly used methods are perhaps
the regression calibration method and the simulation extrapolation (SIMEX)
method. The idea of a regression calibration method is to replace the unob-
served true covariate x∗ij by a regression of x∗ij on the observed data (xij , zij)
and estimate the parameters in this regression model, and then run a standard
analysis. The standard errors in the standard analysis are then adjusted to ac-
count for the uncertainty in estimating the parameters in the regression of x∗ij
on (xij , zij), using the bootstrap or sandwich methods. SIMEX is a simulation-
based method in which the measurement error generating process is imitated
via Monte Carlo methods. Carroll et al. (2006) provided a detailed description
of both methods. We will also show some examples in Chapter 5.
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In structural modeling, the two most commonly used methods are perhaps the
likelihood methods and Bayesian methods. For likelihood methods, the ob-
served data likelihood function can be written as

Lobs(θ) =
n∏

i=1

∫
f(yi|x∗ij , zij ,β)f(xij |x∗ij , zij ,α)

×f(x∗ij |zij ,γ) dx∗ij , (3.17)

where θ = (β,α,γ). In (3.17), f(yi|x∗ij , zij ,β) is often called the outcome
model, which is of primary interest, f(xij |x∗ij , zij ,α) is called the error model,
and f(x∗ij |zij ,γ) is sometimes called the exposure model (Gustafson 2004).
Due to the intractable multi-dimensional integral in (3.17), likelihood meth-
ods can be computationally intensive. We will provide details of the likeli-
hood approach for mixed effects models with covariate measurement errors in
Chapter 5. For Bayesian inference, one introduces prior distributions for the
parameters and then conduct inference based on posterior distributions. We
will discuss Bayesian methods in Chapter 11.

3.7 General Methods for Outliers

3.7.1 Outliers

An outlier is an observation which is distinctly different from the rest of the
data or is quite inconsistent with majority of the data. Likelihood inference
for mixed effects models is sensitive to outliers, i.e., a few outliers in the data
can greatly affect the results and thus the conclusions. Thus it is important to
address outliers.

For longitudinal data, there are two types of outliers: i) an outlier among the
repeated measurements within an individual, although the individual as a unit
may not be viewed as an outlier; and ii) an outlying individual who behaves
very differently from the rest of the individuals in the sample. In many practical
situations it may not be easy to distinguish between the two cases from the data.
We will further discuss this issue in Chapter 9.

For multi-dimensional data, it is often difficult to detect outliers since graphi-
cal displays of the data may be difficult. Therefore, robust methods which ei-
ther use heavy-tail distributions or downweight outlying observations are very
valuable. A robust analysis may be compared with a standard analysis (without
addressing outliers). If the results differ substantially, outliers may be present
and robust analysis may be more reliable.
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3.7.2 General Robust Methods

There are many robust methods in the literature. Comprehensive reviews and
discussions are given in Huber (1981), Rousseeuw and Leroy (1987), and
Maronna et al. (2006), among others. Here we briefly describe the following
two common approaches:

• one approach is to use heavy-tail distributions, such as the t distributions,
to replace typically assumed normal distributions in the models to accom-
modate possible outliers in the data;

• another approach is to bound or down-weight outlying observations using
appropriate weight functions.

The basic ideas of these two approaches are reviewed below, with more details
given in Chapter 9.

Normal distributions are standard assumptions in many regression models. In
particular, in mixed effects models, the random effects are usually assumed to
be normally distributed, and the within-individual errors in LME and NLME
models are also assumed to be normal. It is well known that t-distributions
have similar shapes as normal distributions but with heavier tails, which can be
used to accommodate outliers. Thus, a common approach for robust inference
is to replace the normal distributions assumed in the models by (multivariate)
t-distributions. For example, in LME and NLME models, we may assume that
the random effects bi and/or the errors ei follow multivariate t-distributions
for robust inference. Lange et al. (1989) and Pinheiro et al. (2001) considered
such an approach for mixed effects models. We will provide more details about
this approach in Chapter 9.

Another common approach for robust inference, which is perhaps more widely
used, is to bound or downweight outlying observations. Note that, in either
maximum likelihood estimation or in GEE estimation, one typically solves a
set of estimating equations to obtain parameter estimates. Thus, we can down-
weight outlying observations in these estimating equations for robust inference.

Specifically, let yi be a vector of responses for individual or cluster i, and let
xi be covariates in a regression model with regression coefficients β. Let

µi(β) = E(yi|xi,β), Ri = Cov(yi), ri(β) = R
−1/2
i (yi − µi(β)),

and Di(β) = ∂µi(β)/∂β. We can bound the influence of outlying responses
and down-weight leverage points in the covariates xi separately. This leads to
the following estimating equation for robust estimate of β:

n∑
i=1

{
DT

i (β)R−1/2
i Wi(xi)ψi(ri(β))

}
= 0, (3.18)
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where ψi is a monotone function which bounds the influence of outlying data in
the response yi, and Wi(·) is a weight function which downweights leverage
points in the covariates xi. The resulting estimator is called an M-estimator.
Note that, when Wi(xi) = 1 and ψi(ri) = ri, the estimate from equation
(3.18) reduces to the standard MLE.

The function ψi(·) is often chosen to be the derivative of the Huber’s ρ-function

ρ(u) =
{

u2/2, for |u| ≤ k,
k|u| − u2/2, otherwise (3.19)

so ψi(u) = dρ(u)/du is given by:

ψi(u) =

 u if |u| ≤ k
k if u > k

−k if u < −k
(3.20)

which is bounded for large or small values of u, where k is a turning point. One
can choose the robustness of the method by choosing appropriate values of the
turning point k and the weight function Wi(·). It can be shown that the M-
estimators are asymptotically normal. We will discuss the methods in greater
details in Chapter 9.

3.8 Software

Software is available for handling missing data in some standard models, such
as multivariate normal models and multinomial models. For other models,
users often need to program their own functions, especially for likelihood infer-
ence based on EM algorithms. General purpose multiple imputation methods
sometimes can be used to impute missing values in a dataset, even if the im-
putation models may be different from the analysis models, so software for
multiple imputations may allow users to do less programming on their own for
preliminary analysis. Horton and Kleinman (2007) provided a comparison for
some missing data software.

Splus version 7.0 has a missing data library that can be used to perform EM
algorithms and multiple imputations using data augmentation, based on the
methods described in Schafer (1997). One can access the library using the
Splus command library(missing). Joseph Schafer also provides free software
(macros for Splus), similar to the missing data library. SPSS version 12.0 also
includes a missing data library (see von Hippel (2004) for a review).

SAS procedure proc mi in SAS/STAT can be used to create multiple imputa-
tions using several different imputation methods. In SAS, the first imputation
step, the second complete-data analysis step, and final combining step can be
done separately. Specifically, we can use proc mi to create imputations for
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missing data. Then, the resulting complete data can be analyzed using any of
the SAS procedures (e.g., proc glm). Finally, the analysis results can be com-
bined using proc mianalyze. In fact, each step can be performed using differ-
ent software. For example, one can use SAS proc mi to create imputations and
use Splus or R to perform analysis and combine results.

There are other missing data software. The Splus and R package MICE (Mul-
tiple Imputation by Chained Equation), available at http://cran.r-project.org/,
can be used to perform a variety of multiple imputations using function mice().
Users can also program their own imputation functions in MICE. In Stata, ICE
can be used to create multiple imputation using chained equations. Van Buuren
(2006) provided a useful guide to software implementations for multiple impu-
tation at website http://www.multiple-imputation.com. Weighted GEE methods
may be implemented using software that allow for weights, such as SAS or
STATA. Bayesian approaches may be fit using a package such as WinBugs.

STATA (http://www.stata.com/merror/) provides software for generalized lin-
ear measurement error models. The software provides the first implementa-
tion of regression calibration and SIMEX in a general-purpose statistical pack-
age. The software was written by Raymond Carroll, James Hardin, and Henrik
Schmiediche. See Stata webpage for more details.

Various robust methods are also widely implemented. For example, the SAS
procedure proc robustreg includes M-estimators for regression, Splus has the
lmRobMM() function, SPSS has a robust procedure, and STATA has the rreg
procedure. There is also a large number of R packages for robust data analysis
(see R webpage).





CHAPTER 4

Mixed Effects Models with Missing
Data

4.1 Introduction

In Chapter 3, we have reviewed some commonly used methods for general
missing data problems. Missing data methods for regression models are re-
viewed in Little and Rubin (2002), Ibrahim et al. (2005), and Molenberghs
and Kenward (2007), among others. These reviews mostly focus on models for
cross-sectional data. In practice, missing data are especially common in longi-
tudinal studies. In this chapter, we describe some statistical methods for various
missing data problems in mixed effects models, including LME, GLMM, and
NLME models. We will discuss missing data in survival models and frailty
models in Chapter 7. We consider the following missing data problems in
mixed effects models:

• missing covariates,
• missing responses,
• missing both covariates and responses,
• dropouts.

An advantage of the likelihood method for mixed effects models is that it al-
lows unbalanced data in the response, i.e., the numbers and schedules of the
response measurements can be different across individuals. In other words, if
there are missing data in the response and the missing data mechanism is ig-
norable (e.g., MAR or MCAR), we can simply ignore these missing responses
and proceed with likelihood inference. If the missing data in the response of
a mixed effects model are non-ignorable, however, we must assume a missing
data model and incorporate it in likelihood inference.

Missing data may also occur in covariates. There are two types of covariates
in longitudinal studies: time-independent covariates and time-dependent co-
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variates. Time-independent covariates are only measured once in a longitudi-
nal study or their values do not change over time, such as baseline covariates
or gender and race. Time-dependent covariates are measured repeatedly over
time or their values change over time. For a mixed effects model with time-
dependent covariates, standard model specifications require that all covariate
values are available at the same times as the response measurements. How-
ever, this is often not the case in practice since some covariate values may
not be available at the response measurement times. This leads to missing
data in time-dependent covariates, which is a very common problem. Time-
independent covariates may also have missing data.

In a mixed effects model with covariates, if the covariates have missing data,
we must assume a model or distribution for the incompletely observed covari-
ates in likelihood inference, even if the missing data are ignorable. When the
missing data are non-ignorable, we should assume an additional missing data
model, which describes how the missingness is related to unobserved data,
and incorporate it in likelihood inference. For a continuous covariate we may
consider a normal distribution for the covariate (perhaps after an appropriate
transformation), while for a discrete or a binary covariate we may assume a
multinomial distribution or a binomial distribution for the covariate. Likeli-
hood inference with discrete covariates is often computationally simpler since
the integration with respect to the missing covariates reduces to a summation.
Mixed effects models contain unobservable random effects. For computation,
we can treat these random effects as additional “missing data” (or “missing
covariates”).

In this chapter we mainly focus on likelihood methods for missing data in
mixed effects models, since they are the standard inferential methods for mixed
effects models. For mixed effects models with missing data, a typical approach
is to specify the likelihood for all observed data and then conduct estimation
and inference based on this observed-data likelihood. For such an approach, a
major challenge is the implementation since the observed-data likelihood is of-
ten intractable. The EM algorithm is usually used for estimation, but it can be
computationally very intensive and sometimes may offer convergence prob-
lems. Thus, computationally more efficient approximate methods have been
proposed. These approximate methods are typically based on Taylor approxi-
mations or Laplace approximations, and they may offer substantial computa-
tional advantages over exact likelihood computation.

GEE methods and Bayesian methods for missing data problems will be dis-
cussed in Chapters 10 and 11 respectively.
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4.2 Mixed Effects Models with Missing Covariates

In this section, we consider missing data in covariates for LME, GLMM, and
NLME models, with ignorable and non-ignorable missing data mechanisms.
We will consider both time-independent and time-dependent covariates, as well
as continuous and discrete covariates. Note that a LME model may be viewed
as a special case of a GLMM or a NLME model. GLMMs and NLME models
can be written in a unified general form, and the missing data methods are
similar for both models. So the materials in the following sections are presented
in a general form. However, the performances of the methods for a GLMM
and a NLME model can be different, due to different types of responses and
assumed distributions.

4.2.1 Missing Data in Time-Independent Covariates

For missing covariates in regression models for cross-sectional data, Little and
Rubin (2002), Ibrahim et al. (2005), and Molenberghs and Kenward (2007)
provided comprehensive reviews. In this section, we focus on missing time-
independent covariates in mixed effects models for longitudinal or clustered
data, when the missing data mechanism is ignorable (e.g., when the missing
data are either MAR or MCAR). We focus on the likelihood approach.

Let yi = (yi1, . . . , yini
)T be the repeated measurements of the response for in-

dividual i, where yij is the response value for individual i at time tij (or cluster
i and measurement j), i = 1, . . . , n; j = 1, . . . , ni. Let zi = (zi1, . . . , zip)T

denote p time-independent covariates for individual i (p ≥ 1). Suppose that
each individual covariate in zi has missing data with arbitrary missing pat-
terns. With possible re-arrangements of the covariates, we can write zi =
(zmis,i, zobs,i), where zmis,i is a collection of the missing components of zi

and zobs,i is a collection of the observed components of zi. For simplicity of
presentation, we suppress covariates without missing data, since no distribu-
tional assumptions are needed for these completely observed covariates.

The Response Model

Let f(yi|zi,bi,β,σ) be the probability distribution (density) of the response
yi given random effects bi and covariates zi, where β is a vector of mean
parameters (fixed effects) and σ contains variance-covariance or dispersion
parameters. Note that parameters σ are not necessary distinct from β, as in
some GLMMs. For simplicity, we assume that the responses yi1, yi2, · · · , yini

are conditionally independent given the random effects bi – see Section 2.3.2
(page 54) and Section 2.4.2 (page 64) for some discussion about this assump-
tion, but the methods can be applied to more general cases. We assume bi =



136 MIXED EFFECTS MODELS FOR COMPLEX DATA

(bi1, · · · , bis)T i.i.d.∼ N(0, D), and writeD = D(η) with η being the distinct
parameters in D.

For a NLME model, f(yi|zi,bi,β,σ) is the density function of a multivariate
normal distribution with a mean vector

µi = E(yi|zi,bi,β) = g(zi,β,bi),

where g(·) is a known nonlinear function, and a variance-covariance matrix
Ri = Cov(yi|zi,bi,β) = σ2I . Thus

f(yi|zi,bi,β,σ) = (2π)−
ni
2 R

− 1
2

i exp
(
−1

2
(yi − µi)

TR−1
i (yi − µi)

)
,

where Ri can in fact be an arbitrary covariance matrix.

For a GLMM, we have

f(yi|zi,bi,β,σ) =
ni∏

j=1

f(yij |zi,bi,β,σ),

where f(yij |zi,bi,β,σ) is the density function for a distribution in the expo-
nential family, such as a binomial distribution or a Poisson distribution. In this
case, the mean function can be written as

µij = E(yij |zi,bi,β) = h(zT
i β + wT

i bi),

where h(·) is a known link function and wi may contain covariates. For a
Binomial distribution or a Poisson distribution, the variance function is com-
pletely determined by the mean function. For example, for a logistic mixed
effect model, the variance function is

V ar(yij |zi,bi,β) = E(yij |zi,bi,β)(1− E(yij |zi,bi,β)),

and for a Poisson mixed effects model we have

V ar(yij |zi,bi,β) = E(yij |zi,bi,β).

In both cases, the variance functions do not contain distinct parameters σ.

The Covariate Models

Since covariates zi have missing values, we assume a distribution f(zi|α) for
zi in likelihood inference. The parameters α in f(zi|α) may be viewed as
nuisance parameters since this covariate distribution is only used to address
missing data and is not of primary inferential interest.

When the number p of covariates is large or when zi contains both continuous
and discrete covariates, we may write the joint distribution of zi as a product
of one-dimensional conditional distributions (Ibrahim et al. 1999):

f(zi|α) = f(zi1|α)f(zi2|zi1,α) · · · f(zip|zi1, · · · , zi,p−1,α). (4.1)
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Then, for each term on the right-hand side of (4.1), we may consider a standard
regression model, such as a linear regression model for a continuous zik or a
logistic regression model for a binary zik. This approach allows us to specify
a joint distribution for zi even if the individual covariates zik’s are of different
types, and it also allows us to reduce the number of nuisance parameters in α
since we can apply the usual variable selection to each model.

For example, if zik is a continuous variable with a roughly normal distribution
(perhaps after an appropriate transformation), we may consider the following
multiple linear regression model for f(zik|zi1, · · · , zi,k−1,α)

zik = α0 + α1zi1 + · · ·+ αk−1zi,k−1 + εi, εi ∼ N(0, αk), (4.2)

i.e., given covariates (zi1, · · · , zi,k−1), covariate zik is assumed to follow a
normal distribution with mean ηi = α0+α1zi1+· · ·+αk−1zi,k−1 and variance
αk. If zik is a binary variable with values 1 or 0, we may consider the following
logistic regression model for f(zik|zi1, · · · , zi,k−1,α)

log
(

P (zik = 1)
1− P (zik = 1)

)
= α0 + α1zi1 + · · ·+ αk−1zi,k−1 (4.3)

i.e., given covariates (zi1, · · · , zi,k−1), covariate zik is assumed to follow a
binomial distribution with mean µi = exp(ηi)/(1 + exp(ηi)) and variance
µi(1− µi). Then, we can delete non-significant terms in models (4.2) or (4.3)
using a standard variable selection method such as the LRT or AIC/BIC criteria
to reduce the number of parameters in models (4.2) or (4.3).

Sensitivity analysis should be performed to check if the results are sensitive
to the order of the factorization in (4.1). This approach can also be used for
multivariate regression models when the responses are of different types or
follow different distributions.

The Observed-Data Likelihood

Likelihood inference is based on the observed data likelihood. Here the ob-
served data are {(yi, zobs,i), i = 1, . . . , n}, and the observed-data likelihood
is given by

Lo(θ) =
n∏

i=1

Loi(θ) (4.4)

=
n∏

i=1

∫ ∫
f(yi|zi,bi,β,σ)f(bi|D(η))f(zi|α) dbidzmis,i,

where θ = (α,β,σ,η) is the collection of all unknown parameters. Since the
missing data mechanism is ignorable, we do not need to assume a missing data
model. The observed-data likelihood Lo(θ) in (4.4) is often intractable since
it involves a possibly high-dimensional integral and generally does not have
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an analytic or closed-form expression. Thus, a major challenge in likelihood
inference for mixed-effects models with missing covariates is the evaluation
of the intractable likelihood Lo(θ). However, we can follow the computational
strategies described in Chapter 2 (Section 2.6, page 80) and consider numerical
or Monte Carlo methods for “exact” likelihood estimation. In the following, we
describe a Monte Carlo EM algorithm for maximum likelihood estimate of θ,
as in Ibrahim et al. (1999) and Wu (2004).

A Monte Carlo EM Algorithm

By treating the unobservable random effects bi as additional missing data, we
have “complete data” {(yi, zi,bi), i = 1, . . . , n}. The “complete-data” log-
likelihood for all individuals can then be written as

lc(θ) =
n∑

i=1

l(i)c (θ;yi, zi,bi)

=
n∑

i=1

{
log f(yi|bi, zi,β,σ

2) + log f(zi|α) + log f(bi|D(η))
}
.

Let θ(t) be the parameter estimates from the t-th EM iteration, t = 1, 2, 3, · · ·.
The E-step for individual i at the (t+ 1)st EM iteration is given by

Qi(θ|θ(t)) = E
[
l(i)c (θ;yi, zi,bi) | yi, zobs,i,θ

(t)
]

=
∫ ∫ {

log f(yi|zi,bi,β,σ
2) + log f(zi|α)

+ log f(bi|D)
}
f(zmis,i,bi|zobs,i,yi,θ

(t))dbidzmis,i

≡ I1 + I2 + I3. (4.5)

The integral Qi(θ|θ(t)) is still intractable and does not have a closed form ex-
pression. However, since Qi(θ|θ(t)) is an expectation with respect to the con-
ditional distribution f(zmis,i,bi|zobs,i,yi,θ

(t)), we can simulate many sam-
ples from the distribution f(zmis,i,bi|zobs,i,yi,θ

(t)) and then approximate
Qi(θ|θ(t)) by an empirical mean, with the missing data (zmis,i,bi) substi-
tuted by their simulated values.

To simulate samples of (zmis,i,bi) from f(zmis,i,bi|zobs,i,yi,θ
(t)), we may

use the Gibbs sampler (Gelfand and Smith 1990) to iteratively sample from
lower dimensional full conditionals (see Chapter 12). That is, we can gener-
ate samples from f(zmis,i,bi|zobs,i,yi,θ

(t)) by iteratively sampling from the
full conditionals f(zmis,i|zobs,i,yi,bi,θ

(t)) and f(bi|zmis,i, zobs,i,yi,θ
(t))

in turn. The resulting samples constitute a Markov chain which will converge
to the stationary distribution f(zmis,i,bi|zobs,i,yi,θ

(t)). That is, after a burn-
in period, we obtain a desired sample from f(zmis,i,bi|zobs,i,yi,θ

(t)). Re-
peating this process many times, we obtain many independent samples from
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f(zmis,i,bi|zobs,i,yi,θ
(t)). See Chapter 12 (Appendix) for a detailed descrip-

tion of the Gibbs sampler and other MCMC methods.

To sample from the full conditionals, note that

f(zmis,i|zobs,i,yi,bi,θ
(t)) ∝ f(zi|θ(t))f(yi|zi,bi,θ

(t)), (4.6)

f(bi|zmis,i, zobs,i,yi,θ
(t)) ∝ f(bi|θ(t))f(yi|zi,bi,θ

(t)), (4.7)

so we only need to generate samples from the right-hand sides of (4.6) and
(4.7), which can be accomplished using rejection sampling methods since the
density functions on the right-hand sides of (4.6) and (4.7) are all known (see
Chapter 12). If the density functions on the right-hand sides of (4.6) and (4.7)
are log-concave, the adaptive rejection sampling method of Gilks and Wild
(1992) can be used. Alternatively, integral Qi(θ|θ(t)) may be approximated
using other MCMC methods or importance sampling methods. McCulloch
(1997) discussed various approaches for GLMMs. We will discuss more de-
tails in Section 4.6.

For individual i, let{
(z̃(1)

mis,i, b̃
(1)
i ), (z̃(2)

mis,i, b̃
(2)
i ), . . . , (z̃(mt)

mis,i, b̃
(mt)
i )

}
denote a random sample of size mt (large) generated from the distribution
f(zmis,i,bi|zobs,i,yi,θ

(t)). Note that each (z̃(j)
mis,i, b̃

(j)
i ) depends on the EM

iteration number t, which is suppressed throughout for notation simplicity. The
E-step at the (t+ 1)st EM iteration can then be written as

Q(θ|θ(t)) =
n∑

i=1

Qi(θ|θ(t))

≈
n∑

i=1

 1
mt

mt∑
j=1

lc(θ;yi, zobs,i, z̃
(j)
mis,i, b̃

(j)
i )


=

n∑
i=1

mt∑
j=1

1
mt

log f(yi|zobs,i, z̃
(j)
mis,i, b̃

(j)
i ,β,σ2)

+
n∑

i=1

mt∑
j=1

1
mt

log f(zobs,i, z̃
(j)
mis,i|α)

+
n∑

i=1

mt∑
j=1

1
mt

log f(b̃(j)
i |D)

≡ Q(1)(β,σ2|θ(t)) +Q(2)(α|θ(t)) +Q(3)(D|θ(t)). (4.8)

The M-step of the Monte Carlo EM algorithm is to maximize Q(θ|θ(t)) with
respect to θ to produce an updated estimate θ(t+1). From (4.8), the M-step
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is like a complete-data maximization, so standard optimization procedures for
complete-data can be used, such as the Newton-Raphason method. A more
computationally efficient method here would be to use the ECM algorithm
(Meng and Rubin 1993), in which a sequence of maximizations is performed
on the individual components of θ, holding the remain parameters fixed (see
also Chapter 3).

Iterating between the E- and M-steps until convergence, we obtain an MLE of
θ or a local maximum of the observed-data likelihood.

Standard Errors

The EM algorithm does not automatically produce standard errors of the MLEs.
To obtain the variance-covariance matrix of θ̂, we may use the formula of
Louis (1982) as follows. Let θ̂ be the MLE of θ at convergence. In Louis’s
formula (see Chapter 3, page 118), we can approximate the expectations by
their corresponding Monte Carlo mean approximations and then approximate
the observed-data information matrix by

Î(θ̂) = −Q̈(θ̂|θ̂)−
n∑

i=1

mt∗∑
j=1

1
mt∗

Sij(θ̂)ST
ij(θ̂) +

n∑
i=1

Q̇i(θ̂|θ̂)Q̇T
i (θ̂|θ̂), (4.9)

where t∗ is the last EM iteration number, and

Sij(θ̂) =
∂lc(θ;yi, zobs,i, z̃

(j)
mis,i, b̃

(j)
i )

∂θ

∣∣∣∣∣
θ=

ˆθ

,

Q̇i(θ̂|θ̂) =
1
mt∗

mt∗∑
j=1

Sij(θ̂), Q̈(θ̂|θ̂) =
n∑

i=1

 1
mt∗

mt∗∑
j=1

∂Sij(θ)
∂θ

∣∣∣∣∣
θ=

ˆθ

 .

Thus, the asymptotic variance-covariance matrix of θ̂ can be approximated by
Î−1(θ̂), and the asymptotic standard errors of θ̂ can be estimated by the square
roots of the diagonal elements of the matrix Î−1(θ̂). An alternative formula is
given by (see, e.g., McLachlan and Krishnan 1997)

Ĉov(θ̂) ≈

 n∑
i=1

 1
mt

mt∑
j=1

Sij(θ̂)

 1
mt

mi∑
j=1

ST
ij(θ̂)

−1

, (4.10)

which only uses the first derivatives so may be easier to compute.

Summary

In summary, the foregoing Monte Carlo EM algorithm proceeds as follows:

STEP 1. Obtain initial values for the parameters θ(0) and random effects
b(0)

i . For example, these initial values can be the estimates based on the
complete-case method (i.e., delete all incomplete data).



MIXED EFFECTS MODELS WITH MISSING DATA 141

STEP 2. At the (t+1)th EM iteration, generate Monte Carlo samples of the
missing covariates zmis,i and the random effects bi using the Gibbs sampler
along with rejection sampling methods or using other MCMC methods or
importance sampling methods;
STEP 3. At the (t + 1)th EM iteration, obtain updated parameter estimate
θ(t+1) in the M-step using standard complete-data optimization methods
such as the Newton-Raphason method;
STEP 4. Iterate between Steps 2 and 3 until convergence (i.e., the changes
in parameter estimates are smaller than a pre-specified threshold value such
as 1%).

Some specific computational details and strategies, including sampling meth-
ods in the E-step, numbers of Monte Carlo samples in the E-step, and conver-
gence of the EM algorithm, will be discussed in Section 4.6.

Note that, for LME models with missing covariates, the random effects bi in
Q(θ|θ(t)) of (4.5) can be integrated out since LME models are linear in the
random effects. Thus, in this case the integral in Q(θ|θ(t)) of (4.5) has a lower
dimension and the Monte Carlo EM algorithm is computationally much sim-
pler. Note also that, when a covariate is discrete (or categorical), the integration
with respect to this covariate reduces to a summation, so Monte Carlo sampling
for this covariate is not needed (see Section 4.3.1 for an example). This also
reduces computational burden.

4.2.2 Non-Ignorable Missing Covariates

In Section 4.2.1, the missing data mechanism is assumed to be ignorable. In
practice, sometimes the missing covariates may be non-ignorable in the sense
that the missingness may be related to the missing data. In this case, in order to
avoid biased inference, we must assume a possible missing data mechanism or
model and then incorporate it in likelihood inference. The estimation procedure
then proceeds in a similar way, as in Ibrahim et al. (1999, 2001) and described
as follows:

Let ri = (ri1, . . . , rip)T be a (p×1) vector of missing data indicators such that
rij = 1 if the jth covariate is missing for individual i and rij = 0 otherwise,
j = 1, 2, . . . , p; i = 1, 2, · · · , n. To model the missing data mechanism, we
need to assume a distribution for ri, i.e., we need to assume how the probability
of missing a covariate value may be related to the missing and observed values.
The parameters in the missing data model are viewed as nuisance parameters
since they are not of primary inferential interest, so we should avoid assuming
a too complicated missing data model.

To reduce the number of nuisance parameters, we may write the joint distribu-
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tion of ri as a product of one-dimensional conditional distributions, similar to
the approach for covariate models in Section 4.2.1. Since each rij is a binary
variable, we naturally choose logistic regression models for the conditional
distributions, which link the distribution of rij to the missing values zmis,i and
the observed covariates zobs,i. For example, we may consider the following
missing data model

f(ri|zi,φ) = f(ri1|zi,φ)f(ri2|ri1, zi,φ) · · · f(rip|r̄ip, zi,φ),
logit[P (rik = 1)] = φ0k + · · ·+ φk−1,kri,k−1 + φkkzmis,i

+φk,k+1zobs,i, k = 2, 3, · · · , p, (4.11)

where r̄ik = (ri1, · · · , ri,k−1) and φ = (φ01, · · · , φpp). In model (4.11), we
allow the probability of missingness P (rij = 1) to possibly depend on the
missing and observed covariates. Thus we allow the missing data mechanism
to be non-ignorable. We can also choose P (rij = 1) to possibly depend on yi,
i.e., consider a missing data model f(ri|yi, zi,φ).

Note that the missing data model (4.11) cannot be verified based on the ob-
served data since the missing data zmis,i are not observed. In other words, dif-
ferent missing data models may fit the observed data equally well. Therefore,
as discussed in Chapter 3 (Section 3.3.3, page 109), sensitivity analyses based
on different missing data models are important. Moreover, we should avoid to
specify a large non-ignorable missing data model since such a model contains
too many nuisance parameters and may become non-identifiable (Fitzmaurice
et al. 1996). The “true” missing data mechanism may be very complex and un-
known, and we only try to approximate it, so simple or parsimonious models
are preferable, similar to the strategies for model selections in linear regression
models.

Likelihood estimation can again be done using the EM algorithm. The proce-
dure is similar to that in Section 4.2.1. The only modification is to incorporate
the missing data model f(ri|yi, zi,φ) in the likelihood. The observed data are
now {(yi, zobs,i, ri), i = 1, . . . , n}. The “complete data” are {(yi, zi,bi, ri), i =
1, . . . , n}, and the complete-data loglikelihood can then be written as

lc(θ) ≡
n∑

i=1

lc(θ;yi, zi,bi, ri) =
n∑

i=1

{
log f(yi|zi,β,σ

2,bi)

+ log f(zi|α) + log f(bi|D(η)) + log f(ri|yi, zi,φ)
}
,

where θ = (α,β, σ2,η,φ) is the collection of all parameters.

At the (t+ 1)st EM iteration, the E-step for individual i can be written as

Qi(θ|θ(t)) = E
[
lc(θ;yi, zi, ri,bi)

∣∣ yi, zobs,i, ri,θ
(t)
]

=
∫ ∫ {

log f(yi|zi,bi,β, σ
2) + log f(zi|α)
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+ log f(bi|D) + log f(ri|yi, zi,φ)
}

×f(zmis,i,bi|zobs,i,yi, ri,θ
(t)) dbi dzmis,i.

As in Section 4.2.1, we can use the Gibbs sampler to generate samples from the
conditional distribution f(zmis,i,bi|zobs,i,yi, ri,θ

(t)) by iteratively sampling
from the full conditionals f(zmis,i|bi, zobs,i,yi, ri,θ

(t)) and f(bi|zmis,i, zobs,i,

yi, ri,θ
(t)). Sampling the full conditionals via rejection sampling methods can

be achieved by noting that

f(zmis,i|bi, zobs,i,yi, ri,θ
(t)) ∝ f(zi|α(t))f(yi|zi,bi,β

(t), σ2(t))

×f(ri|yi, zi,φ
(t)),

f(bi|zmis,i, zobs,i,yi, ri,θ
(t)) ∝ f(bi|D(t))f(yi|zi,bi,β

(t), σ2(t)),

where the density functions on the right-hand sides are all known so a rejection
sampling method can be implemented (see Chapter 12).

In summary, when the missing covariates are non-ignorable, likelihood infer-
ence is similar to the case when the missing covariates are ignorable. The only
modification is to add an assumed model for the missing data mechanism in
the likelihood. This missing data model introduces additional nuisance param-
eters and may cause parameter identifiability, and it is not testable based on
the observed data. Therefore, simple missing data models are preferable and
sensitivity analysis plays an important role. In fact, non-ignorable missing data
models may be viewed as tools for sensitivity analysis since, as noted in Chap-
ter 3 (Section 3.3.3, page 109), every MNAR (missing not at random) model
has an MAR (missing at random) counterpart in the sense that both models
produce exactly the same fit to the observed data, but the two models may lead
to different inferences (Molenberghs and Kenward 2007).

4.2.3 Missing Data in Time-Dependent Covariates

In longitudinal studies, many covariates are measured over time along with the
response measurements. Such covariates are called time-dependent covariates.
In a mixed effects model with time-dependent covariates, standard model spec-
ifications require that all time-dependent covariate values are available at each
time point where the response is measured. However, in practice this is often
not the case for various reasons, which leads to missing data in time-dependent
covariates. These types of missing data in time-dependent covariates are very
common and are almost inevitable in a longitudinal study, especially if the
study lasts a long time. Figure 4.1 shows viral load and CD4 measurements for
four randomly selected subjects in an AIDS study. One can see that the viral
load and CD4 values are sometimes not measured at the same times, which
leads to missing time-dependent covariates if one variable is treated as the re-
sponse and the other variable is treated as a covariate.
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Figure 4.1 Viral load and CD4 measurements from an AIDS study for four randomly
selected subjects. Both viral load and CD4 values are log10-transformed. The solid
lines with open circles are viral loads and the dotted lines with solid circles are CD4
values.

In this section, we consider missing time-dependent covariates in mixed effects
models, including GLMM and NLME models, and we allow non-ignorable
missing data mechanisms. For simplicity, we first focus on a single time-varying
covariate, and then we discuss how to extend the method to more than one
time-dependent covariates.

For a time-dependent covariate with missing data, we need to model the covari-
ate process over time for likelihood inference. The general approach is similar
to that in Sections 4.2.1 and 4.2.2, so we omit some details. Let zij be the co-
variate value for the i-th individual at time tij , i = 1, · · · , n; j = 1, · · · , ni,
and let zi = (zi1, . . . , zini

)T be all the measurements of the covariate on in-
dividual i. Write zi = (zmis,i, zobs,i), where zmis,i contains the missing com-
ponents of zi and zobs,i contains the observed components of zi. Let ri =
(ri1, . . . , rini

)T be a vector of missing data indicators such that rij = 1 if zij

is missing and rij = 0 otherwise.
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In the absence of a theoretical model, we may model the covariate process
empirically using a LME model:

zi(t) = Ui(t)α+ Vi(t)ai + εi(t), i = 1, . . . , n, (4.12)

whereα contains fixed parameters, ai’s are random-effects, zi(t), Ui(t), Vi(t),
and εi(t) are the covariate value, design matrices, and random error for indi-
vidual i at time t respectively. We assume that ai’s are i.i.d. ∼ N(0, A), εil

i.i.d. ∼ N(0, δ2I), and ai and εi = (εi1, . . . , εini
)T are independent, where A

is a covariance matrix and δ2 is the within-individual variance for the covariate
process and εil = εi(til). We further assume that the errors and random effects
in the covariate model (i.e., εi and ai) are independent of those in the response
model (i.e., ei and bi).

In covariate model (4.12), the covariate measurement times may be different
from the response measurement times. At the response measurement time tij ,
the possibly unobserved covariate value can be viewed as

z∗ij = z∗i (tij) = Uij α+ Vij ai,

where Uij = Ui(tij) and Vij = Vi(tij). In model fitting, we can simply fit the
covariate model (4.12) to the observed covariate data.

The observed data are {(yi, zobs,i, ri), i = 1, . . . , n}, and the observed data
log-likelihood is given by

lo(θ) =
n∑

i=1

∫ ∫ ∫ {
log f(yi|zi, bi; β, σ2) + log f(zi|ai; α, δ2)

+ log f(ai|A) + log f(bi|D)

+ log f(ri|yi, zi,φ)
}
dzmis,i dai dbi,

where θ = (α,β, σ2, δ2, A,D,φ) is the collection of all parameters. The like-
lihood lo(θ) involves an intractable integral with a high dimension, so the com-
putation can be challenging.

Consider again a Monte Carlo EM algorithm for estimation. The “complete
data” are now {(yi, zi,ai,bi, ri), i = 1, . . . , n}. The E-step at the (t + 1)-th
EM iteration (t = 0, 1, · · ·) can be written as

Q(θ|θ(t)) =
∫ ∫ ∫ {

log f(yi|zi, bi; β, σ2) + log f(zi|ai; α, δ2)

+ log f(ai|A) + log f(bi|D) + log f(ri|yi, zi,φ)
}

×f(zmis,i,ai,bi|zobs,i,yi, ri,θ
(t)) dai dbi dzmis,i,

where θ(t) is the parameter estimate from the t-th EM iteration. To approx-
imate Q(θ|θ(t)) using a Monte Carlo method, we need to simulate samples
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from the conditional distribution f(zmis,i,ai,bi|zobs,i,yi, ri,θ
(t)). This can

again be done using the Gibbs sampler method to break down a high dimen-
sional complex density into several lower dimensional and more manageable
ones (full conditionals), i.e., f(zmis,i|zobs,i,yi,ai,bi, ri,θ

(t)), f(ai|bi, zi,yi, ri,θ
(t)),

and f(bi|ai, zi,yi, ri,θ
(t)). Sampling from these full conditionals can be ac-

complished by rejection sampling methods by noting that

f(zmis,i|zobs,i,yi,ai,bi, ri,θ
(t)) ∝ f(yi|zi,bi,β

(t), σ2(t))

×f(zi|ai,α
(t), δ2(t))

×f(ri|yi, zi,φ
(t)),

f(ai|bi, zi,yi, ri,θ
(t)) ∝ f(yi|zi,bi,β

(t), σ2(t))
×f(ai|A(t))f(zi|ai,α

(t), δ2(t))
f(bi|ai, zi,yi, ri,θ

(t)) ∝ f(bi|D(t))f(yi|zi,bi,β
(t), σ2(t)),

where the density functions on the right-hand sides are all known.

The missing data model f(ri|yi, zi,φ) can be chosen based on the discussion
in Section 4.2.2. An alternative non-ignorable missing data model is to assume
that the missingness depends on the unobserved random effects in the models.
That is, we may consider the following non-ignorable missing data model

f(ri|ai,bi,φ) = f(ri1|ai,bi,φ)f(ri2|ri1,ai,bi,φ) · · ·
×f(rini

|r̄ini
,ai,bi,φ), (4.13)

logit[P (rij = 1)] = φ0j + · · ·+ φj−1,jri,j−1 + φT
a ai + φT

b bi,

i = 1, 2, · · · , n; j = 1, 2, · · · , ni,

where r̄ij = (ri1, · · · , ri,j−1) and φ = (φ01, · · · , φpp,φa,φb). The random
effects ai and bi may represent summaries of the covariate and response pro-
cesses, such as rates of change or histories of the covariate and response pro-
cesses (Tsiatis, DeGruttola, and Wulfsohn 1995). The missing data model (4.13)
sometimes is called a shared-parameter model (Wu and Carroll 1988). These
models are also useful if we believe that the missingness is related to a latent
process that governs the covariate and response processes.

When there are two or more time-dependent covariates with missing data, a
simple method would be to model each covariate process separately, but this
method may lose some efficiency if the covariates are highly correlated. A
more efficient approach is to consider a multivariate longitudinal model for
the covariates such as a multivariate LME model (Shah et al. 1997), or write
the joint distribution of the covariates as a product of univariate conditional
distributions, as in Section 4.2.1. A multivariate LME model can be converted
into a univariate LME model by stacking all covariates. Then, the foregoing
arguments can be applied to the univariate LME model. We will present such an
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example in Section 4.2.4 in the context of semiparametric and nonparametric
mixed models.

4.2.4 Multivariate, Semiparametric, and Nonparametric Models

In practice, many longitudinal processes are very complex, so parametric mod-
els may not be flexible enough to model these processes. In Section 2.5 of
Chapter 2, we discussed nonparametric and semiparametric mixed effects mod-
els and showed that these models are very flexible for modeling complex lon-
gitudinal processes. Thus, nonparametric and semiparametric mixed effects
models are useful for modeling time-dependent covariates in the presence of
missing data. Often, we need to model several covariate processes and these
processes may be highly correlated, so a multivariate model would provide
more efficient inference. In this section, we describe a multivariate semipara-
metric mixed effects model for jointly modeling several (continuous) covariate
processes simultaneously.

Suppose that there are K time-dependent covariates. Let zijk be the k-th co-
variate value for individual i at time tij , i = 1, · · · , n; j = 1, · · · , ni; k =
1, · · · ,K. We assume that the covariate processes have the same measure-
ment schedules, i.e., assume n1 = n2 = · · · = m, but we allow some
of the covariate values to be missing. Let rijk be the missing data indicator
such that rijk = 1 if zijk is observed and rijk = 0 otherwise. We define
zik = (zi1k, . . . , zinik)T and zi = (zT

i1, . . . , z
T
iK)T . For the k-th covariate

process, we consider the following semiparametric mixed-effects model

zik = U∗
ikα

∗
k + V∗

ika
∗
ik + wk + hik + eik, i = 1, 2, · · · , n, (4.14)

where U∗
ik and V∗

ik are known design matrices, α∗k is a vector of population
parameters, a∗ik is a vector of random effects, wk = (wk(ti1), . . . , wk(tini

))T ,
hik = (hik(ti1), . . . , hik(tini

))T , andwk(t) and hik(t) are unknown nonpara-
metric smooth fixed-effects and random-effects functions respectively. We as-
sume that eik ∼ N(0, δkkI), aik ∼ N(0, Ak), and eik,a∗ik, hik are indepen-
dent of each other.

Note that the semiparametric mixed-effects model (4.14) reduces to a nonpara-
metric mixed-effects model when the parametric part U∗

ikα
∗
k + V∗

ika
∗
ik in the

model is dropped, and it reduces to a parametric LME model when the non-
parametric part wk + hik in the model is dropped.

In Section 2.5 of Chapter 2, we reviewed some nonparametric smoothing meth-
ods. Here we focus on the basis-based approach, following Rice and Wu (2001).
That is, we approximate the nonparametric smooth functions wk(t) and hik(t)
by linear combinations of some basis functions ψk(t) = (ψk0(t), ψk1(t), . . . ,



148 MIXED EFFECTS MODELS FOR COMPLEX DATA

ψkpk
(t))T and νk(t) = (νk0(t), νk1(t), . . . , νkqk

(t))T as follows:

wk(t) ≈ w̃pk
(t) =

pk−1∑
j=0

ηjk ψj(t) = ψk(t)T ηk, (4.15)

hik(t) ≈ h̃iqk
(t) =

qk−1∑
j=0

ξijk νj(t) = νk(t)T ξik, (4.16)

where ηk and ξik are vectors of unknown fixed and random coefficients re-
spectively. Substituting wk(t) and hik(t) by their approximations w̃pk

(t) and
h̃iqk

(t), we can approximate model (4.14) by the following LME model for the
k-th covariate process

zik = Uikαk + Vikaik + eik, i = 1, 2, · · · , n, k = 1, 2, · · · ,K, (4.17)

where αk = (α∗Tk , ηT
k )T are fixed effects, aik = (a∗Ti , ξT

ik)T are random
effects, Uik = (U∗

ik,Ψik), Vik = (V∗
ik,Γik), Ψik is a matrix whose (j, l)-th

element is ψkl(tij), and Γk is a matrix whose (j, l)-th element is νkl(tij).

To incorporate the correlation among the K covariates, we let Σ be the K ×
K covariance matrix for the K covariates, i.e., Cov(zi1, . . . , ziK) = Σ =
(δij)K×K . Let Ui =diag(Ui1, . . . ,UiK) be a block diagonal matrix with the
k-th block being Uik, and let Vi =diag(Vi1, . . . ,ViK) be a block diagonal
matrix with the k-th block being Vik. Then, we can write all K covariate
models in (4.17) as a single multivariate LME model

zi = Uiα+ Viai + ei, i = 1, 2, · · · , n, (4.18)

where α = (αT
1 , . . . ,α

T
K)T are fixed effects, ai = (aT

i1, . . . ,a
T
iK)T are ran-

dom effects, ai ∼ N(0, A), and ei ∼ N(0,Σ⊗ Ii).

LME Model (4.18) incorporates the correlation between the time-dependent
covariates and the correlation between the repeated measurements within each
individual. Thus, a multivariate parametric or semiparametric or nonparamet-
ric mixed-effects model can be written or approximated by a univariate LME
model. Likelihood inference then proceeds as in the case for a univariate LME
model, but computation can be tedious here since the covariance matrices have
special structures and the number of parameters may increase substantially.

When some covariates are continuous and some are discrete, we can write
their joint distribution as a product of conditional distributions. Specifically,
suppose that zi contains all continuous covariates and xi contains all discrete
covariates. We can write

f(xi, zi) = f(xi)f(zi |xi).

Then, a multivariate discrete model can be chosen for f(xi), such as a multi-
nomial or conditional logistic mixed effects model, and a multivariate LME
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model can be chosen for f(zi |xi). Zeng and Cook (2007) proposed a mul-
tivariate model for longitudinal discrete data using a transitional model ap-
proach, which can also be used to model multivariate discrete longitudinal data.

4.3 Approximate Methods

A major issue in likelihood methods for mixed effects models with missing
data is the intensive computation. As we have seen in Section 4.2, likelihood
functions for the observed data typically involve high-dimensional and in-
tractable integrals with no analytic expressions. Numerical integration tech-
niques such as the Gauss-Hermite quadrature may be practically infeasible due
to the high dimensionalities of the integrals. Monte Carlo EM algorithms or
other Monte Carlo and stochastic methods can also be computationally very
intensive and may even exhibit convergence problems. Therefore, computa-
tionally more efficient approximate methods are particularly valuable here. In
Section 2.6.3 of Chapter 2, we described some computationally very efficient
approximate methods based on Taylor or Laplace approximations. These ap-
proximate methods can be extended to mixed effects models with missing data.
In this section, we describe these approximate methods.

Note that, in likelihood inference for mixed effects models, most of the compu-
tational difficulties arise for models that are nonlinear in the “unobservables”
(i.e., the random effects and variables with missing data). In other words, most
computational challenges arise in GLMM, NLME, and frailty models. For
LME models, the random effects can be integrated out from the likelihoods
since they are linear in the models – this greatly simplifies computation. When
a mixed effects model is nonlinear in the random effects, however, one must
integrate out the random effects in the likelihood, which leads to much of the
computational difficulties.

Therefore, to avoid some of the major computational difficulties, one approach
is to linearize the nonlinear models using Taylor series approximations. Such
approaches have been widely used for complete data mixed effects models
(e.g., Beal and Sheiner 1992; Breslow and Clayton 1993; Lindstrom and Bates
1990). Wu (2004) extended this approach to missing data problems. Alter-
natively, we can use Laplace approximations to directly approximate the in-
tractable integrals in the likelihoods (Wolfinger 1993; Vonesh 1996; Lee et al.
2006). We discuss these approaches in the context of missing covariates in the
following subsections.

As discussed in Section 2.6.3 of Chapter 2, the approximate methods based on
Taylor approximations or Laplace approximations are asymptotically equiv-
alent (Demidenko 2004), and the approximate estimates are consistent when
both the number of measurements within each individual and the number of
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individuals go to infinite (Vonesh 1996). For complete-data NLME models,
Pinheiro and Bates (1995) showed that these approximate methods perform
very well. However, the approximate methods may perform less satisfactory
for GLMMs, especially for binary responses such as logistic mixed effects
models (Breslow and Lin 1995; Lin and Breslow 1996; Joe 2008). In the miss-
ing data cases, the performances of these approximate methods should be sim-
ilar since the Monte Carlo EM algorithms are essentially based on complete-
data models where the missing data are substituted by their simulated values.

4.3.1 Linearization

We focus on NLME models with missing covariates, but the approach can also
be used in GLMMs with missing covariates. The idea is to take a first-order
Taylor series expansion about some estimates of the random effects, which
leads to a “working” LME model in which the random effects can be inte-
grated out from the corresponding likelihood. The procedure is then iterated
until convergence.

For complete-data NLME models, Beal and Sheiner (1982) took a first-order
Taylor expansion about the means of the random effects, which are zeros. Lind-
strom and Bates (1990) took a first-order Taylor expansion about the empirical
Bayes estimates of the random effects, which are better estimates when the
random effects variabilities are not small. Lindstrom and Bates (1990) showed
that their method performs better than that of Beal and Sheiner (1982). Wu
(2004) applied similar ideas to missing covariates in NLME models, as shown
below.

In the following, we consider a NLME model with missing time-independent
covariates and an ignorable missing data mechanism. Specifically, consider the
following NLME model

yij = gij(zi,β,bi) + eij , j = 1, . . . , ni; i = 1, . . . , n, (4.19)

where gij(·) is a known nonlinear function, ei ∼ N(0, Ri) with Ri = σ2Ini
,

and bi ∼ N(0, D). Let gi = (gi1, . . . , gini
)T . To simplify the notation, we

suppress iteration numbers. We begin with an initial estimate of (θ,bi), and de-
note the estimate of (θ,bi) at the current iteration by (θ̂, b̂i). The linearization
procedure of Lindstrom and Bates (1990) is equivalent to iteratively solving
the following working LME model

ỹi = Xiβ + Tibi + ei, i = 1, . . . , n, (4.20)

where

ỹi = yi − gi(zi, β̂, b̂i) +Xiβ̂ + Tib̂i,
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Xij =
∂gij(zi,β, b̂i)

∂βT

∣∣∣∣∣
β=β̂

, Tij =
∂gij(zi, β̂,bi)

∂bT
i

∣∣∣∣∣
bi=b̂i

,

Xi = (Xi1, . . . , Xini
)T , Ti = (Ti1, . . . , Tini

)T , ỹi = (ỹi1, . . . , ỹini
)T , and

Ti is often independent of zi. Write Xi = Xi(zi). When covariate zi contains
missing data, we can handle the missing covariates in LME model (4.20) at
each iteration. For LME model (4.20), the random effects bi in the likelihood
can be integrated out, so the likelihood only involves an integration with respect
to zmis,i only, as shown below.

Note that

f(zmis,i,bi|zobs,i, ỹobs,i, θ̂) = f(bi|ỹi, zi, θ̂)f(zmis,i|zobs,i, ỹobs,i, θ̂),

where
ỹobs,i = yi − gi(zobs,i, β̂, b̂i) +Xi(zobs,i)β̂ + Tib̂i.

Under the LME model (4.20), it can be shown that

[bi|ỹi, zi, θ̂] ∼ N(b̃i, Σ̃i),

where

Σ̃i = (σ̂−2TT
i Ti + D̂−1)−1, b̃i = Σ̃iT

T
i (ỹi −Xi(zi)β̂)/σ̂2.

After some algebra, we can then integrate out bi from the terms corresponding
to I1, I2, and I3 in (4.5) of Section 4.2.1 (page 138), and obtain the following
results

Ĩ1 = −ni

2
log(σ2)− 1

2σ2

[
tr(TT

i TiΣ̃i) +
∫ (

ỹi −Xi(zi)β − Tib̃i

)T

×
(
ỹi −Xi(zi)β − Tib̃i

)
f(zmis,i|zobs,i, ỹobs,i, θ̂) dzmis,i

]
,

Ĩ2 =
∫

log f(zi|α)f(zmis,i|zobs,i, ỹobs,i, θ̂) dzmis,i,

Ĩ3 = −1
2

log |D| − 1
2
tr(D−1Σ̃i)−

1
2

∫ (
b̃T

i D
−1b̃i

)
×f(zmis,i|zobs,i, ỹobs,i, θ̂) dzmis,i.

Therefore, for LME model (4.20), the E-step of the Monte Carlo EM algorithm
in Section 4.2.1 does not involve integration with respect to the random effects
bi. That is, in the E-step we only need to simulate samples from the lower di-
mensional distribution f(zmis,i|zobs,i, ỹobs,i, θ̂). This can again be done using
the Gibbs sampler along with the rejection sampling methods by noting that

f(zmis,i|zobs,i, ỹobs,i, θ̂) ∝ f(zi|θ̂)f(ỹi|zi, θ̂).
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This greatly reduces computational burden since many computational difficul-
ties, such as convergence problems, often arise from sampling the random ef-
fects (Gilks et al. 1996).

Suppose that {(z∗(1)mis,i, . . . , z
∗(mt)
mis,i } is a sample of size mt generated from

f(zmis,i|zobs,i, ỹobs,i, θ̂) at the t-th EM iteration. Let

z∗(k)
i =

(
z∗(k)

mis,i, zobs,i

)
,

ỹ∗(k)
i = yi − gi(z

∗(k)
i , β̂, b̂i) +Xi(z

∗(k)
i )β̂ + Tib̂i,

b̃∗(k)
i = Σ̃iT

T
i (ỹ∗(k)

i −Xi(z
∗(k)
i )β̂)/σ̂2, k = 1, . . . ,mt.

The E-step for individual i can now be written as

Q̃i(θ|θ̂) =

{
− ni

2
log(σ2)− 1

2σ2

[
tr(TT

i TiΣ̃i)

+
1
mt

mt∑
k=1

(
ỹ∗(k)

i −Xi(z
∗(k)
i )β − Tib̃

∗(k)
i

)T(
·
)]}

+

{
− 1

2
log |D| − 1

2
tr(D−1Σ̃i)−

1
2mt

mt∑
k=1

(
b̃∗(k)T

i D−1b̃∗(k)
i

)}

+
1
mt

mt∑
k=1

log f
(
z∗(k)

i |α
)
. (4.21)

The M-step then maximizes

Q̃(θ|θ̂) =
n∑

i=1

Q̃i(θ|θ̂),

using standard complete-data optimization methods such as the Newton-Raphason
method. Updated estimate for θ can be obtained by maximizing Q̃(θ|θ̂) with
respect to θ. Updated estimate of the random effect bi is given by its empirical
Bayes estimate

b̂i = D̂TT
i V̂

−1
i (ỹi −Xiβ̂),

where Vi = TiDT
T
i +Ri.

When the incompletely observed covariates are categorical or discrete, we can
obtain exact expression for the E-step without using Monte Carlo approxima-
tion, as in Ibrahim et al. (1999). This further simplifies computation substan-
tially. Specifically, suppose that covariate zi is discrete. Note that, for any func-
tion h(·), we have∫
h(zmis,i) f(zmis,i|zobs,i, ỹobs,i, θ̂) dzmis,i =

∑
zmis,i(j)

h(zmis,i(j)) pij(θ̂),



MIXED EFFECTS MODELS WITH MISSING DATA 153

where the sum
∑

zmis,i(j)
extends over all the possible values of the missing

covariate components, with j indexing distinct covariate patterns, and

pij(θ) = Pr(zmis,i(j)|zobs,i, ỹi,θ)

=
f(ỹi|zmis,i(j), zobs,i,β, σ

2)f(zmis,i(j), zobs,i|α)∑
zmis,i(j)

f(ỹi|zi,β, σ2)f(zi|α)
.

Thus we can obtain an exact (analytic) expression for the E-step. This method
can be easily extended to cases where the missing covariates contain both con-
tinuous and discrete components. In this case, we may partition the incom-
pletely observed covariate vector into its continuous and categorical compo-
nents. Then, the method described above can be used for the categorical com-
ponents.

For complete-data LME models, efficient EM-type algorithms, which are ex-
tensions of the standard EM algorithm to accelerate convergence, have been
developed (e.g., Meng and van Dyk 1997, 1998; van Dyk 2000). Since the
approximate method in this section involves iteratively solving complete-data
LME models, these efficient EM-type algorithms for LME models can be in-
corporated into the approximate method to further speed up the EM algorithm.
We will provide such an example in Section 4.6.2.

4.3.2 Laplace Approximation

In this section, we use Laplace approximations to directly approximate the
intractable integrals in the observed-data likelihoods, as in Section 2.6.3 of
Chapter 2. Wolfinger (1993) and Vonesh (1996) considered such approach for
complete-data NLME models, and Breslow and Clayton (1993) considered a
closely related approach for complete-data GLMMs. Lee, Nelder, and Pawi-
tan (2006) provided a systematic treatment of this type of approaches via so-
called hierarchical likelihood or h-likelihood. In the following, we describe
the method in the context of h-likelihood, which also produces restricted max-
imum likelihood estimation (REML) of the variance-covariance parameters.
That is, it produces approximate MLEs of the mean parameters, and REMLs
of the variance-covariance or dispersion parameters.

We illustrate the method for missing covariates in NLME models when the
missing data mechanism is ignorable. Note that in the Laplace approximation
(2.78) (page 88), the domain of variable v is the whole space Rγ , where γ is
the dimension of vector v. Thus, to facilitate a Laplace approximation to the
observed-data likelihood, we consider the following transformation (or scale)
for the incompletely observed covariates zi = (zi1, . . . , zip)T :

vi ≡ v(zi) = (v1(zi1), · · · , vp(zip)) (4.22)



154 MIXED EFFECTS MODELS FOR COMPLEX DATA

such that, if the domain of the k-th component zik of zi is (−∞,∞) (the whole
real line), no transformation is needed for zik (i.e., vk(zik) = zik), but if the
domain of zik is not the whole real line, we choose a monotone function vk(·)
so that the domain of vk(zik) becomes the whole real line, k = 1, . . . , p; i =
1, . . . , n. For example, if zik is a covariate with positive domain (e.g., age
or weight), we can choose the transformation or scale vk(zik) = log(zik).
In fact, for a positive covariate zik we can always substitute zik by wik =
exp(log(zik)) = exp(vk(zik)).

Thus, the transformation or scale (4.22) is used to ensure that the domains of all
the incompletely observed covariates are the whole real line. This transforma-
tion is necessary for the purpose of satisfactory Laplace approximations since
Laplace approximations require the corresponding variables (i.e., v in (2.78))
to have unrestricted domains. After the unknown parameters in the models are
estimated, we can transform v(zi) back to the original scale zi if necessary.
Lee et al. (2006) showed that the results are usually insensitive to the choice
of scales or transformations. For the unobservable random effects bi, transfor-
mations or scales are not needed since we have assumed that bi ∼ N(0, D) so
the domains of all the components of bi are unrestricted.

Following Lee et al. (2006), the h-likelihood for individual i can be written as

hi(θ,bi,vi) = log f(yi|zi,β, σ
2,bi) + log f(bi|D) + log f(vi|α),

where vi = v(zi). Let (b̃i, ṽi) be the solution of equation

∂hi(θ,bi,vi)
∂(bi,vi)

= 0,

and let

Di(hi,bi,vi) = − ∂2hi(θ,bi,vi)
∂(bi,vi)∂(bi,vi)T

.

Then, it can be shown that (Lee et al. 2006)

p(bi,vi)(hi) ≡ p(bi,vi)(hi,θ)

=
[
hi(θ,bi,vi)−

1
2

log
∣∣∣Di(hi,bi,vi)

2π

∣∣∣] ∣∣∣∣∣
(bi,vi)=(b̃i,ṽi)

(4.23)

is the first-order Laplace approximation to the observed-data (or marginal) log-
likelihood Loi(θ) (see (4.4) of Section 4.2.1, page 137) by integrating out the
unobservables (zmis,i,bi). That is, p(bi,vi)(hi) is a first-order Laplace approx-
imation of Loi(θ) in (4.4). Therefore,

L̃o(θ) ≡
n∑

i=1

p(bi,vi)(hi,θ) ≈ Lo(θ)

is a first-order Laplace approximation to the observed-data (or marginal) log-
likelihood Lo(θ) (see (4.4) of Section 4.2.1) by integrating out (zmis,i,bi).
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This approach avoids the intractable integration in the observed data likelihood
Lo(θ) and offers a big computational advantage.

The above method can also be used to obtain REMLs of the variance param-
eters. To see this, we separate the mean parameters and variance-covariance
parameters and write θ = (θ1,θ2), where θ1 contains the mean parameters
and θ2 contains the variance-covariance or dispersion parameters. Then we
can use the approximate marginal likelihood L̃o(θ) to make inference about
the mean parameters θ1. The resulting estimate θ̂1 is an approximate MLE of
θ1 based on the Laplace approximation to the observed-data likelihood by in-
tegrating out the random effects and missing covariates. For estimation of the
dispersion parameters or the variance-covariance parameters θ2, we can ob-
tain REMLs by considering p(θ1,bi,vi)

(hi), which is defined in a way similar
to (4.23). That is, p

(θ1,bi,vi)
(hi) approximates the restricted log-likelihood by

integrating out the mean parameters θ1, the random effects bi, and the missing
covariates zmis,i. See Lee et al. (2006) for a detailed discussion in the case of
complete-data GLMMs.

The foregoing procedure can be iterated as follows:

STEP 1. Obtain initial estimates θ(0) and (b(0)
i ,v(0)

i ) of the parameters θ
and “missing data” (bi,vi) respectively using a naive method;
STEP 2. At t-th iteration, given the current parameter estimates θ(t), update
“missing data” estimates (b(t+1)

i ,v(t+1)
i ) by maximizing hi(θ(t), bi,vi)

with respect to (bi,vi), i = 1, . . . , n;

STEP 3. Given the “missing data” estimates (b(t+1)
i ,v(t+1)

i ), update the
parameter estimates θ(t+1) by maximizing

K(θ) ≡
n∑

i=1

p
(b

(t+1)
i

,v(t+1))
(hi(θ, bi,vi))

with respect to θ. This step can be done in two or more steps if REML
estimates of the variance-covariance parameters are desirable;
STEP 4. Iterating between Step 2 and Step 3 until convergence, we obtain
the approximate MLE θ̂AP .

The estimates of the random effects obtained this way can be interpreted as
empirical Bayes estimates.

At convergence, an approximate formula for the variance-covariance matrix of
the approximate MLE θ̂AP is given by

Cov(θ̂AP ) =

[
−
∂2p(bi,vi)(hi(θ, b̂i, v̂i))

∂θ∂θT

]−1

θ=
ˆθAP

.
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Note that if an incompletely observed covariate is discrete, the integration with
respect to this covariate in Lo(θ) reduces to a summation, then the Laplace
approximation with respect to this covariate is not needed. This reduces the
dimension of the integral in Lo(θ) and thus simplifies the computation.

4.4 Mixed Effects Models with Missing Responses

Mixed effects models allow unbalanced data in the responses, i.e., the number
of response measurements is allowed to vary across individuals or clusters. In
other words, if there are missing data in the responses and the missingness is
ignorable, inference for mixed effects models can proceed in the usual way as
if there were no missing responses. Thus mixed effects models can be used to
combine data from similar studies or clusters, and they can be used to model a
wide varieties of longitudinal or clustered data.

In practice, however, missing data in the responses may be non-ignorable in the
sense that the missingness may be related to the missing values. For example,
if a subject drops out due to drug side-effects, the resulting missing response
values may be non-ignorable. Sometimes, the dropout subjects may return to
the study at a later time, so the missing data in the response may be intermittent.
When a subject drops out from a longitudinal study, the corresponding time-
dependent covariates will also be missing. Thus, missing response and missing
covariates may arise simultaneously.

In this section, we consider mixed effects models with missing responses when
the missingness is non-ignorable. Likelihood methods for mixed effects mod-
els with non-ignorable missing responses are conceptually the same as that
for mixed effects models with nonignorable missing covariates, with straight-
forward modifications. For completeness, in the following we give an outline
of the procedures. We focus on mixed effects models with non-igorable miss-
ing responses and missing covariates. The mixed effects models include LME,
GLMM, and NLME models.

4.4.1 Exact Likelihood Inference

Let yij be the response value for individual i at time tij or cluster j, subject
to nonignorable missing data, i = 1, . . . , n; j = 1, . . . , ni. Let rij be the
missing response indicator such that rij = 1 if yij is missing and rij = 0 if yij

is observed. Let zi = (zi1, . . . , zip)T be a collection of incompletely observed
covariates for individual i, and let vi be a collection of completely observed
covariates. We define yi = (yi1, . . . , yini

)T and define ri similarly. Write
yi = (ymis,i,yobs,i), where ymis,i contains the missing components of yi and
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yobs,i contains the observed components of yi, and write zi = (zmis,i, zobs,i)
similarly. The missing covariates are assumed to be ignorable for simplicity of
presentation. The observed data are {(yobs,i, zobs,i,vi, ri), i = 1, . . . , n}. To
allow for non-ignorable missing responses, we assume a model for the missing
response indicators ri, denoted by f(ri|yi, zi,vi,φ), which links the proba-
bility of missingness to missing and observed values.

The observed data likelihood can be written as

Lo(ψ) =
n∏

i=1

∫ ∫ ∫
f(yi|zi,vi,bi,β,σ

2)f(zi|vi,α)f(bi|D)

×f(ri|yi, zi,vi,φ) dbi dzmis,i dymis,i,

where ψ = (α,β,σ2,η,φ) denotes the collection of all parameters. The ob-
served data likelihood Lo(ψ) involves an highly intractable integral. As in
Ibrahim et al. (2001) and Stubbendick and Ibrahim (2003), here we consider
a Monte Carlo EM algorithm for “exact” likelihood inference, incorporating
missing responses and missing covariates simultaneously. The “complete data”
are {(yi, zi,vi,bi, ri), i = 1, . . . , n}, and the “complete-data” log-likelihood
can be written as

lc(ψ) =
n∑

i=1

{
log f(yi|zi,vi,bi,β, σ

2) + log f(zi|vi,α)

+ log f(bi|D(η)) + log f(ri|yi, zi,vi,φ)
}
.

We may consider the following missing data model for the responses

f(ri|yi, zi,vi,φ) = f(rini
|r̄ini

, ȳini
, zi,vi,φni

)× · · ·
×f(ri2|ri1, ȳi2, zi,vi,φ2)f(ri1|yi1, zi,vi,φ1),

where φ = (φ1,φ2, . . . ,φM ), M = maxi{ni}, φj = (φ1, · · · , φMj
), r̄ij =

(ri1, · · · , ri,j−1), and ȳij = (yi1, · · · , yij). We may assume, for example,

logit[P (rij = 1|r̄ij , ȳij ,φj)] = φ0 + φ1ri,j−1 + φ2yi1 + · · ·+ φj+1yij

for j > 1, and

logit[P (ri1 = 1|yi1,φ1)] = φ0 + φ2yi1.

Alternative missing data models can be specified in a similar way.

Let ψ(t) be the parameter estimate from the t-th EM iteration, t = 1, 2, · · ·.
The E-step for individual i at the (t+ 1)st EM iteration can be written as

Qi(ψ|ψ(t)) = E
[
lc(ψ|yi, zi,vi, ri,bi)|yobs,i, zobs,i,vi, ri,ψ

(t)
]

=
∫ ∫ ∫ {

log f(yi|zi,vi,bi,β, σ
2) + log f(zi|vi,α)
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+ log f(bi|D) + log f(ri|yi, zi,vi,φ)
}

×f(ymis,i, zmis,i,bi|yobs,i, zobs,i,vi, ri,ψ
(t))

×dbi dzmis,idymis,i

≡ I1 + I2 + I3 + I4. (4.24)

A Monte Carlo method can be used to approximate Qi(ψ|ψ(t)) in the E-step.
That is, we generate mt independent samples from the conditional distribu-
tion f(ymis,i, zmis,i,bi|yobs,i, zobs,i,vi, ri,ψ

(t)) and then approximate the
expectation Qi(ψ|ψ(t)) by its empirical mean, with missing data replaced by
simulated values.

To generate samples from f(ymis,i, zmis,i,bi|yobs,i, zobs,i,vi, ri,ψ
(t)), we

can use the Gibbs sampler by iteratively sampling from the full conditionals
f(ymis,i|yobs,i, zi,vi,bi, ri,ψ

(t)), f(zmis,i|zobs,i,yi, vi,bi, ri,ψ
(t)), and

f(bi|yi, zi,vi, ri,ψ
(t)). Sampling from these full conditionals can be done

using rejection sampling methods by noting that

f(ymis,i|yobs,i, zi,vi,bi, ri,ψ
(t)) ∝ f(yi|zi,vi,bi,β

(t), σ(t)2)

×f(ri|yi, zi,vi,φ
(t)),

f(zmis,i|zobs,i,yi,vi,bi, ri,ψ
(t)) ∝ f(zi|vi,α

(t))

×f(yi|zi,vi,bi,β
(t), σ(t)2)

×f(ri|yi, zi,vi,φ
(t)),

f(bi|yi, zi,vi, ri,ψ
(t)) ∝ f(bi|D(t))

×f(yi|zi,vi,bi,β
(t), σ(t)2),

where the density functions on the right-hand sides are all known. Then, the M-
step can be accomplished by standard complete-data optimization procedures,
similar to that in Section 4.2.

The foregoing procedure can be extended to time-dependent covariates with
non-ignorable missing data. Specifically, let zij be the covariate value for the i-
th individual at time tij , i = 1, · · · , n; j = 1, · · · , ni, and let zi = (zi1, . . . , zini

)T .
Write zi = (zmis,i, zobs,i). Let si = (si1, . . . , sini

)T be a vector of missing
covariate indicators such that sij = 1 if zij is missing and sij = 0 otherwise.
We can assume a mixed effects model for the covariate process, denoted by
f(zi|ai; α), where ai’s are random effects with distribution f(ai|A) and α
contains unknown fixed parameters. The observed data likelihood can then be
written as

Lo(ψ) =
n∏

i=1

∫ ∫ ∫
f(yi|zi,vi,bi,β,σ

2)f(zi|ai,α)f(bi|D)f(ai|A)

×f(ri|yi, zi,vi,φ1)f(si|zi,φ2) dai dbi dzmis,i dymis,i,
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where f(si|zi,φ2) is the assumed missing data model for the missing co-
variates. A Monte Carlo EM algorithm can again be used for estimation, but
the computation becomes more intensive due to the high-dimensional and in-
tractable integration.

For non-ignorable missing data, the assumed missing data models are not testable
based on the observed data. So sensitivity analysis based on alternative non-
ignorable missing data models should be conducted. Diggle and Kenward (1994)
and Little (1995) discussed various dropout models for longitudinal data. For
mixed effects models, an alternative missing data model is to link the miss-
ing probability to the random effects in the models, since these random ef-
fects characterize the individual-specific longitudinal processes and may also
be viewed as summaries of the longitudinal trajectories. Thus, we may consider
a missing data model f(ri|bi,φ), e.g.,

logit(P (rij = 1|bi,φ) = φ0 + φ1ri,j−1 + φT
2 bi.

Such a missing data model is sometimes called a shared parameter model (Wu
and Carroll 1988; Little and Ruben 2002). In this case, the observed-data like-
lihood can be written as

L∗o(ψ) =
n∏

i=1

∫ ∫
f(yobs,i|zi,vi,bi,β, σ

2)f(zi|vi,α)f(bi|D)

×f(ri|bi,φ) dbi dzmis,i.

The foregoing Monte Carlo EM algorithm can be modified in a straightforward
way to find the MLE of ψ.

For models with non-ignorable missing data, there may be too many nuisance
parameters, so identifiability of the parameters is an important issue (Fitzmau-
rice et al. 1996). Since non-ignorable models can be complex, if there is not
sufficient information in the data, the models can be non-identifiable in the
sense that two different sets of parameters may lead to the same observed likeli-
hood. In practice, one may check identifiability empirically. For example, if the
Fisher information matrix is singular then the model may be non-identifiable,
while if the Fisher information matrix is non-singular then the model is locally
identifiable. As noted in Stubbendick and Ibrahim (2003), we may also check
model identifiability by examing the convergence of the EM algorithm. If the
model is non-identifiable, the EM may diverge quickly.

4.4.2 Approximate Likelihood Inference

A major issue in likelihood inference for mixed effects models with non-ignorable
missing data is the computational challenge since the observed data likelihoods
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can be extremely intractable, as shown in Section 4.4.1. Therefore, computa-
tionally much more efficient approximate methods are highly valuable for these
problems. These approximate methods are often based on Taylor or Laplace
approximations, similar to that in Section 4.3. As an illustration, here we briefly
describe a linearization method for the missing data problems in NLME mod-
els presented in Section 4.4.1.

Consider the following NLME model

yij = gij(zi,β,bi) + eij , j = 1, . . . , ni; i = 1, . . . , n, (4.25)
bi ∼ N(0, D), eij i.i.d. ∼ N(0, σ2), (4.26)

where gij(·) is a known nonlinear function. To simplify the notation, we sup-
press the completely observed covariates vi, and denote the current estimate of
ψ in the t-th EM iteration by ψ̂ = (α̂, β̂, D̂, η̂, σ̂2), suppressing the iteration
number. Let gi = (gi1, . . . , gini

)T . Based on a first-order Taylor expansion
around the current parameter and random effects estimates, the approximate
method iteratively solves the following LME model

ỹi = Xiβ + Tibi + ei, (4.27)

where

ỹi = yi − gi(zi, β̂, b̂i) +Xiβ̂ + Tib̂i,

Xij =
∂gij(zi,β,bi)

∂βT

∣∣∣
(β̂,b̂i)

, Tij =
∂gij(zi,β,bi)

∂bT
i

∣∣∣
(β̂,b̂i)

,

Xi ≡ Xi(zi) = (Xi1, · · · , Xini
)T , Ti ≡ Ti(zi) = (Ti1, · · · , Tini

)T , and
ỹi = (ỹi1, · · · , ỹini

)T .

Note that we have

f(ỹmis,i, zmis,i,bi|ỹobs,i, zobs,i, ri, ψ̂) = f(bi|ỹi, zi, ψ̂)

×f(ỹmis,i, zmis,i|ỹobs,i, zobs,i, ri, ψ̂),

where

ỹmis,i = ymis,i − gi(zmis,i, β̂, b̂i) +Xi(zmis,i)β̂ + Ti(zmis,i)b̂i,

ỹobs,i is defined similarly, and ỹi = (ỹmis,i, ỹobs,i). Under the LME model
(4.27), it can be shown that

[bi|ỹi, zi, ψ̂] ∼ N(b̃i, Σ̃i),

where

Σ̃i = (σ̂−2TT
i Ti + D̂−1)−1, b̃i = Σ̃iT

T
i (ỹi −Xiβ̂)/σ̂2.

Then, we can integrate out bi from I1 − I4 in (4.24) of Section 4.4.1 (page
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158), and obtain the following results

Ĩ1 = −ni

2
log(σ2)− 1

2σ2

[
tr(TT

i TiΣ̃i) +
∫ (

ỹi −Xiβ − Tib̃i

)T(
·
)

×f(ỹmis,i, zmis,i|ỹobs,i, zobs,i, ri, ψ̂) dỹmis,idzmis,i

]
,

Ĩ2 =
∫

log f(zi|α)f(zmis,i|ỹi, zobs,i, ri, ψ̂)dzmis,i

Ĩ3 = −1
2

log |D| − 1
2

tr(D−1Σ̃i)−
1
2

∫ (
b̃T

i D
−1b̃i

)
×f(ỹmis,i, zmis,i|ỹobs,i, zobs,i, ri, ψ̂) dỹmis,idzmis,i,

Ĩ4 =
∫

log f(ri|ỹi, zi,φ)

×f(ỹmis,i, zmis,i|ỹobs,i, zobs,i, ri, ψ̂) dỹmis,idzmis,i.

Thus, we have integrated out the random effects bi from Ĩ1 − Ĩ4 in the E-
step, and therefore greatly reduce the computational burden. The rest of the
procedure is similar to that in Section 4.2.

Alternatively, a Laplace approximation may be considered. The procedure is
similar to that in Section 4.3.2, so we omit the detail here.

4.5 Multiple Imputation Methods

4.5.1 Advantages and Issues of Multiple Imputation Methods

In previous sections, we have focused on likelihood methods or approximate
likelihood methods for mixed effects models with missing data, implemented
by Monte Carlo EM algorithms or Taylor/Laplace approximations. Likelihood
methods are popular because MLEs are asymptotically most efficient and asymp-
totically normally distributed, if the assumed models hold and usual regular-
ity conditions are satisfied. However, likelihood methods are specific to the
assumed models, and in practice the assumed models may not hold exactly.
Moreover, software for likelihood methods for specific problems may not be
available, and general-purpose software may not be directly applicable to spe-
cific problems.

Multiple imputation methods, on the other hand, may be easier to use in prac-
tice since imputation models can be different from models used in data analyses
and general-purpose software for multiple imputations is available and appli-
cable to many specific problems (although they may not be optimal). In other
words, once multiple imputations are created based on an imputation model,
the resulting “complete datasets” can be used for a wide variety of analyses.
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For example, one may create multiple imputations based on a multivariate nor-
mal model and then analyze the imputed datasets using a logistic regression
model (Little and Rubin 2002).

In fact, multiple imputation methods were first proposed for public use survey
data, since the person who creates imputations for missing data can use auxil-
iary confidential and detailed information that may not be available to public
or data analysts (Rubin 1996). Once the incomplete data are multiply imputed,
data analysts can conduct a wide variety of statistical analyses based on the
imputed datasets, although the analysts should not use a richer model than the
model used for imputation (Schafer 1997; Little and Rubin 2002). Further-
more, multiple imputation methods are often more robust against the models
used for imputation than the likelihood methods, especially when the missing
rate is low. This is because the imputation model is only used to impute the
missing values, while the observed data are not affected, so the impact may not
be substantial if the missing rate is not high.

A multiple imputation method is closely related to the EM algorithm in that the
EM algorithm “imputes” a missing value by a conditional mean in the E-step,
while the multiple imputation method generates (or imputes) several possible
values for a missing value from the imputation model, which is typically the
predictive distribution of the missing data given the observed data (so it is a
conditional distribution). Thus, computational approaches for multiple impu-
tations are often similar to that for EM algorithms.

There may be many different approaches to create multiple imputations. How-
ever, one should check if the imputations are proper, since improper imputa-
tions lead to invalid inferences. Note that implementation of proper imputations
can be computationally intensive. Proper imputations can be implemented in a
Bayesian framework, although multiple imputation methods are quite general
and are not necessary Bayesian.

Another main advantage of a multiple imputation method is that one can use
standard complete-data methods to analyze the multiply imputed “complete
datasets” using existing software. Moreover, methods to combine the complete-
data analyses are often available.

4.5.2 Multiple Imputation for Mixed Effects Models with Missing Data

In this section, we consider multiple imputation methods for missing covari-
ates in mixed effects models. For missing responses in mixed effects models,
similar multiple imputation methods can be considered and the modification
is straightforward. We focus on missing data in time-independent covariate zi,
with an ignorable missing data mechanism, following the same notation as in
Section 4.2.1.
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Let f(yi|zi,bi,β,σ) be the response model, f(zi|α) be the covariate model,
and f(bi|D) be the random effects model. Write zi = (zmis,i, zobs,i). Let θ
denote all parameters in the three models. We consider a Bayesian framework
to generate proper multiple imputations. Specifically, let f(θ) be the prior dis-
tribution for the parameters in θ, and let

f(θ|yi, zi) ∝
∫
f(θ)f(yi|zi,bi,β,σ)f(zi|α)f(bi|D) dbi

be the posterior distribution. Multiple imputations for the missing data zmis,i

can be generated from the following posterior predictive distribution of the
missing data given the observed data:

f(zmis,i|yi, zobs,i) =
∫ ∫

f(xmis,i,bi|yi, zobs,i,θ)f(θ|yi, zobs,i) dbi dθ

=
∫ ∫

f(zmis,i|yi, zobs,i,θ)f(bi|yi, zi,θ)

×f(θ|yi, zobs,i) dbi dθ.

To generate the desired imputations, we can use the data augmentation method
(Tanner and Wong 1987). Specifically, we can iteratively sample from the con-
ditional distributions f(zmis,i|yi, zobs,i,bi,θ), f(bi|yi, zi,θ), and f(θ|yi, zi).
Sampling from these conditional distributions can be done by rejection sam-
pling methods, since we have

zmis,i ∼ f(zmis,i|yi, zobs,i,bi,θ) ∝ f(yi|zi,bi,θ)f(zi|θ),
bi ∼ f(bi|yi, zi,θ) ∝ f(yi|zi,bi,θ)f(bi|θ),
θ ∼ f(θ|yi, zi) ∝ f(θ)f(yi|zi,θ).

Iterating the above procedure, we obtain a sequence of simulated values for
(zmis,i,bi,θ): {(z(k)

mis,i,b
(k)
i ,θ(k)), k = 0, 1, 2, · · ·}, which is a Markov chain.

After a burn-in period, the sequence will converge to the stationary distribu-
tion f(zmis,i,bi,θ|yi,xobs,i), so after burn-in we obtain a simulated value of
(zmis,i,bi,θ) from the target distribution f(zmis,i,bi,θ|yi,xobs,i).

Let the last values in the sequence be (z∗mis,i,b
∗
i ,θ

∗). Then, the value z∗mis,i

can be taken as a simulated value from the posterior predictive distribution
f(zmis,i|yi, zobs,i), which is a marginal distribution of f(zmis,i,bi,θ|yi,xobs,i).
Thus, z∗mis,i can be used as a proper imputation of the missing data zmis,i. This
imputation procedure is proper based on the definition of Rubin (1976).

Repeating the above procedure m times (m > 1), we create m proper multiple
imputations, {z(1)

mis,i, · · · , z
(m)
mis,i}, for the missing values zmis,i. This process

leads to m “complete datasets”:

{(y, zobs, z
(l)
mis), l = 1, 2, · · · ,m}.
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These m complete datasets can then be analyzed separately using any standard
methods for complete data (these methods can be non-Bayesian), leading to m
sets of results. The m results are then combined for an overall inference, e.g.,
using the formulas given in Section 3.5.2 of Chapter 3 (page 120) to combine
results.

4.5.3 Computational Issues and Other Methods

The computational methods for multiple imputation are similar to those for the
Monte Carlo EM algorithm in Section 4.2, except that one has an additional
layer of sampling from the posterior distribution f(θ|yi, zi). Thus the compu-
tational issues are similar to those for the Monte Carlo EM algorithms.

The data argumentation procedure described in the previous section can be
computationally intensive. If the proportion of missing data is not too high,
we may consider approximate methods to create multiple imputations. For ex-
ample, we may use Taylor expansions to linearize a GLMM or NLME model,
similar to that in Section 4.3, and then we generate multiple imputations from
“working” LME models. This approximate method greatly reduces computa-
tional burden and still generate reasonable imputations for the missing data.
Wu and Wu (2002b) considered a closely related approximate method where
the multiple imputations were generated based on an approximate LME model.

Since the multiple imputation method described in the previous section is im-
plemented via a Bayesian framework, one needs to choose prior distributions.
In practice, we usually choose noninformative prior for θ, such as a uniform
improper prior or a proper prior with noninformative hyperparameters. See
Chapter 11 for choices of prior distributions for mixed effects models. There-
fore, the results of multiple imputation methods are usually not very sensitive
to the choice of priors.

There are other approaches to generate multiple imputations. For example, a
simple approach would be to generate multiple imputations for zmis,i from a
predictive distribution where the unknown parameters and random effects are
substituted by their corresponding estimates, i.e., generate an imputation as
follows:

zmis,i ∼ f(zmis,i|yi, zobs,i, b̂i, θ̂) ∝ f(yi|zi, b̂i, θ̂)f(zi|θ̂),

where b̂i and θ̂ are respectively the estimates of the random effects and pa-
rameters based on a simple method (say, the complete-case method). Note that,
however, such a multiple imputation method is improper since the uncertainty
in estimating the parameters and random effects are not incorporated in the
generations of missing values.

One may also consider single imputation methods, e.g., impute zmis,i by the
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mean E(zmis,i|yi, zobs,i, b̂i, θ̂). However, in this case one should also adjust
the standard errors of the resulting estimates to reflect the uncertainty of the
missing data and the uncertainty in estimating the parameters and random ef-
fects, using (say) analytic methods or re-sampling methods.

4.6 Computational Strategies

For mixed effects models with missing data, a major problem with either the
EM algorithms for likelihood inference or the multiple imputation methods
is computational challenges, such as highly intensive computation and very
slow or non-convergence. For Monte Carlo EM algorithms, computation in the
E-steps typically is a combination of MCMC methods and rejection sampling
methods, so they involve convergences of the MCMC methods within each EM
iteration and the global convergence of the Monte Carlo EM algorithms. Al-
though these computational intensive methods should work in theory, in prac-
tice many problems may arise. In this section, we discuss some common issues
in more details.

We focus on the models and methods in Section 4.2.1 for illustration, i.e., we
focus on missing time-independent covariates in NLME models with ignorable
missing data mechanisms. Computational issues for other models and methods
are often similar.

4.6.1 Sampling Methods

For Monte Carlo EM algorithms, a major step is to generate large numbers of
Monte Carlo samples for the “missing data” in the E-step. Here we discuss sev-
eral sampling methods to implement this, based on the models in Section 4.2.1
(page 135). We focus on rejection sampling methods, including the adaptive re-
jection sampling method and the multivariate rejection sampling method, and
the importance sampling method. General ideas of these sampling methods can
be found in Chapter 12.

For the Monte Carlo EM algorithm in Section 4.2.1, the E-step involves gen-
erating samples from the conditional distribution f(zmis,i,bi|zobs,i,yi,θ

(t)).
One way to implement this, as described in Section 4.2.1, is to use the Gibbs
sampler method by iteratively sampling from the lower dimensional full con-
ditionals f(zmis,i|zobs,i,yi,bi,θ

(t)) and f(bi|zmis,i, zobs,i,yi,θ
(t)). This is

a main advantage of the Gibbs sampler: We can break down the challeng-
ing problem of sampling from a high dimensional and intractable density into
several more manageable problems of sampling from lower dimensional and
easier-to-sample densities.
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Sampling from the full conditionals can usually be accomplished by rejection
sampling methods, since these full conditionals are proportional to products of
known density functions. Specifically, if the density functions in the right-hand
sides of (4.6) and (4.7) (page 139) are log-concave in appropriate parameters
(i.e., the log-transformed density functions are concave in appropriate param-
eters), the adaptive rejection algorithm of Gilks and Wild (1992) may be used,
as in Ibrahim et al. (1999). That is, if f(zi|θ(t)) and f(yi|zi,bi,θ

(t)) in (4.6)
are log-concave in each component of zi, and f(bi|θ(t)) and f(yi|zi,bi,θ

(t))
in (4.7) are log-concave in each component of bi, we can use the adaptive
rejection algorithm to sample from the full conditionals since the sum of log-
concave densities is also log-concave. For the adaptive rejection algorithm, as
long as the targeted density function is log-concave, we can generate desired
samples even if the density function is very complicated (Gilks and Wild 1992).

The adaptive rejection sampling algorithm is widely used, especially in Gibbs
sampling, but more general algorithms have also been proposed (Evans and
Swartz 2000). For some density functions, the log-concavity may not be satis-
fied. Evans and Swartz (1998) extended Gilks and Wild’s algorithm to more
general cases. Evans and Swartz’s method is an adaptive rejection method
which does not require the log-concave restriction on the densities.

Alternatively, one may consider a multivariate rejection sampling method (Geweke
1996, section 3.2) to obtain desirable samples from the full conditionals in the
Gibbs sampler, as in Booth and Hobert (1999). Specifically, suppose that we
wish to generate samples from

f(bi|zmis,i, zobs,i,yi,θ
(t)) ∝ f(bi|θ(t))f(yi|zi,bi,θ

(t)).

Let f ∗(bi) = f(yi|zi,bi,θ
(t)) and τ = supu{f ∗(u)}. A random sample from

f(bi|zmis,i, zobs,i,yi,θ
(t)) can then be obtained as follows by the multivariate

rejection sampling method:

STEP 1. Sample b∗i from f(bi|θ(t)), and independently, sample w from the
uniform(0,1) distribution;
STEP 2. If w ≤ f ∗(b∗i )/τ , then accept b∗i , otherwise, go back to step 1.

Samples from f(zmis,i|zobs,i,yi,bi,θ
(t)) can be obtained in a similar way.

Thus, the Gibbs sampler in conjunction with the multivariate rejection sam-
pling method can also be used to obtain samples from f(zmis,i,bi|zobs,i,yi,θ

(t)).
Note that sampling from f(zi|θ(t)) and f(bi|θ(t)) are often easy for many
commonly assumed distributions such as a multivariate normal distribution,
and the supremum τ can be found by standard optimization procedures. Booth
and Hobert (1999) noted that in many cases the multivariate rejection sampling
method can be fast even if the acceptance rate is low.

In the E-steps of Monte Carlo EM algorithms, we may also consider other sam-
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pling methods such as those based on Metropolis-Hastings algorithm (McCul-
loch 1997). However, some of these methods may generate dependent samples
which may not lead to a straightforward assessment of Monte Carlo errors.

When the dimensions of the “missing data” zmis,i or bi are not small, the re-
jection sampling methods may be slow. In this case, we may use the importance
sampling methods (see Chapter 12) to approximate the intractable integrals in
the E-steps, where we may choose the importance functions to be a multivari-
ate Student t density or a multivariate normal density whose mean and variance
match the mode and curvature of f(zmis,i,bi|zobs,i,yi,θ

(t)).

Specifically, we may write

f(zmis,i,bi|zobs,i,yi,θ
(t)) = c · exp(q(zmis,i,bi)),

where c is the normalizing constant. Let q(1)(zmis,i,bi) and q(2)(zmis,i,bi) be
the first and second derivatives of q(zmis,i,bi) respectively. Let (z̃mis,i, b̃i) be
the solution of q(1)(zmis,i,bi) = 0 which maximizes q(zmis,i,bi). Then, the
Laplace approximations of the mean and variance of f(zmis,i,bi|zobs,i,yi,θ

(t))
are (z̃mis,i, b̃i) and −(q(2)(z̃mis,i, b̃i))−1 respectively. Suppose that{

(z̃∗(1)mis,i, b̃
∗(1)
i ), . . . , (z̃∗(mt)

mis,i , b̃
∗(mt)
i )

}
is a random sample of sizemt generated from an importance function h∗(zmis,i,bi),
which is assumed to have the same support as f(zmis,i,bi|zobs,i,yi, ri,θ

(t)).
Then we have the following approximation in the E-step

Q(θ|θ(t)) ≈
n∑

i=1

 1
mt

mt∑
j=1

w
(t)
ij lc

(
θ;yi, zobs,i, z̃

∗(j)
mis,i, b̃

∗(j)
i

) ,

where

w
(t)
ij =

f(z̃∗(j)mis,i, b̃
∗(j)
i

∣∣zobs,i,yi,θ
(t))

h∗(z̃∗(j)mis,i, b̃
∗(j)
i )

are importance weights. Levine and Casella (2001) proposed an importance
sampling scheme where we only need to generate random samples once.

For the foregoing sampling methods, the adaptive rejection method may be pre-
ferred when the appropriate densities are log-concave, while the multivariate
rejection sampling method and the importance sampling method may be pre-
ferred in other cases. The adaptive and multivariate rejection sampling methods
may be more efficient than the importance sampling methods when the dimen-
sions of the missing data and random effects are not high and the sample size
is not large. When the dimension of the integral in Q(θ|θ(t)) in the E-step is
high, however, rejection sampling methods can be inefficient, due to low ac-
ceptance rates. When the sample size is not small, the importance sampling



168 MIXED EFFECTS MODELS FOR COMPLEX DATA

methods may be more efficient than the rejection sampling methods, since in
this case the importance function may closely resemble the target distribution.

For Monte Carlo EM algorithms, computation is often very intensive, and con-
vergence problems such as very slow or non-convergence may arise. There-
fore, computationally more efficient approximate methods based on Taylor or
Laplace approximations are highly desirable in many problems.

4.6.2 Speed Up EM Algorithms

For many problems, the EM algorithm is known to be slow to converge. In par-
ticular, the Monte Carlo EM algorithms for mixed effects models with missing
data can be very slow to converge, especially when the dimensions of the ran-
dom effects and missing data are not small. In the literature, many EM-type
algorithms have been proposed to speed up the convergence. These EM-type
algorithms may substantially accelerate the EM algorithm while maintain the
stability and simplicity of the standard EM algorithm (e.g., Meng and van Dyk
1997, 1998; Liu et al. 1998; van Dyk 2000). A popular idea of these proce-
dures is to introduce working parameters in the models to reduce the fraction
of missing information, and thus speed up the EM algorithm. In this section,
we briefly describe one of these EM-type algorithms, called the Parameter-
Expansion (PX) EM algorithm (Liu et al. 1998; van Dyk 2000).

The PX-EM algorithm introduces working parameters to the original model
and then applies the standard EM algorithm to the expanded model rather than
the original model. Liu et al. (1998) and van Dyk (2000) proposed PX-EM
algorithms for complete-data LME models and showed that a PX-EM algo-
rithm can be much faster than the standard EM algorithm, especially when
the intra-individual variance is much larger than the random effects variabil-
ity. Wu (2004) considered a Monte Carlo PX-EM algorithm for NLME models
with missing data.

As an illustration, we consider a PX-EM algorithm for the approximate method
described in Section 4.3.1 (page 150). Since the linearization method in Sec-
tion 4.3.1 is equivalent to iteratively solving certain LME models, we can im-
plement a PX-EM algorithm for these LME models within each iteration. Fol-
lowing Liu et al. (1998) and van Dyk (2000), the expanded model for LME
model (4.20) (page 150) can be written as

ỹi = Xi(zi)β + Ti Γ bi + ei, i = 1, . . . , n, (4.28)

where Γ is an (s × s) matrix containing working parameters. The implemen-
tation of the PX-EM algorithm is simple: the E-step is unchanged, while the
M-step is a simple modification of the original M-step by including a maxi-
mization over the working parameters Γ as well, which is straightforward for
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complete data. In other words, to implement the PX-EM algorithm, we only
need to modify the original M-step by including the maximization over Γ.

Because the PX-EM algorithm is simply the standard EM algorithm applied
to the expanded model (4.28), it retains the stability property of the standard
EM algorithm. As argued in Meng and van Dyk (1997, 1998) and Liu et al.
(1998), by introducing working parameters, the rate of convergence of an EM-
type algorithm can be substantially improved while the stability property is
retained.

Note that there can be various expansions for PX-EM implementations to an
original model. In principle, we should expand the original model as much as
possible in order to generate the fastest PX-EM algorithm (Liu et al. 1998; van
Dyk 2000). For mixed effects models with sparse within-individual measure-
ments, however, introducing too many working parameters may cause conver-
gence problems. In such cases, we may want to reduce the number of working
parameters if the cost of computation in the M-step outweigh the advantage
of extra working parameters (Wu, 2004). When the intra-individual data are
rich, on the other hand, we may try to expand the original model as much as
possible, as long as the additional computation in the M-step is minimal.

Meng and van Dyk (1997, 1998) and van Dyk (2000) discussed other efficient
EM-type methods for complete-data LME models based on alternative work-
ing parameters. One may also speed up the EM algorithms through alternative
parameterizations of model parameters.

There are other ways to speed up the EM algorithm. For example, when the
M-step is difficult to compute, we may consider the Expectation-Conditional-
Maximization (ECM) algorithm (Meng and Rubin 1993). Note that an ad-
vantage of the EM algorithm is that its M-step involves only complete-data
maximization. For many missing data problems, however, the M-step may be
complicated since there may be too many parameters of different types. The
complete-data maximization in the M-step becomes relatively simple if we
condition on some parameters being estimated. This leads to the ECM algo-
rithm.

Specifically, the idea of an ECM algorithm is to replace a complicated M-step
of the EM algorithm with several computationally simpler conditional maxi-
mization (CM) steps, i.e., a sequence of constrained maximization steps, with
each step being a maximization over a subset of parameters while holding other
parameters fixed. The ECM algorithm shares the appealing properties of the
standard EM algorithm (Meng and Rubin 1993).
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4.6.3 Convergence

A major advantage of the EM algorithm is that the likelihood is guaranteed
to increase (or non-decrease) at each EM iteration, so the EM algorithm will
eventually converge to a (possibly local) maximum. For Monte Carlo EM al-
gorithms, however, the likelihood is not guaranteed to increase at each EM
iteration due to Monte Carlo errors in the E-step. However, under suitable reg-
ularity conditions, a Monte Carlo EM algorithm still converges to a maximum
when the number of Monte Carlo samples increases as EM iteration increases
(Chan and Ledolter 1995; Caffo, Jank, and Jones 2005).

When implementing the Monte Carlo E-step, it is necessary to choose the num-
bermt of Monte Carlo samples at the t-th EM iteration. Choosing a large value
of mt for all iterations may greatly increase computation burden. A good strat-
egy is to increase mt as the number t of EM iterations increases. Chan and
Ledolter (1995) suggested to run Gibbs samplers to estimate the Monte Carlo
variance based on several preliminary draws and then calculate the necessary
value of mt for a desired level of precision. It is obvious that larger values of
mt will result in more exact but slower computations. On the other hand, if

the Monte Carlo error associated with θ̂
(t+1)

is not small, the (t + 1)th itera-
tion of an Monte Carlo EM algorithm is wasted because the EM step has been
“swamped” by Monte Carlo error. Booth and Hobert (1999) proposed an auto-
mated method for choosing mt in the context of complete-data GLM models.
Their method can be extended as follows.

Let

Q(1)(θ|θ̂
(t)

) =
∂Q(θ|θ̂

(t)
)

∂θ
, Q(2)(θ|θ̂

(t)
) =

∂2Q(θ|θ̂
(t)

)
∂θ∂θT

,

where Q(θ|θ̂
(t)

) is the quantity to be approximated in the E-step of a Monte

Carlo EM algorithm. Let θ∗(t+1) be the solution of Q(1)(θ|θ̂
(t)

) = 0. The
conditional distribution of [θ(t+1)|θ(t)] is approximately normal with mean
θ∗(t+1) and a variance that can be estimated by
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,
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and wtj are importance weights which are all set equal to 1 when rejection
sampling methods are used. Then, after the (t + 1)th EM iteration, we may
construct an approximate 100(1− α)% confidence ellipsoid for θ∗(t+1) based
on the above normal approximation. The EM step is swamped by Monte Carlo
error if the previous value θ(t) lies in the confidence ellipsoid, and in that case
we need to increase mt, e.g., replace mt by mt + mt/k for some positive
constant k. Note that this method of choosing mt is completely automated.

To assess the convergence of the Gibbs sampler or Markov chains in the E-step,
we may use standard graphical tools such as time-series plots and autocorrela-
tions, and determine the burn-in or warm-up iterations in Gibbs sampler based
on some preliminary draws (Gelman et al. 2003).

Assessing the convergence of a Monte Carlo EM algorithm sometimes may
not be easy, due to Monte Carlo errors. We may, for example, claim that the
Monte Carlo EM algorithm has converged if ||θ(t+1) − θ(t)|| < c for several
consecutive EM iterations, where c is a pre-specified small positive value. One
may also plot the likelihood at each EM iteration to check its behavior. It is also
very important to choose good starting values, especially for nonlinear models.

4.7 Examples

Example 4.1 A GLMM with missing data

We consider the AIDS dataset in Section 1.3.2 of Chapter 1 to illustrate the
methods presented in this chapter. In this study, viral load is repeatedly mea-
sured over time after the initiation of an anti-HIV treatment. Viral loads gen-
erally declined in the early period and some viral loads even dropped below
the detection limit of 100, but most viral loads rebounded later in the study.
It is of interest to explore if the events of viral loads dropping below the de-
tection limit are associated with covariates. Previous studies showed that some
baseline covariates such as the total complement levels (CH50), tumor necrosis
factor (TNF), and CD4 cell counts may be associated with viral load trajecto-
ries.

Let yij be a binary response such that yij = 1 if the viral load for patient i is
below the detection limit at time tij and yij = 0 otherwise. We follow Noh,
Wu, and Lee (2009) and consider the following GLMM (a logistic regression
model with random effects):

logit(P (yij = 1)) = (β1+b1i)+(β2+b2i)zi1+β3zi2+β4zi3+β5tij , (4.29)

where zi1 = CH50i, zi2 = TNFi, and zi3 = CD4i are baseline covari-
ate values for individual i, β = (β1, · · · , β5)T are fixed parameters, bi =
(b1i, b2i)T ∼ N(0, D) are random effects, and D is an unrestricted covariance
matrix, i = 1, · · · , n; j = 1, · · · , ni.
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In this study, the baseline values of CH50 (z1), TNF (z2), and CD4 (z3) contain
19.0%, 16.7%, and 20.5% missing data respectively. To address these missing
data in likelihood inference, we assume the following model for the covariates
and write the joint covariate distribution as a product of three one-dimensional
conditional distributions

f(zi1, zi2, zi3|α) = f(zi3|zi1, zi2,α3)f(zi2|zi1,α2)f(zi1|α1). (4.30)

For the three univariate conditional distributions, we may consider the follow-
ing linear normal models, which appear to fit the observed covariate data rea-
sonably well:

(zi3|zi1, zi2,α3) ∼ N(α30 + α31zi1 + α32zi2, α33), (4.31)

(zi2|zi1,α2) ∼ N(α20 + α21zi1, α22), (zi1|α) ∼ N(α10, α11), (4.32)
whereα3 = (α30, α31, α32, α33),α2 = (α20, α21, α22), andα1 = (α10, α11)
are parameters for the covariate models, which are often viewed as nuisance pa-
rameters. Model selection methods such as AIC or BIC criteria may be used to
reduce the number of nuisance parameters in the above linear normal models.
Sensitivity analysis should be performed to check if the estimates of the main
parameter β depend on the order of the covariates in factorizations (4.30). To
avoid very small or very large estimates, which may be unstable, we standard-
ize all the covariate values in the analysis.

It is possible that the missing data may be non-ignorable, although such a miss-
ing data mechanism is not testable based on the observed data. It is useful to as-
sume a non-ignorable missing data model for sensitivity analysis. Let rik = 1
if zik is missing and rik = 0 if zik is observed, k = 1, 2, 3. We consider the
following simple model for a non-ignorable missing data mechanism:

log(P (rik = 1|zik,φ)) = φ0 + φ1zik, k = 1, 2, 3,

where φ = (φ0, φ1)T . We assume that ri1, ri2, ri3 are mutually independent
for simplicity (to reduce the number of nuisance parameters).

The “complete-data” density functions (in log scale) in the above models are
given by

log f(yi|bi, zi,β) =
ni∑

j=1

{
yij log(P (yij = 1))

+(1− yij) log(1− P (yij = 1))
}
,

log f(bi|D) = −1
2

log(2πD)− 1
2

bT
i D

−1bi,

log f(zi|α) = −1
2

log(2πα33)−
1

2α33
(zi3 − α30 − α31zi1 − α32zi2)2

−1
2

log(2πα22)−
1

2α22
(zi2 − α20 − α21zi1)2
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−1
2

log(2πα11)−
1

2α11
(zi1 − α10)2,

log f(ri|zi,φ) =
3∑

k=1

{
rik log(P (yij = 1))

+(1− rik) log(1− P (yij = 1))
}
.

These density functions are used in the computation.

In this example, the total dimension of the unobservables (zmis,i,bi) is 8, so
evaluation of the observed-data likelihood Lo(θ) using a numerical integra-
tion method or a Monte Carlo EM algorithm can be computationally intensive
and may even offer convergence problems. Thus we consider an approximate
method based on a Laplace approximation (i.e., the h-likelihood method de-
scribed in Section 4.3.2), denoted by AP, which is computationally much more
efficient. For comparison purpose, we also consider the complete-case (CC)
method which discards all incomplete covariates and ignores the missing data
and mechanism.

Table 4.1 Parameter estimates for the GLMM (4.29) with missing covariates

CC method AP method
Parameter Estimate S.E. Estimate S.E.

β1 –4.82 0.60 –5.03 0.55
β2 0.46 0.53 0.25 0.39
β3 –0.18 0.36 –0.14 0.27
β4 0.36 0.31 0.49 0.29
β5 0.03 0.005 0.03 0.004
d11 1.57 1.97
d12 –0.81 –0.83
d22 0.97 1.17

S.E. stands for standard error, and dij are elements of matrix D.

The resulting estimates are shown in Table 4.1 for parameters β and D (Noh,
Wu, and Lee 2009). We see that the CC estimates and the AP estimates differ
substantially, especially for the parameters (β2, β3, β4) which are associated
with the missing covariates. This indicates the importance of addressing miss-
ing covariates in the model. Noh, Wu, and Lee (2009) conducted a simulation
study and demonstrated that the AP method works well. The estimates based
on the AP method show that the three baseline covariates do not appear sig-
nificantly associated with viral loads dropping below the detection limit, but
time is a significant predictor. The estimates of the diagonal elements of co-
variance matrix D indicate that there are large between-individual variations
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in the parameters and imply the need to include these random effects in the
model.

Example 4.2 A NLME model with missing data

In AIDS studies, another interesting problem is to model HIV viral dynamics
in the early period during an anti-HIV treatment, since the initial viral decay
rate may reflect the efficacy of the treatment (Ding and Wu 2001). Based on
previous studies (Wu and Ding 1999; Wu and Wu 2002), the following NLME
model has been used to model HIV viral dynamics in the early period (e.g.,
first three months):

yij = log10(P1ie
−λ1ijtij + P2ie

−λ2itij ) + eij , (4.33)
log(P1i) = β1 + b1i, λ1ij = β2 + β3z1ij + β4z2ij + b2i, (4.34)
log(P2i) = β5 + b3i, λ2i = β6 + b4i, (4.35)

where yij is the log10-transformation of the viral load measurement for the i-th
patient at j-th measurement time tij (the log-transformation is used to make
the data more normally distributed and to stabilize the variances), λ1ij and
λ2i represent two-phase individual-specific viral decay rates, P1i and P2i are
the individual-specific baseline values, βj’s are fixed effects, bji’s are random
effects, and z1ij (CD4) and z2ij (CD8) are time-dependent covariates for the
i-th patient at j-th measurement time tij , i = 1, · · · , n; j = 1, · · · , ni. We
assume that the within-individual errors eij i.i.d. ∼ N(0, σ2) and the random
effects bi = (b1i, b2i, b3i, b4i)T ∼ N(0, D), where D is unrestricted.

The covariates (z1ij , z2ij) in the model are time dependent and may be missing
at the response measurement times. In order to address the missing covariates,
we need to model the covariate processes. Note that

f(z1ij , z2ij |α) = f(z1ij |z2ij ,α)f(z2ij |α). (4.36)

Due to the large between-individual variations in these covariates, we consider
the following LME models to empirically model the covariate processes and
incorporate the between-individual variations:

z1ij = (α10 + ai10) + (α11 + ai11)z2ij + (α12 + ai12)tij
+(α13 + ai13)t2ij + ε1i, (4.37)

z2ij = (α20 + ai20) + (α21 + ai21)tij
+(α22 + ai22)t2ij + ε2i, (4.38)

whereα = (α10, · · · , α22)T contains fixed parameters, a(1)
i = (ai10, · · · , ai13)T

∼ N(0, A1) and a(2)
i = (ai20, · · · , ai22)T ∼ N(0, A2) are random effects, and

ε1i ∼ N(0, α14) and ε2i ∼ N(0, α23) are within-individual covariate measure-
ment errors.
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The “complete-data” density functions in all the models are given by

log f(yi|zi,β, σ
2,bi) =

ni∑
j=1

{
− 1

2
log(2πσ2)

− 1
2σ2

[
yij − log10(P1ie

−λ1ijtij

+P2ie
−λ2itij )

]2}
,

log f(bi|D) = −1
2

log(2πD)− 1
2

bT
i D

−1bi,

log f(zi|ai,α) =
ni∑

j=1

{
− 1

2
log(2πα14)

− 1
2α14

[
z1ij − (α10 + ai10)− (α11 + ai11)z2ij

−(α12 + ai12)tij − (α13 + ai13)t2ij
]2

− log(2πα23)
2

− 1
2α23

[
zi2 − (α20 + ai20)

−(α21 + ai21)tij − (α22 + ai22)t2ij
]2}

,

log f(ai|A) = −1
2

log(2πA1)−
1
2

a(1)T
i A−1

1 a(1)
i

−1
2

log(2πA2)−
1
2

a(2)T
i A−1

1 a(2)
i .

These density functions are used in the computation.

In this example, the total dimension of the unobservables (a(1)
i , a(2)

i ,bi) is 11,
which is very high. Thus, evaluation of the observed-data likelihood Lo(θ)
using numerical or Monte Carlo methods can be computationally very chal-
lenging! Therefore, we again follow Noh, Wu, and Lee (2009) and use the
approximate method (AP) for likelihood estimation (see Section 4.3.2), and
compare it with the complete-case (CC) method, which ignores all missing
data.

The resulting estimates are given in Table 4.2 for the main parameters β. For
sensitivity analysis, we consider the two possible orders of the covariates in
factorization (4.36). We see that the CC method and the AP method give differ-
ent results. The results based on the AP method should be more reliable, as con-
firmed in a simulation study in Noh, Wu, and Lee (2009). Note that the results
are not sensitive to the order of the covariates in factorizations (4.36). Based on
the AP method (order 1), we see that the first viral decay rate λ1ij may change
over time and may be significantly associated with the time-varying CD4 val-



176 MIXED EFFECTS MODELS FOR COMPLEX DATA

Table 4.2 Parameter estimates of the NLME model with missing data

CC method AP method (order1) AP method (order2)
Parameter Estimate S.E. Estimate S.E. Estimate S.E.

β1 12.48 0.20 13.71 0.19 13.75 0.20
β2 0.48 0.020 0.75 0.020 0.74 0.020
β3 0.047 0.016 0.058 0.012 0.062 0.014
β4 –0.023 0.014 –0.015 0.010 –0.013 0.009
β5 7.91 0.26 8.35 0.25 8.31 0.25
β6 0.039 0.003 0.047 0.003 0.045 0.003

S.E.: standard error. Order1: f(z1, z2) = f(z1|z2)f(z2). Order2: f(z1, z2) =

f(z2|z1)f(z1).

ues (estimate of β3 is significant at 5% level) but may not be associated with
the time-varying CD8 values (estimate of β4 is not significant).

Example 4.3 A Multiple Imputation Method

Consider the study on mental distress described in Section 1.3.1 of Chapter 1
(page 8). In this study, nearly all time-dependent variables have missing data.
Multiple imputation methods can be used to impute the missing data, leading
to several complete datasets. These complete datasets can be analyzed in var-
ious ways using standard complete-data methods, and the results can then be
combined for an overall inference. Note that the models for data analyses do
not have to be the same as the models for creating multiple imputations, and the
observed data are not affected by multiple imputations. See Schafer (1997) and
Little and Ruben (2002) for detailed discussions on the choices of imputation
models and analysis models.

As an illustration, here we focus on the variable “depression”. To generate
multiple imputations for missing data in depression scores, we assume the fol-
lowing LME model for generating multiple imputations

yij = β1 + b1i + (β2 + b2i)tij + eij , (4.39)
(b1i, b2i)T ∼ N(0, D), eij i.i.d. ∼ N(0, σ2), (4.40)

where yij is the depression score for individual i at measurement time j,
i = 1, 2, · · · , n; j = 1, · · · , J . In the following, we use model (4.39) to cre-
ate multiple imputations for the missing data in yij’s, following the approach
described in Schafer and Yucel (2002). For simplicity, we assume ignorable
missing data, and we let the analysis model to be the same as the imputation
model.
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Table 4.3 Parameter estimates based on the multiple imputation method and the CC
method

Method Parameter Estimate S.E. Parameter Estimate S.E.

CC Method β1 1.40 0.052 β2 –0.39 0.053
MI Method β1 1.41 0.048 β2 –0.45 0.071

S.E.: standard error

We consider a Bayesian framework to create proper multiple imputations, as
described in Section 4.5 (page 161). This leads to m “complete datasets”. We
fit model (4.39) to each complete dataset and obtain parameter estimates, and
then we combine the m sets of estimates using the formulas in Section 3.5.2
(page 120) to obtain overall estimates.

Table 2.1 lists the overall estimates for the parameters in model (4.39) based on
m = 3 imputations, and compares the results based on the complete-case (CC)
method. Table 2.1 shows that the estimates based on the multiple imputation
method differ from the estimates based on the CC method, especially for the
parameter β2 which is associated with time. This indicates the importance of
addressing missing data. Note that the standard error for β̂2 is larger based
on the MI method than that based on the CC method, possibly reflecting the
uncertainty of missing data. Figure 4.2 shows some diagnostic plots for the
Gibbs sampling used to create proper multiple imputations. We see that the
Markov chain for sampling β2 converges faster than that for β1. We took 500
runs as a burn-in period.

We may consider generating multiple imputations for missing data in other
variables separately based on models similar to model (4.39). A better multi-
ple imputation model, however, is to incorporate the correlations between the
variables and generate multiple imputations using a multivariate LME model
(see (8.24) in Section 8.6.1 in Chapter 8, page 284) to impute all missing data in
all the variables simultaneously. See Schafer and Yucel (2002) for such an ap-
proach. Once each missing value is imputed by several values based on a multi-
ple imputation method, one obtains several complete datasets. These complete
datasets can then be analyzed in various ways using standard complete-data
methods. For example, some variables may be used as covariates while other
variables may be used as responses, although when generating multiple impu-
tations all variables may be treated as responses in the multivariate imputation
model. Standard regression methods can then be used to analyzed each of the
“complete datasets” separately, and the results can then be combined.
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Figure 4.2 Diagnostic plots for the Gibbs sampling used in the multiple imputation
method. The figures in the left column shows time series and autocorrelation function
(ACF) plots for sampling β1, and the figures in the right column shows time series and
autocorrelation plots for sampling β2.



CHAPTER 5

Mixed Effects Models with
Measurement Errors

5.1 Introduction

In Section 3.6 of Chapter 3, we briefly described covariate measurement error
problems in regression models and briefly reviewed several general approaches
to address measurement errors. It is known that the naive method which ig-
nores covariate measurement errors in regression models may produce biased
and misleading results. To visually illustrate this, Figure 5.1 shows how the
estimates of regression coefficients may be biased if measurement errors in a
covariate is not addressed, based on an artificial dataset generated from the
simple linear regression y = β0 + β1x+ e. To formally address measurement
errors, we typically need to have validation data or replication data (Carroll
et al. 2006). In practice, these validation data or replication data may not be
available. However, for longitudinal studies the repeated measurements within
each individual may be viewed as replication data, which allows us to partially
address measurement errors in time-dependent covariates.

To address covariate measurement errors, we often assume an error structure
or a measurement error model. Let zij be the observed covariate value for
individual i at time tij (or replication j), with possible measurement errors,
and let z∗ij be the corresponding unobserved true covariate value. As discussed
in Section 3.6 of Chapter 3, the following two measurement error models are
commonly used (Carroll et al. 2006): the classical measurement error model
assumes that

zij = z∗ij + eij , E(eij |z∗ij) = 0, (5.1)

and the Berkson measurement error model (Berkson 1950) assumes that

z∗ij = zij + eij , E(eij |zij) = 0, (5.2)

where eij is the measurement error for individual i at time tij (or replication
j).

179
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Figure 5.1 The effect of covariate measurement error on fitted least square lines for
simple linear regression model y = β0 +β1x+ e. The solid line is the least square line
for x without measurement error, while the dotted line is the least square line for x with
measurement error.

In the classical measurement error model (5.1), the variability of the observed
covariates zij is larger than the variability of the true covariates z∗ij , i.e., var(zij)
≥ var(z∗ij), while in the Berkson measurement error model (5.2), the variability
of the observed covariates zij is less than the variability of the true covariates
z∗ij , i.e., var(zij) ≤ var(z∗ij). This may help us to decide which measurement
error model to use in practice. Carroll et al. (2006) provided the following
suggestions: if an error-prone covariate is measured uniquely to an individual,
such as blood pressure measurements, we can use a classical measurement er-
ror model; on the other hand, if all individuals in a group are given the same
value of the error-prone covariate but the true covariate value is particular to
an individual, such as the true exposure of an individual to air pollution in a
city of people exposed to the same level of air pollution, we can use a Berkson
measurement error model.

Once a measurement error model is chosen, there are two modeling approaches:
(i) functional modeling approach, which makes no or minimal distributional
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assumptions for the unobserved true covariates; (ii) structural modeling ap-
proach, which assumes a model or a distribution for the unobserved true co-
variates. Functional modeling methods include regression calibration methods
and simulation extrapolation (SIMEX) methods. They are usually robust to
mis-specification of the true covariate distribution. Structural modeling meth-
ods include likelihood methods and Bayesian methods. They are usually more
efficient if the assumed covariate model is correctly specified. For a time-
dependent covariate in a longitudinal model, an assumed covariate model can
be verified based on the observed data, so the structural modeling approach is
often a good choice.

In this chapter, we consider covariate measurement error problems in mixed ef-
fects models. Since the likelihood method is the standard inferential approach
for mixed effects models, we focus on likelihood methods to address measure-
ment errors, assuming classical measurement error models. We also assume
that the observed covariate is a surrogate of the unobserved true covariate,
i.e., the measurement error is assumed to be nondifferential (see Section 3.6.1,
page 125). In other words, given the true covariate z∗ij and other covariates,
the observed covariate zij is assumed to be independent of the response in the
regression model of interest.

5.2 Measurement Error Models and Methods

In this section, we discuss commonly used measurement error models and
methods in the context of mixed effects models for longitudinal data. There
is an extensive literature in measurement error models and methods. Here we
focus on the essential ideas and some of the commonly used ones.

5.2.1 Measurement Error Models

We first consider classical measurement error models for mis-measured co-
variates in mixed effects models, with a focus on likelihood methods. For
likelihood methods or structural modeling methods in general, one typically
assumes a model for the unobserved true covariates z∗ij . In the following, we
consider several choices for modeling the true covariates.

For simplicity of presentation, we consider a single time-dependent continu-
ous covariate zij , with possible measurement errors. Extensions to more than
one covariates are straightforward. Let yij be the response value for the i-th
individual at time tij , i = 1, . . . , n, j = 1, . . . , ni. Let zil be the observed
covariate value and z∗il be the corresponding unobserved “true” covariate value
for the i-th individual at time uil, i = 1, . . . , n, l = 1, . . . ,mi. Note that we
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allow the covariate measurement times uil to possibly differ from the response
measurement times tij , so we use different notations for the covariate and the
response measurement times (see Figure 4.1 on page 144 for an example). In
other words, we allow missing data in the covariates, assuming MAR missing
mechanism. Such situations arise frequently in longitudinal studies since many
covariate values may not be available at the response measurement times. Let
yi = (yi1, . . . , yini

)T and zi = (zi1, . . . , zimi
)T . We suppress the accurately

measured covariates throughout since no distributional assumptions are needed
for these covariates.

We write the response mixed effects model as f(yi|zi,bi,β,σ), given ran-
dom effects bi, where β contains mean parameters and σ contains variance-
covariance parameters (for some GLMMs, parameters σ may overlap with pa-
rameters β, see Chapter 2). We assume bi ∼ N(0, B), where B is a unstruc-
tured covariance matrix. When covariate zi is measured with error, we assume
that the response depends on the unobserved true covariate value z∗i rather than
the observed but mis-measured covariate value zi, i.e., we assume a response
model f(yi|z∗i ,bi,β,σ). We also assume that zi is a surrogate of z∗i or that
the measurement error is nondifferential, so

f(yi|zi, z∗i ,bi,β,σ) = f(yi|z∗i ,bi,β,σ).

A classical measurement error model can be written as

zil = z∗il + εil, E(εil|z∗il) = 0, i = 1, . . . , n, l = 1, . . . ,mi, (5.3)

where the repeated measurements zi1, · · · , zimi
may be viewed as replicates.

For a time-independent covariate, we may write zil = z∗i + εil where zil’s
are true replicates of z∗i . Although in this chapter we focus on time-dependent
covariates, most of the ideas and methods can be applied to time-independent
covariates, if replicates are available.

To model the true time-dependent covariate z∗ij , we may consider a mixed ef-
fects model to incorporate between-individual variation and within-individual
correlation, assuming the covariate values change smoothly over time. For ex-
ample, we may consider the following LME model to address measurement
errors

zi = Uiα+ Viai + εi ≡ z∗i + εi, (5.4)

where Ui and Vi are known design matrices,α contains unknown fixed param-
eters, ai are random effects, and εi = (εi1, · · · , εimi

) represent covariate mea-
surement errors. We assume that ai i.i.d.∼N(0, A), εi i.i.d.∼ N(0, Ri), and
ai and εi are independent, where A and Ri are unknown covariance matrices.
We often choose Ri = δ2Imi

, i.e., the within-individual covariate measure-
ments are assumed to be conditionally independent given the random effects.
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This assumption may be reasonable when the within-individual repeated mea-
surements are far apart, and it reduces the number of nuisance parameters. The
value of δ2 reflects the magnitude of the measurement error. We further assume
that εi and ai are independent of ei and bi, where ei s are the within individual
random errors in the response model.

In the measurement error model (5.4), the unobserved true covariate z∗i is mod-
eled as

z∗i = Uiα+ Viai. (5.5)

Given the observed covariate data {zi, i = 1, · · · , n}, the assumed measure-
ment error model (5.4) can be fitted using standard methods for LME models.
Therefore, one can obtain parameter estimate α̂ and the empirical Bayes esti-
mates âi, and obtain an estimate of the unobserved true covariate

ẑ∗i = Uiα̂+ Viâi,

as well as the associated standard errors.

Example 5.1 A measurement error model for CD4 count

In AIDS studies, CD4 counts are known be measured with errors. To address
measurement errors in CD4 counts, we may treat the repeated measurements of
CD4 over time as “replicates” and fit an empirical mixed effects model to the
observed CD4 data. For the AIDS dataset described in Chapter 1, we consider
the following quadratic polynomial LME model based on AIC/BIC model se-
lection criteria:

zij = α0 + a0i + (α1 + a1i)tij + (α2 + a2i)t2ij + εij = z∗ij + εij , (5.6)

where zij is the observed CD4 value for individual i at time tij ,α = (α0, α0, α0)T

are fixed parameters, ai = (a0i, a1i, a2i)T are random effects, z∗ij is the true
but unobserved CD4 value, and εij is the measurement error. We assume that
ai are i.i.d. ∼ N(0, A) and εij s are i.i.d. ∼ N(0, δ2).

Figure 5.2 shows the fitted CD4 curves and the observed CD4 data for four ran-
domly selected subjects. We can see that the LME model (5.6) fits the observed
CD4 data reasonably well. If we assume that CD4 counts change smoothly over
time, the LME model can be used to partially address measurement errors in
CD4 counts, so we may assume that the estimated true CD4 value for subject i
at time tij is ẑ∗ij = α̂0 + â0i +(α̂1 + â1i)tij +(α̂2 + â2i)t2ij . More complicated
measurement error models can also be considered, as discussed below.

Measurement error model (5.4) is often an empirical model attempting to cap-
ture the main features of the true covariate trajectory. It includes polynomial
regression models with individual-specific regression parameters. It can also
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Figure 5.2 A LME measurement error model for CD4 counts: Observed data versus
fitted curves for 4 randomly selected subjects.

be used to approximate semiparametric or nonparametric mixed effects mod-
els (see Section 2.5 of Chapter 2). Therefore, model (5.4) is very flexible for
modeling complex longitudinal processes. However, model (5.4) assumes that
the random effects in the model do not change over time, i.e., it assumes that
the between-individual variations remain constant over time, which may be re-
strictive in some cases in practice, so more flexible models sometimes may be
needed.

To allow the longitudinal trend to vary over time, or to allow a “wiggly” em-
pirical representation of within-individual trajectory, Taylor, Cumberland and
Sy (1994), Wang and Taylor (2001), and Xu and Zeger (2001) considered the
following measurement error model

z∗i = Uiα+ Viai + wi, (5.7)
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where Ui and Vi are known design matrices, α contains fixed parameters, ai

contains random effects, wi = (wi1, · · · , wimi
)T , wil = wi(til), andwi(t) is a

mean-zero stochastic process such as an integrated Ornstein-Uhlenbeck (IOU)
process or a stationary Gaussian process. Model (5.7) allows the longitudinal
trend to vary with time and induces a within-subject autocorrelation structure
that may be thought of as arising from evolving fluctuations in the covariate
process. Note that a high-order polynomial LME model (5.4) may be similar
to model (5.7) but is computationally more manageable.

To allow for missing data (ignorable) in the time-varying covariates, or to allow
for different measurement schedules for the covariates and the response pro-
cesses, we recast model (5.4) in continuous time, assuming covariate values
change smoothly over time,

zi(t) = uT
i (t)α+ vT

i (t)ai + εi(t), i = 1, . . . , n,

where zi(t), ui(t), vi(t), and εi(t) are the observed covariate value, design
vectors, and measurement error for individual i at time t respectively. At the
response measurement time tij , which may be different from the covariate
measurement times uil, the unobserved true covariate value can be viewed as
z∗ij = uT

ijα+ vT
ijai, where uij = ui(tij) and vij = vi(tij).

The Berkson measurement error model (5.2) corresponds to regression cali-
bration methods, in which the unobserved true covariate z∗i in the response
model is substituted by an estimate based on a regression of z∗i on zi (see
Section 5.3.2). Berkson measurement error models can be useful in some ap-
plications. For example, suppose that all people in a small city are exposed to
the same level of air population, measured by monitoring stations in the city,
but the true (actual) individual exposures may vary around the observed val-
ues. In this case, a Berkson measurement error model may be a good choice to
address the measurement error.

Wang (2004) proposed a second-order least square method, which requires no
distributional assumptions, for nonlinear models with covariate measurement
errors based on a Berkson model. The main idea is as follows. Let

ρi(θ) =
{

(yij − E(yij |zi,θ), yijyik − E(yijyik|zi,θ)) ,

i = 1, · · · , n; 1 ≤ j ≤ k ≤ ni

}T
.

The second-order least square method finds θ to minimize

R(θ) =
n∑

i=1

ρi(θ)TWi(zi)ρi(θ),

where Wi(zi) is a weighting matrix such as the inverse of a covariance matrix.
The method involves evaluations of E(z∗i |zi,θ) and the first two moments, so
a Berkson measurement error model fits in the framework. When the first two
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moments are difficult to evaluate, Monte Carlo methods such as the impor-
tance sampling method can be used for approximating these moments. Wang
(2004) established the consistency and asymptotic normality of the resulting
estimators.

For a regression model with covariate measurement errors, it is often assumed
that measurement errors are either classical or Berkson. In practice, some-
times the covariates may be contaminated by a mixture of the two errors.
Carroll, Delaigle, and Hall (2007) considered such problems and proposed a
non-parametric estimator of a regression function.

5.2.2 Measurement Error Methods

Comprehensive reviews of covariate measurement error models and methods
are provided in Fuller (1987), Gustafson (2004), and Carroll et al. (2006).
Commonly used methods for covariate measurement errors in regression mod-
els include

• regression calibration methods,
• simulation extrapolation (SIMEX) methods,
• likelihood methods,
• Bayesian methods,

among others. In the above four approaches, regression calibration methods
and SIMEX methods make minimal assumptions on the distributions of the
unobserved true covariates, so they are more robust to the misspecifications of
the covariate distributions. Likelihood methods and Bayesian methods make
strong distributional assumptions on the unobserved true covariates, so they
are more efficient if the covariate distributions are correctly specified. In the
following, we discuss regression calibration methods and likelihood methods
in some details, due to their popularity, and briefly mention the other methods.

Regression calibration methods, which include Berkson error models, attempt
to model the distribution of the unobserved true covariate z∗ given the observed
covariate z and other observed covariates x, and then replace the unobserved
true covariates z∗ by an estimated value of E(z∗|z,x), the regression of z∗

on (z,x). After z∗ is approximated by an estimate of E(z∗|z,x), one then
performs a standard analysis as if there were no covariate measurement error.
Carroll et al. (2006) provided a detailed discussion of the methods.

Specifically, consider a mixed effects model f(yi|zi,xi,bi,β,σ), where bi is
a vector of random effects, covariates zi are measured with errors, and covari-
ates xi are measured without errors. Let z∗i be the unobserved true covariate
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value corresponding to the observed value zi. To address measurement errors
in covariates zi, a regression calibration method proceeds as follows:

STEP 1. Assume a regression model of z∗i on (zi,xi), say E(z∗i |zi,xi,α)
with α being the unknown regression parameters, and obtain parameter es-
timate α̂ using standard estimation methods for regression models;
STEP 2. Replace z∗i in the response model by its estimate E(z∗i |zi,xi, α̂),
and then perform a standard analysis on the approximate response model

f(yi | E(z∗i |zi,xi, α̂),bi,β,σ) ≈ f(yi|z∗i ,bi,β,σ);

STEP 3. Adjust the standard errors of the parameter estimates in the re-
sponse model to reflect the uncertainty in the estimation of the covariate
model in Step 1, using methods such as the bootstrap methods or sandwich
methods.

The regression calibration method may be applicable to almost any regression
models with covariate measurement errors. It is also closely related to the so-
called two-step approach (see Section 5.3). A naive two-step approach is simi-
lar to the above three-step regression calibration method but without step 3, so
it may under-estimate standard errors of parameter estimates in the response
model, similar to a naive single-imputation method for missing data. Section
5.3.2 presents an application of regression calibration methods to NLME mod-
els with covariate measurement errors. Note that the Berkson error model is
the most famous example of a regression calibration method.

Likelihood methods for covariate measurement errors are based on the observed-
data joint likelihood of the response model and the covariate model. Let θ1

denote all parameters in the response model and θ2 denote all parameters in
the covariate model. The joint likelihood for all observed data can be written
as

L(θ1,θ2) =
n∏

i=1

f(yi|z∗i ,θ1)f(zi;θ2). (5.8)

MLE of (θ1,θ2) can be obtained by maximizing the joint likelihoodL(θ1,θ2).
When the response and covariates are modeled by mixed effects models respec-
tively, the observed-data joint likelihood is given by

L(θ1,θ2) =
n∏

i=1

∫ ∫
f(yi|z∗i ,bi,θ1)f(zi|ai,θ2) dbi dai, (5.9)

where bi and ai are random effects in the response and covariate models. When
the models are nonlinear in the random effects, the integral in the joint likeli-
hood (5.9) can be intractable, so likelihood methods can be computationally
intensive. An EM algorithm can be used for likelihood estimation, treating the
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random effects as “missing data”. Section 5.4 provides more details of the like-
lihood methods for mixed effects models with covariate measurement errors.

Simulation extrapolation (SIMEX) methods are simulation-based methods of
estimating and reducing bias due to measurement errors. They are often used in
situations where the measurement error generating process can be imitated on a
computer via Monte Carlo methods. More detailed discussion of this approach
can be found in Carroll et al. (2006). Li and Lin (2003) and Yi (2008) are
examples of recent developments of this approach.

Bayesian methods assume prior distributions for the parameters, in addition
to distributional assumptions for the response and covariate models. We will
discuss Bayesian methods in more details in Chapter 11.

Other measurement error methods include instrumental variables, score func-
tion methods, quasi-likelihood methods, nonparametric and semiparametric
methods, etc. Carroll et al. (2006) provided a comprehensive overview of var-
ious methods for covariate measurement errors in nonlinear models. Zidek et
al. (1998) considered a different approach for measurement errors in GLMMs.
They specify a standard GLMM for the observed data and then use various
Taylor series expansions to approximate the underlying true-data model.

5.2.3 Bias Analysis

When covariates in a regression model are measured with errors, statistical
analysis ignoring the measurement errors may be biased. To see this, in the
following we follow Wang et al. (1998) and briefly discuss bias analysis for
GLMMs with covariate measurement errors. Details can be found in Wang et
al. (1998), Wang et al. (2000), and Carroll et al. (2006).

Consider the following GLMM

g(E(yij |bi)) = β0 + z∗ijβ1 + xT
ijβ2 + wT

ijbi, (5.10)
i = 1, · · · , n; j = 1, · · · , ni,

where g(·) is a known link function, zij is the observed covariate value with
measurement error, z∗ij is the corresponding unobserved true covariate value,
xij and wij are accurately measured covariates, and bi are random effects. In
GLMM (5.10), the response yij is related to the true but unobserved covariate
value z∗ij rather than the observed but mis-measured covariate value zij .

By assuming the following classical measurement error model

zij = z∗ij + εij , (5.11)

we can convert the GLMM (5.10) into a new GLMM in which yij is related to
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the observed covariate value zij . Then, analytic expressions for bias and bias-
correction can be found by comparing the parameters in the two GLMMs. This
can be done by noting that the classical measurement error model (5.11) can
be converted to the following regression calibration model:

z∗ij = γ0 + γ1zij + e∗ij .

Then, we can plug in z∗ij in the GLMM (5.10) and obtain a new GLMM. Since
the analytic expressions are somewhat complicated, we omit the details here.
Wang et al. (1998) also noted that a naive application of regression calibration
is not suitable for GLMMs with covariate measurement errors and they pro-
posed a SIMEX approach. On the other hand, Buonaccorsi et al. (2000) noted
that a regression calibration method is suitable for LME models with covariate
measurement errors.

For hypothesis testing problems in regression models, Brunner and Austin
(2009) demonstrated how the type I error rate can be greatly inflated when
covariate measurement errors are ignored. If covariate measurement errors are
not addressed, the inflated type I error can be very high, so a unimportant co-
variate in a regression model may appear to be highly significant. Their work
shows the importance of addressing covariate measurement errors in regression
models.

5.3 Two-Step Methods and Regression Calibration Methods

5.3.1 Two-Step Methods

For covariate measurement error problems in regression models, a commonly
used simple approach is the so-called two-step method: in step 1 the “true”
unobserved covariate values are estimated based on observed data or external
data; and in step 2 the mis-measured covariates in the response model are sim-
ply substituted by their estimated values from the first step. Then, statistical
inference for the response model proceeds as if the estimated covariate val-
ues are their true values. Such a naive two-step method is similar to the naive
single-imputation methods for missing data (see Chapter 3), and is closely re-
lated to regression calibration methods.

A major advantage of the above naive two-step method is its simplicity. In
some cases the naive two-step method may even produce approximately unbi-
ased estimates of the main parameters in the response model, if the covariate
model is appropriately chosen. However, as with naive single imputation meth-
ods for missing data, a major drawback of the naive two-step method is that it
fails to incorporate the uncertainty in the estimation of the true covariate values
in the first step, so the standard errors of the main parameter estimates may be
under-estimated or unreliable.
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In the likelihood framework, suppose that θ̂2 is an estimate of θ2 in the covari-
ate model f(zi;θ2) based on the observed covariate data {zi, i = 1, · · · , n},
and suppose that ẑ∗i is the corresponding estimate of the unobserved true co-
variate z∗i . Let f(yi|z∗i ,θ1) be the response model which links the response yi

to the true covariate z∗i . The naive two-step method maximizes

L(θ1, θ̂2) =
n∏

i=1

f(yi|ẑ∗i ,θ1)f(zi; θ̂2),

as a function of θ1 to obtain MLE of the main parameters θ1. Gong and Sam-
maniego (1981) called the resulting estimate of θ1 a pseudo-maximum likeli-
hood estimate. Buonaccorsi et al. (2000) derived some analytic results for this
method. Ogden and Tarpey (2006) considered a similar two-step approach and
adjusted standard errors of parameter estimates using bootstrap methods.

There are several ways to adjust the standard errors of main parameter esti-
mates based on a simple two-step method:

• re-sample methods, such as the bootstrap methods;
• joint inference for the response and covariate models, such as that based on

the joint likelihood;
• approximate analytic methods which incorporate the uncertainty in covari-

ate estimation through theoretical arguments, such as that based on large-
sample or asymptotic results;

• multiple imputation methods, which impute the unobserved true covariates
by several plausible values based on reasonable imputation models so they
incorporate the uncertainty of the unobserved true covariate values.

In these approaches, re-sample methods and multiple imputation methods can
be computationally intensive, and approximate analytic methods may not be
feasible or may be difficult in some cases. A joint likelihood method is appeal-
ing, as it provides the most efficient estimates if the models are correctly spec-
ified, but it can also be computationally intensive. In Section 5.3.2 we present
a parametric bootstrap method. In Section 5.4 we describe a joint likelihood
method.

5.3.2 A Two-Step Method for NLME Models with Measurement Errors

For NLME models with measurement errors in time-dependent covariates,
Higgins, Davidian, and Giltinan (1997) proposed a two-step method and sug-
gested to adjust standard errors of the main parameter estimates using a para-
metric bootstrap method. Their method is a nice application of the regression
calibration method for mixed effects models with covariate measurement er-
rors. We briefly describe the method as follows.
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Consider the following NLME model with covariate zi = (zi1, · · · , zimi
)T ,

which is measured with error,

yij = g(z∗ij ,β,bi) + eij , i = 1, · · · , n; j = 1, · · · , ni,

eij i.i.d. ∼ N(0, σ2), bi ∼ N(0, B), (5.12)

where g(·) is a known nonlinear function, z∗ij is the unobserved true covariate
value with the corresponding observed version being zij , and bi are random
effects. To address covariate measurement errors, consider the following clas-
sical measurement error model

zi = Uiα+ Viai + εi ≡ z∗i + εi, (5.13)
ai ∼ N(0, A), εi ∼ N(0, δ2I).

The two-step method in Higgins, Davidian, and Giltinan (1997) proceeds as
follows. In the first step, we fit the covariate LME model (5.13) to the observed
covariate data using a standard method for LME models and obtain an estimate
of the unobserved true covariate

ẑ∗i = Ê(z∗i |zi) = Uiα̂+ Viâi,

which can be interpreted as an empirical Bayes estimate. In the second step,
we consider the following “working” NLME model

yij ≈ g(ẑ∗ij ,β,bi) + e∗ij ≡ E
(
yij

∣∣ Ê(z∗i |zi),β,bi

)
+ e∗ij , (5.14)

in which the unobserved true covariate z∗i is replaced by its estimate ẑ∗i . Es-
timates of the main parameters in the response NLME model (5.12) are then
based on the “working” NLME model (5.14), using standard methods for NLME
models.

To adjust the standard errors of the main parameter estimates β̂ to incorporate
the uncertainty in the estimation of the covariate model (5.13), Higgins et al.
(1997) proposed the following parametric bootstrap method:

STEP 1. Generate covariate values zij based on the covariate model (5.13),
in which the unknown parameters are substituted by their estimates, the
unknown random effects ai are simulated from N(0, Â), and the unknown
error εi are simulated from N(0, δ̂2I).
STEP 2. Generate responses yij based on the response model (5.12), in
which the unknown parameters are substituted by their estimates, the un-
known random effects bi are simulated from N(0, B̂), and the unknown
error ei are simulated from N(0, σ̂2I).
STEP 3. Based on the generated dataset from Steps 1 and 2 (the generated
dataset is called bootstrap dataset), fit the NLME model (5.12) using the
foregoing two-step method and obtain parameter estimates.
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Repeating the above procedure B times (say, B = 1000), we can obtain esti-
mated standard errors for the main parameters (say, β) from the sample covari-
ance matrix across theB bootstrap datasets. This parametric Bootstrap method
produces more reliable estimates of the standard errors for the main parameter
estimates than the naive two-step method, if the assumed models are correct.
The method can be computationally intensive.

The above two-step approach is a regression calibration method. It is very gen-
eral and can be applied to other mixed effects models such as GLMMs with
covariate measurement errors. The method performs well for NLME models
based on simulation results in Higgins et al. (1997).

5.4 Likelihood Methods

5.4.1 Joint Likelihood

In regression calibration methods or two-step methods, the parameters in the
response and covariate models are estimated separately, so standard errors of
the parameter estimates in the response model need to be adjusted separately to
reflect the uncertainty in the estimation of the covariate model. In this section,
we consider a joint likelihood method which estimates all parameters simul-
taneously. The method incorporates the uncertainty in estimating the covari-
ate and response model parameters simultaneously, and thus produces valid
parameter estimates and standard errors. Moreover, the resulting MLEs are
asymptotically most efficient if the assumed models hold and certain regular-
ity conditions are satisfied.

The joint likelihood method is a structural modeling approach, in which one
assumes a parametric model for the unobserved true covariates. For mixed ef-
fects models with error-prone time-dependent covariates, we can select the re-
sponse and covariate models based on the observed data. In the following, we
focus on the classical measurement error model (5.4), and follow the models
and notation in Section 5.2 (page 181).

Let the response model be f(yi|z∗i , bi,β,σ) and the covariate model be f(zi|ai,α),
given the random effects (ai,bi). Let θ = (α, β, σ, R, A, B) be the col-
lection of all unknown parameters. The joint log-likelihood for the observed
data {(yi, zi), i = 1, . . . , n} can be written as

lo(θ) ≡
n∑

i=1

l(i)o (θ)

=
n∑

i=1

log
∫ ∫

f(yi|z∗i , bi,β,σ)f(zi|ai,α)f(ai|A) f(bi|B) dai dbi
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=
n∑

i=1

log
∫ ∫

f(yi|ai, bi,θ)f(zi|ai,α)f(ai|A) f(bi|B) dai dbi,

where f(·) denotes a generic density function.

The log-likelihood lo(θ) is intractable and generally does not have a closed-
form expression when the models are nonlinear in the random effects (ai,bi),
such as GLMM and NLME models. Numerical integration methods such as
the Gauss-Hermit quadrature is often infeasible here since the dimension of
the random effects (ai,bi) is usually not low. Therefore, in the next section
we consider a Monte Carlo EM (MCEM) algorithm to find the MLEs of the
parameters in θ, similar to the MCEM algorithm in Chapter 4.

5.4.2 Estimation Based on Monte Carlo EM Algorithms

By treating the unobservable random effects ai and bi as “missing data”, we
have “complete data” {(yi, zi, ai, bi), i = 1, . . . , n}. The “complete data”
log-likelihood is given by

lc(θ) =
n∑

i=1

l(i)c (θ)

=
n∑

i=1

[
log f(yi|ai,bi;θ) + log f(zi|ai;α)

+ log f(ai;A) + log f(bi;B)
]
.

Let θ(t) be the parameter estimates from the t-th EM iteration, t = 1, 2, · · · .
The E-step for individual i at the (t + 1)-th EM iteration computes the condi-
tional expectation of the complete-data log-likelihood given the observed data
and current parameter estimates:

Qi(θ|θ(t)) = E(l(i)c (θ)|yi, zi; θ(t))

=
∫ ∫ [

log f(yi|ai, bi;θ) + log f(zi|ai; α)

+ log f(ai;A) + log f(bi;B)
]
f(ai,bi|yi, zi;θ(t)) dai dbi,

≡ I1 + I2 + I3 + I4,

where the expectation is taken with respect to the conditional distribution f(ai,
bi|yi, zi; θ(t)).

The E-step can be evaluated using Monte Carlo methods. Specifically, we
may use the Gibbs sampler to generate samples from the conditional distri-
bution f(ai, bi|yi, zi; θ(t)) by iteratively sampling from the full conditionals
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f(ai|yi, zi, bi; θ(t)) and f(bi|yi, zi, ai; θ(t)). To sample from the full con-
ditionals, note that

f(ai|yi, zi, bi; θ(t)) ∝ f(zi|ai; θ(t)) f(ai; θ(t)) f(yi|zi, ai, bi; θ(t)),
f(bi|yi, zi, ai; θ(t)) ∝ f(bi; θ(t)) f(yi|zi, ai, bi; θ(t)),

where the density functions on the right-hand-sides are known. So samples
from each of the full conditionals can be generated using rejection sampling
methods or importance sampling methods.

After generating a large random sample from the distribution f(ai, bi|yi, zi; θ(t)),
the conditional expectation Q(θ|θ(t)) in the E-step can be approximated by its
empirical mean, with the random effects substituted by their simulated values.
Then, the M-step is like a complete-data maximization, so standard complete-
data optimization procedures may be used to update the parameter estimates.
At convergence of the EM algorithm, an approximate variance-covariance ma-
trix of θ̂ is given by

Cov(θ̂) ≈

[
n∑

i=1

E(s(i)
c |yi, zi; θ̂) E(s(i)

c |yi, zi; θ̂)T

]−1

,

where s(i)
c = ∂l

(i)
c (θ)/∂θ and the expectation can also be approximated by

Monte Carlo methods.

The computational issues associated with the foregoing MCEM are similar to
that in Chapter 4, but the MCEM here may exhibit more convergence prob-
lems such as very slow or non-convergence, since sampling the completely
unobserved random effects (ai, bi) in the E-step may offer more convergence
problems in the Gibbs sampler. Therefore, computationally more efficient ap-
proximate methods, similar to that in Chapter 4, are very valuable here.

Parameter identifiability may be an issue in some cases. We discussed param-
eter identifiability in mixed effects models in Chapter 2, some of which may
also be applicable in the current problems. In general, we should avoid build-
ing too large models which may contain too many parameters. For example,
the covariate models are secondary and the parameters in the covariate models
can be viewed as nuisance parameters. Thus, we should avoid building large
or complicated covariate models, or we may impose some restrictions on the
variance-covariance matrices, such as diagonal matrices, to reduce the number
of parameters. In practice, if the MCEM algorithm diverges quickly, there may
be problems in parameter identifiability.

5.5 Approximate Methods

For measurement error models in this chapter, the MCEM can be computation-
ally very intensive and may exhibit convergence problems since sampling the
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random effects may lead to inefficient Gibbs sampler and may lead to a high
degree of auto-correlation and lack of convergence in the Gibbs sampler. Thus,
computationally more efficient approximate methods are particularly desirable.

In this section we consider two computationally very efficient approximate
methods based on Taylor or Laplace approximations. Although these approx-
imate methods are similar to that in Chapter 4 for missing data problems, the
computational advantages of these approximate methods are more substantial
in the measurement error problems since here we can completely eliminate any
integration in likelihood computation and thus completely avoid any Monte
Carlo approximations. We briefly describe these approximate methods in the
following sections and skip some details since these details are similar to those
in Chapter 4. As illustration, we focus on NLME models with measurement er-
rors in time-dependent covariates and follow the notation in previous sections.
Most of the general ideas and approaches apply to other mixed effects models
as well.

5.5.1 Linearization

As one can see from previous sections, a mixed effects model with covariate
measurement error can be converted to a new mixed effects model, if the co-
variate process is modeled using another mixed effects model. Thus, we can
linearize or approximate the new mixed effects model by taking a first-order
Taylor expansion around estimates of the parameters and random effects and
obtain a “working” LME model, similar to Lindstrom and Bates (1990) and
the approach described in Chapter 4. For the working LME model, the random
effects can be integrated out in the E-step of an EM algorithm, and analytic or
closed-form expressions for the E-step and the M-step can be obtained. One
then iterates the procedure until convergence. This leads to a computationally
very efficient EM algorithm.

Specifically, consider the NLME model (5.12) (see page 191) with covariate
measurement errors. We can combine the NLME model for the response and
the classical measurement error LME model (5.4) (see page 182) for the error-
prone and time-dependent covariate by substituting the true covariates in the
response model (5.12) with the assumed model (5.4), which leads to the fol-
lowing new NLME model

yij = gij(α, β, ai, bi) + eij , i = 1, . . . , n, j = 1, . . . , ni, (5.15)

where gij(·) is a known nonlinear function. Let gi = (gi1, . . . , gini
)T .

In the following iterative algorithm, denote the estimate of (θ, ai, bi) in the
current iteration by (θ̃, ãi, b̃i), where θ denotes all unknown parameters, and

ãi = E(ai|yi, zi; θ̃), b̃i = E(bi|yi, zi; θ̃),
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suppressing the iteration number. Taking a first-order Taylor expansion of the
nonlinear function gij(α, β, ai, bi) around the current mean parameter es-
timates α̃ and β̃ and the random effects estimates ãi and b̃i, we obtain the
following working LME model

ỹi = Wiα+Xi β +Hi ai + Ti bi + ei, (5.16)

where

ỹi = yi − gi(α̃, β̃, ãi, b̃i) +Wi α̃+Xi β̃ +Hi ãi + Ti b̃i,

wij =
∂gij(α, β, ai, bi)

∂α
, xij =

∂gij(α, β, ai, bi)
∂β

,

hij =
∂gij(α, β, ai, bi)

∂ai
, tij =

∂gij(α, β, ai, bi)
∂bi

,

Wi = (wi1, . . . ,wini
)T , Xi = (xi1, . . . ,xini

)T , Hi = (hi1, . . . ,hini
)T ,

Ti = (ti1, . . . , tini
)T , with all the partial derivatives being evaluated at the

current estimates (α̃, β̃, ãi, b̃i). The approximate method is then to iteratively
solve the working LME model (5.16) using standard methods for LME models,
such as an EM algorithm.

After some algebra, analytic or closed-form expressions for the E-step and M-
step of an EM algorithm can be obtained for the LME model (5.16) (Liu and
Wu 2009). This avoids Monte Carlo approximations in the E-step and itera-
tive procedures in the M-step, and thus offers substantial computational advan-
tages.

5.5.2 Laplace Approximation

The approximate method in the previous section linearizes the nonlinear mod-
els and then works on the resulting linear models to simplify computation. Al-
ternatively, we can directly approximate the intractable integral in the observed-
data log-likelihood lo(θ) of the original nonlinear model using a first-order
Laplace approximation, which also greatly simplifies computation. This ap-
proach is similar to that in Chapter 4 for missing data problems, but the method
is simpler here because direct Laplace approximation can be used without any
transformations. We follow the procedures in Lee et al. (2006) for Laplace
approximations.

Letω = {ωi ≡ (ai, bi), i = 1, . . . , n} be the collection of all random effects,
and let q be the dimension of ωi. Let Ni = ni + mi be the total number of
observed responses and covariates for individual i. Let ω̂ be the solution to the
equation

∂lc(θ, ω)
∂ω

= 0,
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where lc(θ, ω) ≡ lc(θ) is the “complete-data” log-likelihood in (5.4.2). As
in Chapter 4, we can approximate the observed-data log-likelihood l(i)o (θ) for
individual i as follows (Lee et al. 2006)

l(i)o (θ) =
{
l(i)c (θ, ωi)−

1
2

log
∣∣∣ 1
2π
D(l(i)c (θ, ωi), ωi)

∣∣∣}
ωi=ω̂i

+O(N−1
i )

≡ pω̂i
(l(i)c (θ, ωi)) +O(N−1

i ),

where D(l, ξ) = −∂2l/∂ξ2. Thus, the observed-data log-likelihood lo(θ) =
n∑

i=1

l
(i)
o (θ) can be approximated as

lo(θ) =
n∑

i=1

{
pω̂i

(l(i)c (θ, ωi)) +O(N−1
i )
}

≡ pω̂(lc(θ, ω)) + nO
[(

min
i
Ni

)−1]
≈ pω̂(lc(θ, ω)),

where

pω̂(lc(θ, ω)) =
n∑

i=1

pω̂i
(l(i)c (θ,ωi))

=
n∑

i=1

{
l(i)c (θ, ωi)−

1
2

log
∣∣∣ 1
2π
D(l(i)c (θ, ωi), ωi)

∣∣∣}
ωi=ω̂i

.

As mini{Ni} grows faster than n, the function pω̂(lc(θ, ω)) approaches to the
observed-data log-likelihood function lo(θ). It can be shown that pω̂(lc(θ, ω))
is the first-order Laplace approximation to the observed-data log-likelihood
lo(θ) (Lee et al. 2006). This is equivalent to integrating out the random effects
ω in the likelihood lo(θ) using the first-order Laplace approximation. Thus,
the estimate θ̂AP of θ, which maximizes pω̂(lc(θ, ω)) with respect to θ, is an
approximate MLE of θ.

Similarly, we can obtain restricted maximum likelihood (REML) estimates of
the variance-covariance parameters by integrating out the mean parameters and
the random effects simultaneously using the first-order Laplace approximation
to the observed-data log-likelihood lo(θ). Specifically, to obtain REML esti-
mates of the variance-covariance parameters, we can split θ into two parts:
θ = (θ1,θ2), where θ1 contains the mean parameters and θ2 contains the
variance-covariance parameters. Then we use the above approach to integrate
out the mean parameters and random effects using Laplace approximations as
follows.

Let (ω̂, θ̂1) be the solution to the equation

∂lc(θ1,θ2, ω)
∂(ω,θ1)

= 0.



198 MIXED EFFECTS MODELS FOR COMPLEX DATA

Then, it can be shown that

p
(ω̂,

ˆθ1)
(lc(θ, ω)) =

n∑
i=1

{
l(i)c (θ2, θ̂1, ω̂i)

−1
2

log
∣∣∣ 1
2π
D
(
l(i)c (θ2, θ̂1, ω̂i), (θ̂1, ω̂i)

) ∣∣∣}
is the first-order Laplace approximation to the observed-data log-likelihood
lo(θ) by integrating out the mean parameters θ1 and the random effects ω
simultaneously (Lee et al. 2006), where h(a, b̂) ≡ h(a, b)|b=b̂. Thus, by max-
imizing p

(ω̂,
ˆθ1)

(lc(θ1,θ2, ω)) with respect to θ2, we obtain an approximate
REML of the variance-covariance parameters θ2.

For NLME models, the Taylor approximation and the Laplace approximation
are asymptotically equivalent (Demidenko 2004). It can be shown that the ap-
proximate estimates are consistent only when both the number of individuals
n and the number of within individual measurements ni go to infinite. For fi-
nite samples, simulation results show that these approximate methods perform
well for normal responses (e.g., NLME models) but may perform less satisfac-
tory for discrete responses (e.g., GLMMs) (Pinheiro and Bates 1995; Liu and
Wu 2007; Joe 2008). When the approximate methods do not perform well for
GLMMs, higher order approximations such as a second-order Laplace approx-
imation may improve the performance.

In practice the performance of these approximate methods depends on a num-
ber of factors, including

• the discreteness of the response,
• the degree of nonlinearity of the models,
• the variabilities of the within-individual and between-individual measure-

ments,
• the sample sizes (both the number of individuals and the number of mea-

surements within each individual).

Thus, their finite-sample performance should be evaluated on a case-by-case
basis. In some situations one can use these approximate methods for initial
analyses and then use more exact methods for the final analysis. The approx-
imate methods can also be used to produce excellent starting values for EM
algorithms or other iterative algorithms, since the choice of starting values is
very important for nonlinear models.

5.6 Measurement Error and Missing Data

In many longitudinal studies, missing data and measurement errors often arise
simultaneously. For example, in many longitudinal studies some subjects may
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drop out early, leading to missing data in both responses and time-dependent
covariates, in addition to measurement errors in some covariates before sub-
jects drop out. Thus, statistical methods are required to address measurement
errors, missing data, and dropouts simultaneously.

For time-dependent covariates with both measurement errors and missing data,
if the missing data mechanism is ignorable, the models and methods for mea-
surement errors presented in Sections 5.4 – 5.5 can mostly be used with lit-
tle modification. Note that, however, when covariates are measured with er-
rors, one should be careful assuming the MAR missing data mechanism since
the observed covariates may contain measurement errors and the true covari-
ates may be unobserved (they are treated as observed values in the absence
of measurement errors). Yi, Liu, and Wu (2009) provided some discussion on
this issue. When the missing covariates are nonignorable, some modifications
are required to incorporate the nonignorable missing data mechanisms. These
modifications are often straightforward since we only need to incorporate a
missing data model in the likelihood.

In the following sections, we briefly discuss mixed effects models with covari-
ate measurement errors and nonignorable missing data in the covariates and in
the responses. We omit the details since the procedures are conceptually the
same as previous ones.

5.6.1 Measurement Errors and Missing Data in Covariates

We consider likelihood inference for a mixed effects model with a time-dependent
covariate zij , which has both measurement errors and non-ignorable missing
data. Since the missing data mechanism is non-ignorable, we need to assume
a missing data model and incorporate it in the likelihood for valid inference.
Let ri = (ri1, . . . , rini

)T be a vector of missing data indicators for individual
i such that rij = 1 if zij is missing and 0 otherwise. We follow the notation
in previous sections, and write zi = (zmis,i, zobs,i), where zmis,i contains the
missing components of zi and zobs,i contains the observed components of zi.
The observed-data joint log-likelihood can be written as

lo(θ) =
n∑

i=1

[ ∫ ∫
f(yi|z∗i , bi,β,σ) f(zi|ai,α)f(ai|A)

×f(bi|B)f(ri|zi,yi;η) dai dbi dzmis,i

]
, (5.17)

where θ contains all parameters and z∗i is the unobserved true covariate whose
observed version is zi. The non-ignorable missing data model f(ri|zi,yi;η) =
f(ri|zmis,i, zobs,i,yi;η) links the missingness of the covariates to both miss-
ing and observed data.
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Likelihood estimation then proceeds in a way similar to that in Chapter 4. For
example, we may use a Monte Carlo EM algorithm to obtain MLE of θ, which
involves sampling from the distribution f(zmis,i,ai,bi|zobs,i,yi,θ

(t)) at t-th
EM iteration. This can again be done by using the Gibbs sampler along with
rejection sampling methods or using importance sampling or other MCMC
methods. We omit the details here since the procedures are similar to the ones
presented in Chapter 4. Such Monte Carlo EM algorithms can be computation-
ally very intensive and may exhibit convergence problems. Therefore, com-
putationally more efficient approximate methods based on Taylor or Laplace
approximations, similar to that in Section 5.4, are extremely valuable here and
are highly recommended.

For non-ignorable missing covariate problems, when the covariates are also
measured with errors, it is reasonable to assume that the missingness of the co-
variates may be related to the true but unobserved covariate values rather than
the observed but mis-measured covariate values. In this case, if the covariate
process is modeled using a LME model, as in Section 5.4, the random effects
or some functions of the random effects in the LME model can be used to sum-
marize the unobserved true covariate process or the history of the true covariate
process. This suggests that we may consider the following non-ignorable miss-
ing data model

f(ri|zi;η) = f(ri|ai, bi;η). (5.18)

That is, the missingness of the covariates is related to the unobserved true co-
variate and response values through the corresponding random effects (ai, bi)
in the covariate and response models respectively. Thus, we again have a shared
parameter model (Wu and Carroll 1988; Little and Rubin 2002).

Under the missing data model (5.18), the observed-data loglikelihood can be
written as

l∗o(θ) =
n∑

i=1

[ ∫ ∫
f(yi|ai, bi,θ) f(zobs,i|ai,α)

×f(ai|A) f(bi|B)f(ri|ai, bi;η) dai dbi

]
. (5.19)

Note that the integration in the likelihood (5.19) has a lower dimension than
that in the likelihood (5.17), so the computation is simpler. In this case, for
the approximate method based on Taylor expansions similar to that in Section
5.5.1, closed form expressions of the E- and M-step of the EM algorithm can
be obtained. The approximate method based on Laplace approximations is also
similar to that in Section 5.5.2 and is straightforward. Therefore, the computa-
tion for both exact and approximate likelihood inference under the missing data
model (5.18) is simpler than that based on the missing data model in (5.17).

Since non-ignorable missing data models are not testable based on the observed
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data, it is a good strategy to consider different missing data models and then
check if the main parameter estimates in the response model are sensitive to the
assumed missing data models. The foregoing two types of missing data models
are good choices for sensitivity analysis.

5.6.2 Measurement Errors in Covariates and Missing Data in Responses

In a mixed effects model for longitudinal data, measurement errors in covari-
ates and non-ignorable missing data in the response is also a common problem
in practice. For example, dropouts are extremely common in longitudinal stud-
ies. When a subject drops out, the response values of the subject from the time
of dropout are missing, and such missing data are likely to be non-ignorable.
Note that, if the responses are missing with an ignorable missing data mech-
anism, the missing data in the responses can be ignored since a mixed effects
model allows unbalanced data in the response. When the responses are non-
ignorably missing, however, we must assume a missing data model for the
responses and incorporate it in likelihood inference. The approach is concep-
tually the same as that for non-ignorable missing covariates in Section 5.6.1.
For completeness, we briefly describe the approach below.

Let yi = (yi1, . . . , yini
)T be the responses with possible non-ignorable miss-

ing data. Let ri = (ri1, . . . , rini
)T be a vector of missing response indicators

for individual i such that rij = 1 if yij is missing and 0 otherwise. We write
yi = (ymis,i,yobs,i). As in Section 5.6.1, we may consider two types of miss-
ing data models for sensitivity analysis, i.e. we may assume that the probability
of missing data P (rij = 1) (i) depends on the observed and missing values; or
(ii) depends on the random effects in the models. That is, in case (i) we can as-
sume a distribution f(ri|yi, zi; η) for ri, The log-likelihood for the observed
data {(yobs,i, zi, ri), i = 1, . . . , n} can then be written as

lo(θ) =
n∑

i=1

log
∫ ∫ ∫ [

f(yi|z∗i , bi; β, σ2) f(zi|ai;α)f(ai;A)

×f(bi;B) f(ri|yi, zi;η)
]
dymis,i dai dbi. (5.20)

Alternatively, as in Section 5.5.2, we may assume that the missingness of the
responses is related to the random effects ai and bi in the response and covari-
ate models, since the observed covariates and responses may be measured with
errors. For example, we may assume that

logit[P (rij = 1|ai, bi; η)] = η0 + η1ri,j−1 + ηT
2 ai + ηT

3 bi.

The log-likelihood for the observed data {(yobs,i, zi, ri), i = 1, . . . , n} can
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then be written as

l∗o(θ) =
n∑

i=1

log
∫ ∫ ∫ [

f(yi|z∗i , bi; β, σ2)f(zi|ai;α)

×f(ai;A)f(bi;B) f(ri|ai, bi; η)
]
dymis,i dai dbi

=
n∑

i=1

log
∫ ∫ [

f(yobs,i|ai, bi; β, σ2)f(zi|ai;α)

×f(ai;A)f(bi;B) f(ri|ai, bi; η)
]
dai dbi. (5.21)

Note that for the log-likelihood l∗o(θ) in (5.21) the missing responses ymis,i

are integrated out, which is not possible for the log-likelihood lo(θ) in (5.20)
where the missingness is directly related to the missing response values.

Exact likelihood inference can be carried out using Monte Carlo EM algo-
rithms, as in the previous sections, but again they are computationally very
intensive. So computationally more efficient approximate methods, similar to
the ones in the previous sections, are highly valuable here. Note that the com-
putation for models in (5.21) is simpler than that for models in (5.20) since the
dimension of the integral in (5.21) is lower.

The foregoing methods can be extended to mixed effects models with miss-
ing covariates, missing responses, and covariate measurement errors. Such an
extension is straightforward conceptually but the computation becomes even
more challenging. As an example, consider a mixed effects models with non-
ignorable missing covariates, non-ignorable missing responses, and covariate
measurement errors. Let ri and si be the missing covariate indicators and the
missing response indicators respectively. Then, the observed data log-likelihood
can be written as

lo(θ) =
n∑

i=1

log
∫ ∫ ∫ ∫ [

f(yi|z∗i , bi; β, σ2) f(zi|ai;α)f(ai;A)

×f(bi;B) f(ri|yi, zi;η)

×f(si|yi, zi;ψ)
]
dymis,i dzmis,i dai dbi.

The computation for exact likelihood inference based on the above log-likelihood
can be extremely intensive and may be practically infeasible! Therefore, com-
putationally more efficient approximate methods based on Taylor or Laplace
approximations are extremely valuable for such problems and may even be the
only choice.

Note that, for the above problems, there may be too many model parameters,
so parameter or model identifiability can become a major issue. A possible so-
lution is to simplify secondary models, such as the missing data models and the
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covariate models, to reduce the number of nuisance parameters. Alternatively,
we may impose certain restrictions on some parameter space, e.g., assume that
the covariance matrices are diagonal.

Example 5.2 Covariate measurement errors and missing responses

We return to Example 4.2 in Chapter 4. In this study, some response values
were missing, and the missingness may be informative or nonignorable. Thus,
a sensitivity analysis with a non-ignorable missing data model is useful. More-
over, some covariates such as CD4 counts were measured with errors. Here we
follow Liu and Wu (2007) and consider a joint inference for a NLME model
with covariate measurement errors and nonignorable missing responses.

In this study, the long-term viral load trajectories (response profiles) appear
to be complicated, so Liu and Wu (2007) considered a semiparametric NLME
model in which the second phase viral decay rate is modeled nonparametrically
to incorporate complicated viral load trajectories. Specifically, they considered
the following semiparametric NLME model

yij = log10(P1ie
−λ1ijtij + P2ie

−λ2ijtij ) + eij , (5.22)
log(P1i) = β1 + b1i, λ1ij = β2 + β3z

∗
ij + b2i, (5.23)

log(P2i) = β4 + b3i, λ2ij = w(tij) + hi(tij), (5.24)

where yij is the log10-transformation of the viral load measurement for patient
i at time tij , P1i and P2i are baseline values, λ1ij and λ2ij are the first and sec-
ond phases of viral decay rates respectively and are allowed to vary over time,
zij is the observed but mis-measured CD4 value and z∗ij is the corresponding
unobserved true CD4 value for patient i at time tij , (β1, β2, β3, β4) are fixed
parameters, (b1i, b2i, b3i) are random effects, and w(tij) and hi(tij) are non-
parametric smooth fixed and random functions respectively. We assume that
eij i.i.d. ∼ N(0, δ2).

As discussed in Section 2.5 of Chapter 2, we can use linear combinations of
natural cubic splines with percentile-based knots to approximate the nonpara-
metric functions w(t) and hi(t) respectively. Based on AIC and BIC criteria,
we obtained the following model for λ2ij in (5.24):

λ2ij ≈ β5 + β6 ψ1(tij) + β7 ψ2(tij) + b4i, (5.25)

where βj’s are fixed parameters, ψj(·)’s are basis functions, and b4i is a random
effect. We assume that bi = (b1i, b2i, b3i, b4i)T ∼ N(0, D). See Example 2.13
(page 79) in Chapter 2 for more details.

To address measurement errors in CD4, we model the CD4 process by the
following empirical LME model, which may be viewed as a classical measure-
ment error model,

zij = (α1 + ai1) + (α2 + ai2)uij + (α3 + ai3)u2
ij + εij , (5.26)
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Table 5.1 Parameter estimates (standard errors) for the models in the example.

Method α1 α2 α3 β1 β2 β3 β4 β5 β6 β7

NV – – – 11.72 65.71 0.84 6.87 –2.58 8.66 –1.90
– – – (.2) (3.8) (3.2) (.6) (5.5) (8.9) (3.1)

LK –.42 4.15 –3.75 11.72 67.08 1.52 6.97 –1.83 7.75 –2.54
(.1) (.5) (.6) (.2) (5.2) (6.2) (.7) (5.8) (8.8) (3.5)

AP –.43 4.21 –3.78 11.70 66.97 1.50 6.96 –1.90 7.86 –2.63
(.1) (.6) (.6) (.2) (4.4) (5.8) (.6) (5.5) (7.9) (3.0)

Estimates of variance components: δ̂ = 0.35, σ̂ = 0.51.

= z∗ij + εij ,

where uij is the CD4 measurement time for the i-th individual and j-th mea-
surement, α = (α1, α2, α3)T are fixed parameters, ai = (ai1, ai2, ai3)T are
random effects, and εij represent measurement error, i = 1, · · · , n, j =
1, · · · ,mi. We assume that εij i.i.d. ∼ N(0, σ2) and ai ∼ N(0, A). For possi-
bly nonignorable missing data in viral loads due to (say) informative dropouts,
we define rij = 1 if yij is observed and rij = 0 otherwise, and we consider
the following simple nonignorable missing data model

logit[P (rij = 1|η)] = η1 + η2zij + η3yij , i = 1, · · · , n; j = 1, · · · , ni,

where the rij’s are assumed to be independent in order to reduce the number
of nuisance parameters.

We estimate the model parameters using a naive method (NV), which ignores
measurement errors and missing data, the likelihood method (LK) based on
a Monte Carlo EM algorithm, and an approximate method (AP) based on a
first-order Taylor approximation. Table 5.1 presents the resulting parameter
estimates and standard errors (from Liu and Wu, 2007). We see that the like-
lihood method (LK) and the approximate method AP) give similar parameter
estimates, but the naive method (NV) may severely under-estimate the covari-
ate effect (i.e., the estimate of parameter β3).

The results in Table 5.1 indicates that the approximate method based on a Tay-
lor expansion performs very well here, compared to the “exact” likelihood
method, since both produce similar estimates. This example also shows that
it is important to incorporate covariate measurement errors and missing data in
likelihood inference in order to avoid biased results.



CHAPTER 6

Mixed Effects Models with
Censoring

6.1 Introduction

In many longitudinal studies, such as studies on environmental pollution and
infectious diseases, measurements of some variables may be subject to a de-
tection limit, i.e., a certain threshold value below or above which the measure-
ments are not quantifiable. In other words, some data are left or right censored,
so their values are not observed. In this chapter, we consider mixed effects
models for censored longitudinal data.

In some studies, the detection limits may vary from laboratory to laboratory
and may change over time as new laboratory methods are implemented. For
example, in HIV/AIDS studies viral loads may be subject to left censoring due
to a detection limit so viral load values below this limit cannot be measured
or quantified. Figure 1.3 in Chapter 1 (page 13) and Figure 6.1 in this chapter
(page 211) show viral load data in an AIDS study where the detection limit
is 100 (or 2 in log10 scale). Because the proportion of censored data may not
be small in many longitudinal studies, failure to account for the censoring in
statistical analysis may lead to significant biases in the parameter estimates and
inference (Hughes 1999).

For AIDS data with left censoring, commonly used naive methods include im-
puting the censored values by the detection limit or half the detection limit or
other simple imputation procedures (Paxton et al. 1997). These naive meth-
ods, however, may lead to biased results, as demonstrated in Hughes (1999).
Moreover, these naive single imputation methods ignore the uncertainty of the
censored values. Therefore, one should not use these naive methods in statis-
tical inference, and more appropriate formal methods described in this chapter
should be considered.

Censored data may be viewed as special missing data since, although the true
values are not observed, there is some information available for the censored

205
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values: the censored values are known to be smaller or larger than a known
number. This is different from usual missing data for which one knows noth-
ing about the unobserved true values. Censored data may also be viewed as
non-ignorable missing data since the missingness (censoring) is related to the
unobserved values (the censored values).

Censored data are perhaps more well known in the context of survival anal-
ysis. Mixed effects models with censored responses are similar to parametric
frailty models or parametric survival models with random effects. For Cox pro-
portional hazards models, we model the hazard function rather than the mean
response and we allow the hazard functions to be nonparametric. We will dis-
cuss survival models in Chapter 7.

In the presence of censoring, valid likelihood inference must incorporate the
censoring mechanism. Hughes (1999) proposed a Monte Carlo EM algorithm
for LME models with censored responses. Fitzgerald et al. (2002) extended
Hughes’ method to NLME models with censored data. In the context of sur-
vival data, Pettitt (1986) considered mixed effects models with right-censored
data and discussed some special cases. Wu (2002) considered NLME models
with both censored data and covariate measurement errors. In this chapter, we
focus on likelihood methods for mixed effects models with censored responses.

6.2 Mixed Effects Models with Censored Responses

In this section, we consider mixed effects models for longitudinal data with
left censored responses, based on an EM algorithm for likelihood estimation.
The method can be extended to right censored responses or “doubly censored”
responses in a straightforward way.

Let yij be the response for individual i at time tij , subject to left censoring,
i = 1, . . . , n; j = 1, . . . , ni. In the presence of left censoring, the observed
value of the response yij can be written as (qij , cij), where qij is the observed
value and cij is the censoring indicator such that yij is observed if cij = 0 and
yij is left censored if cij = 1, i.e.,

yij =
{

qij if cij = 0,
≤ d if cij = 1, (6.1)

where d is a known constant such as a detection limit. Let zi be a collection
of covariates. Denote yi = (yi1, . . . , yini

)T ,qi = (qi1, . . . , qini
)T , and ci =

(ci1, . . . , cini
)T . The observed data are {(qi, ci, zi), i = 1, . . . , n}.

Let f(yi|zi,bi,β,σ) be the density function of a mixed effects model, given
random effects bi, whereβ contains mean parameters andσ contains variance-
covariance parameters. We assume that yi1, . . . , yini

are conditionally inde-
pendent given the random effects bi, and we assume that bi ∼ N(0, B), where
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B is a unknown covariance matrix. Let f(·) denote a generic density function
and F (·) denote the corresponding cumulative density function (cdf). Condi-
tioning on the random effects bi, a detectable measurement yij contributes
f(yij |zi,bi,β,σ) in the likelihood, whereas a non-detectable measurement
contributes

F (d |zi,bi,β,σ) ≡ P (Yij < d |zi,bi,β,σ)

in the likelihood, where Yij is the random version of yij . Let θ be the collection
of all unknown parameters. The likelihood for the observed data {(qi, ci, zi), i =
1, . . . , n} can be written as

Lo(θ) =
n∏

i=1

∫ { ni∏
j=1

(f(yij | zi,bi,θ))
1−cij (F (d | zi,bi,θ))

cij

}
×f(bi|B) dbi,

which generally does not have an analytic expression.

For LME models with censored responses, Hughes (1999) proposed a Monte
Carlo EM algorithm to find the MLEs of the parameters θ. His method can
be extended to GLMM and NLME models with censored data. The idea is as
follows. Treating the non-detectable components in yi and the random effects
bi as “missing data”, we have complete data {(yi, zi,bi), i = 1, 2, · · · , n}.
The complete-data log-likelihood can then be written as

lc(θ) =
n∑

i=1

l(i)c (θ) =
n∑

i=1

[log f(yi|zi,bi,θ) + log f(bi|θ)] .

The E-step for the i-th observation at the (k+1)-th EM iteration can be written
as

Qi(θ|θ(k)) = E
{
l(i)c (θ) | qi, ci, zi;θ(k)

}
, k = 1, 2, · · · (6.2)

To implement this E-step, we can use Monte Carlo methods to approximate
the conditional expectation Qi(θ|θ(k)), similar to the approaches presented in
previous chapters.

In the next section, we follow Hughes (1999) and describe a Monte Carlo EM
algorithm for LME models in which analytic expressions for the E-step and the
M-step can be obtained. Then in the following sections we extend the method
to GLMM and NLME models for which the computation becomes more inten-
sive since analytic expressions are no longer available. These approaches are
conceptually similar to the Monte Carlo EM algorithms in Chapter 4 for non-
ignorable missing responses, since censored data can be considered as special
non-ignorable missing data.
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6.2.1 LME Models

Consider the following standard LME model

yi = Xiβ + Zibi + ei, i = 1, 2, · · · , n,
bi ∼ N(0, B), ei ∼ N(0, σ2I), (6.3)

where the design matrices Xi and Zi contain covariates zi. Suppose that the
response yi is subject to left censoring. Let θ = (β, B, σ2) be all unknown
parameters. In this section, we follow Hughes (1999) and find MLE of θ based
on a Monte Carlo EM algorithm.

For LME model (6.3), the “complete-data” log-likelihood for individual i can
be written as

l(i)c (θ) =
{
−ni

2
log(2πσ2)− 1

2σ2
(yi −Xiβ − Zibi)T (yi −Xiβ − Zibi)

}
+
{
−1

2
log(2π|B|)− 1

2
bT

i B
−1bi

}
.

To computeQi(θ|θ(k)) = E
[
l
(i)
c (θ) | qi, ci, zi;θ(k)

]
in the E-step of the EM

algorithm at the k-th iteration, we only need to compute the following condi-
tional expectations of the sufficient statistics for β, B, and σ2 respectively:

E(yi|qi, ci, zi;θ(k)), E(bibT
i |qi, ci, zi,θ

(k)), E(eT
i ei|qi, ci, zi,θ

(k)).

To compute the above conditional expectations of the sufficient statistics, note
that

f(bi|qi, ci, zi,θ
(k)) =

∫
Ri

f(bi|yi, zi,θ
(k))dyi

f(ei|qi, ci, zi,θ
(k)) =

∫
Ri

f(ei|yi, zi,θ
(k))dyi,

where Ri is the set of yi consistent with the observed data (qi, ci). That is, the
distributions with censored data can be obtained by averaging the correspond-
ing distributions with uncensored data over the values of yi that are consistent
with the observed censoring patterns. Therefore, we have

E(bibT
i |qi, ci, zi;θ(k)) =

∫
Ri

E(bibT
i |yi, zi;θ(k))f(yi|qi, ci, zi;θ(k))dyi,

E(eT
i ei|qi, ci, zi;θ(k)) =

∫
Ri

E(eT
i ei|yi, zi;θ(k))f(yi|qi, ci, zi;θ(k))dyi,

where

E(bibT
i |yi, zi;θ(k)) = b̂ib̂T

i +D(k) −D(k)ZT
i WiZiD

(k),

E(eT
i ei|yi, zi;θ(k)) = êT

i êi + σ̂2(k)(ni − σ̂2(k)tr(Wi)),
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b̂i = D(k)ZT
i Wi(yi −Xiβ

(k)),
êi = (Ii − ZiD

(k)ZT
i Wi)(yi −Xiβ

(k)),
Vi = ZiDZ

T
i + σ2I,

Wi = V −1
i .

Note that the above conditional expectations are obtained based on the fact that
(bi,yi) follows a multivariate normal distribution, so these conditional expec-
tations are obtained using well-known results for multivariate normal distribu-
tions.

Computation of the foregoing conditional expectations in the E-step is chal-
lenging due to the intractable integrals. Hughes (1999) proposed to use a Monte
Carlo method to approximate these conditional expectations in the E-step. The
idea is to simulate samples of the censored responses yi from the conditional
distribution f(yi|qi, ci, zi;θ(k)) at EM iteration k, and then approximate the
conditional expectations by their corresponding empirical means. Specifically,
suppose that {y(j)

i , j = 1, · · · ,mk} are mk simulated values of the censored
components in yi generated from distribution f(yi|qi, ci, zi;θ(k)), where the
observed (non-censored) components of yi remain unchanged. Then, we have

E(yi|qi, ci, zi;θ(k)) ≈ 1
mk

mk∑
j=1

y(j)
i , (6.4)

E(bibT
i |qi, ci, zi;θ(k)) ≈ 1

mk

mk∑
j=1

E(bibT
i |y

(j)
i , zi;θ(k)), (6.5)

E(eT
i ei|qi, ci, zi;θ(k)) ≈ 1

mk

mk∑
j=1

E(eT
i ei|y(j)

i , zi;θ(k)). (6.6)

The above approximations can be made arbitrary accurate by increase the num-
ber of Monte Carlo samples mk. Typically we choose mk to increase with the
EM iteration number k.

To simulate samples from the conditional distribution f(yi|qi, ci, zi;θ) in the
E-step, we can first simulate samples from the multivariate normal distribution
f(yi|zi;θ), i.e., N(Xiβ, Vi), and then reject those samples that do not fit the
observed censoring pattern, but this procedure may have a very low acceptance
rate. Hughes (1999) suggested to use the Gibbs sampler by simulating from
univariate conditional distributions. Breslaw (1994) showed how to use the
Gibbs sampler to sample from the truncated normal distribution.

The M-step of the Monte Carlo EM algorithm can be written as

β(k+1) =
n∑

i=1

(
XT

i WiXi

)−1
XT

i WiE(yi|qi, ci, zi;θ(k)), (6.7)
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D(k+1) =
n∑

i=1

E(bibT
i |qi, ci, zi;θ(k))/n, (6.8)

σ2(k+1) =
n∑

i=1

E(eT
i ei|qi, ci, zi;θ(k))

/ n∑
i=1

ni, k = 1, 2, · · · (6.9)

Iterating between the above E- and M-steps until convergence, we obtain the
MLE of θ. Approximate standard errors of the parameter estimates can be
obtained based on a modified version of Louis (1982) formula as follows:

Var(β̂) =

[
n∑

i=1

XT
i V

−1
i Xi −XT

i V
−1
i UiV

−1
i Xi

]−1

,

where
Ui = Var(yi −Xiβ | qi, ci, zi, θ̂).

Based on the fitted model, we can obtain predicted values for the unobserved
responses as follows. At convergence of the EM algorithm, the empirical Bayes
estimate of the random effects bi is given by

b̂i = DZT
i Wi(E(yi|qi, ci, zi, θ̂)−Xiβ̂).

Then, at any time point tij , the predicted value of a unobserved (censored)
yij can be obtained by substituting the parameters and random effects by their
estimates, i.e.,

ŷi = Xiβ̂ + Zib̂i.

An approximate variance for the predicted value is given by

V̂ar(ŷi) ≈ ZiB̂Z
T
i + σ̂2I,

and an approximate confidence interval for a unobserved (censored) yij is then
given by

ŷij ± zα/2(V̂ ar(ŷij))1/2,

where zα/2 is the 1−α/2 percentile of the standard normal distributionN(0, 1).

In the above approach we have assumed that the models hold for censored
values. In some applications, however, the assumed models may not hold for
censored values. In this case, alternative approaches are required.

Example 6.1 LME models with censored responses

Return to the AIDS dataset in Section 1.3.2 of Chapter 1. As an illustration
of the method in this section, we focus on viral load data in the first 90 days,
and empirically model the data using the following LME model, which is a
quadratic polynomial with random coefficients:

yij = (β1 + b1i) + (β2 + b2i)tij + (β3 + b3i)t2ij + eij , (6.10)

(b1i, b2i, b3i)T ∼ N(0, D), eij i.i.d. ∼ N(0, σ2), (6.11)
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Figure 6.1 Viral loads trajectories (in log10 scale) in the first three months. The viral
loads have a lower detection limit of log10(100) = 2. Viral loads below the detection
limit are substituted by half the limit (i.e., log10(50) = 1.69).

where yij is the log10-transformation of the viral load for individual i at time
tij , i = 1, · · · , n; j = 1, · · · , ni, βj’s are fixed parameters, and bji’s are ran-
dom effects. In this study, viral loads have a lower detection limit of 100, which
is 2 after the log10-transformation. Figure 6.1 shows the viral load data, in
which the viral loads below the detection limit are left censored and are substi-
tuted by half the detection limit (i.e., log10(50) = 1.69).

We consider two estimation methods: the naive method, which simply imputes
censored viral loads by half the detection limit, and the likelihood method,
which is based on the Monte Carlo EM algorithm of Hughes (1999), as de-
scribed in this section. The Monte Carlo EM algorithm is considered converged
if the maximum relative change in parameters between successive EM itera-
tions is less than 0.001. The initial number of Monte Carlo samples in the EM
algorithm is chosen to be 500, and it is doubled if the absolute change in any
parameter is less than the estimated Monte Carlo standard error for that param-
eter, as suggested by Hughes (1999). The burn-in period for the Gibbs sampler
is 25 iterations, since the sampler burns in quickly in this example.
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Table 6.1 Parameter estimates for the LME model with censoring

Method Par. Est. S.E. Par. Est. S.E. Par. Est. S.E.

Naive β1 4.77 0.087 β2 –6.97 0.323 β3 5.09 0.335
Likelihood β1 4.78 0.083 β2 –7.15 0.363 β3 5.01 0.409

Par.: parameter, Est.: estimate, S.E.: standard error.

Table 6.1 shows the estimation results. We see that the two methods give dif-
ferent results. In particular, the likelihood method produces larger standard
errors of the parameter estimates, which reflects the uncertainty of the cen-
sored values. On the other hand, the naive method ignores the uncertainty of
the censored values so it under-estimates the standard errors of the parame-
ter estimates, and it may also give biased estimation. The results based on the
Monte Carlo EM algorithm should be more reliable than that based on the
naive method.

6.2.2 GLMM and NLME Models

We can extend the method for LME models in Section 6.2.1 to GLMM and
NLME models with censored responses. For GLMM and NLME models, the
parameters and random effects are nonlinear in the models, so two difficulties
arise:

• the Monte Carlo E-step becomes more complicated since the random effects
cannot be integrated out,

• analytic expressions for the E-step and the M-step are no longer available,
so iterative algorithms are needed.

Therefore, although the extension from LME models to GLMM and NLME
models is conceptually straightforward, the computation becomes much more
challenging, as described below.

For GLMM and NLME models with censored responses, the E-step of a Monte
Carlo EM algorithm for likelihood estimation is to compute the following con-
ditional expectation of the “complete data” loglikelihood given the observed
data and parameter estimates at the current iteration:

Qi(θ|θ(k)) =
∫ ∫ [

log f(yi|zi,bi,θ
(k)) + log f(bi|θ(k))

]
×f(yi,bi|qi, ci, zi;θ(k)) dycen,i dbi,

where ycen,i contains the censored components of yi and k is the EM it-
eration number. Since the density function f(yi|zi,bi,θ

(k)) is nonlinear in
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the random effects bi for both GLMM and NLME models, we cannot inte-
grate out the unobservable random effects bi in Qi(θ|θ(k)), so we are unable
to obtain closed-form expressions similar to those in Section 6.2.1. However,
we can use Monte Carlo methods to simulate the “missing data” (ycen,i,bi)
from the conditional distribution f(yi,bi|qi, ci, zi;θ(k)), and then approxi-
mate Qi(θ|θ(k)) by an empirical mean based on many simulated values of the
missing data, as in Chapter 4. This simulation step can again be done by Gibbs
sampler along with rejection sampling methods or the importance sampling
method or other MCMC methods. We will show some details in Section 6.3.

Exact likelihood estimation for GLMM and NLME models with censored data
based on Monte Carlo EM algorithms can be computationally intensive. How-
ever, as in Chapter 4, computationally more efficient approximate methods
based on Taylor or Laplace approximations can be developed. For example,
for the linearization procedure based on a first-order Taylor approximation, we
iteratively solve a working LME model, so the analytic expressions in Sec-
tion 6.2.1 for LME models can be used at each iteration, which greatly simpli-
fies computation. We will show the details in Section 6.3 for a more complex
but similar problem.

6.2.3 Imputation Methods

Single Imputation Methods

For censored longitudinal data, several naive single imputation methods are
commonly used in practice. The simplest imputation method is to impute the
censored values by the detection limit or half the detection limit. An obvious
drawback of this naive single imputation method is that it fails to incorporate
the uncertainty of the censored and unobserved values, in addition to possible
biases resulted from the single imputed value (the detection limit or half the
detection limit).

Another single imputation method is to impute the censored values based on a
regression model. For example, we may generate an imputation for a censored
response from its predictive distribution f(yi|zi, b̂i, θ̂), where the estimates
(b̂i, θ̂) can be obtained from some simple method, e.g., from a model where
the censored values are substituted by half the detection limit. This imputa-
tion method again fails to incorporate the uncertainty of the censored values.
One may tempt to create multiple imputations based on model f(yi|zi, b̂i, θ̂).
However, such a multiple imputation method is usually improper (Rubin 1987),
since it fails to incorporate the uncertainty in estimating the random effects and
the parameters.

More appropriate single imputation methods can be based on regression mod-
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els and then adjust the variances or standard errors of the parameter esti-
mates to reflect the uncertainty of the censored values. Note that the imputation
model, or the regression model used to create imputations, should incorporate
the censoring information, i.e., the imputed values for the censored data should
not be larger than the detection limit if the data are left censored. An assump-
tion for such an approach is that the model continues to hold for censored
values. The uncertainty of the censored values can also be incorporated via the
following proper multiple imputation method.

Multiple Imputation Methods

In the following, we briefly describe a multiple imputation method to generate
imputations for censored values ycen,i. As in Section 3.5 of Chapter 3, we can
generate multiple imputations via a Bayesian framework. Specifically, multiple
imputations can be generated from the following predictive distribution of the
censored values ycen,i given the observed values (yobs,i, ci, zi):

f(ycen,i|yobs,i, ci, zi) =
∫ ∫ ∫

f(yi|zi, ci,bi,θ)f(bi|B)

×f(θ|η) dycen,i dbi dθ,

where η contains hyper-parameters for the prior distribution of θ ≡ (β, σ2, B),
ci is a vector of censoring indicators as defined earlier, and zi contains ob-
served covariates.

Let η0 be the initial values of the hyper-parameters η. One can use the follow-
ing procedure to implement the multiple imputation method

• Generate a sample θ∗ from f(θ|η) = f(β|η)f(σ2|η)f(B|η), assuming
independence of the parameters;

• Generate a sample b∗i from f(bi|B∗), where B∗ is a component in θ∗.
• Generate a sample y∗cen,i from the following distribution via rejection sam-

pling methods

f(yi|zi, ci,b∗i ,θ
∗) ∝ f(yi|zi,b∗i ,θ

∗)f(ci|yi, zi,b∗i ,θ
∗).

Iterating the above procedure, we obtain a Markov chain{
(y∗(k)

cen,i,θ
∗(k),b∗(k)

i ), k = 0, 1, 2, · · ·
}
,

which has a stationary distribution. After a burn-in period, we may view the
last value y∗cen,i as an imputation generated from the predictive distribution
f(ycen,i|yobs,i, ci, zi).

Repeating this process m times, we generate m “complete datasets”. Each of
these m complete datasets can be analyzed separately as if there were no cen-
sored values. The m analysis results are then combined to form an overall
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result. See Chapters 3 and 4 for details of similar procedures. Note that this
multiple imputation method may be computationally more intensive than the
Monte Carlo EM algorithm, since it adds another layer of sampling for the
parameters.

Discussion

The likelihood method based on the EM algorithm and the multiple imputation
method in previous sections can be extended to mixed effects models with cen-
soring in covariates. When covariates are censored, the approaches are similar
to that for censored responses, with some modifications. Censored covariates
may arise, for example, when the censored response in a regression model is
treated as a covariate in another regression model. In AIDS studies, sometimes
we may treat CD4 as the response and viral load as a covariate, but viral load
often has a lower detection limit. In this case, we can model the CD4 process
using a mixed effects model, with the censored viral loads as a covariate.

Both the EM algorithm and the multiple imputation method are computation-
ally intensive. To reduce computational burden, one may consider approximate
methods which are computationally much more efficient. For example, for the
multiple imputation method, we may use a first-order Taylor expansion to lin-
earize a NLME model and then generate imputations based on the resulting
working LME model. This can greatly reduce computational burden since (i)
for LME models the random effects can be integrated out so sampling the ran-
dom effects may not be needed; and (ii) closed-form expressions are available
for LME models so some iterative algorithms may be avoided. In the mean-
time, such an approximate method may still generate reasonable imputations.
Note that, for a multiple imputation method, the observed values remain un-
changed throughout. Thus, the choice of imputation models only affects the
imputed values, so if the proportion of censored values is not large, approxi-
mate imputation models should perform well.

For both the likelihood method based on the EM algorithm and the multiple
imputation method in previous sections, we have assumed that the models hold
for both observed and censored values. This assumption is not testable based
on the observed data. In some applications, the assumed models may not hold
for censored values, although they may fit the observed data well, since the
censored values may be viewed as somewhat “unusual”. One may consider
models with mixture distributions, in which a different distribution is assumed
for the censored values. Such an approach may be used for sensitivity analysis.
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6.3 Mixed Effects Models with Censoring and Measurement Errors

In many longitudinal studies, we often need to address censored responses and
covariate measurement error simultaneously. For example, in the studies of
HIV viral dynamics, we may introduce CD4 cell counts to partially explain
the variation in viral load trajectories. Since viral load often has a lower de-
tection limit while CD4 is typically measured with errors, we need to address
censored viral loads (response) and measurement errors in CD4 (covariate) si-
multaneously, since ignoring either one of them may lead to biased results. In
this section, we discuss joint inference for mixed effects models with censored
responses and covariate measurement errors.

We focus on a joint likelihood method and use a Monte Carlo EM algorithm for
estimation. The idea is similar to that in Chapter 5 for joint inference of mixed
effects models with non-ignorable missing responses and covariate measure-
ment errors. One only needs to incorporate the censoring information and treats
the censored responses as special non-ignorable missing responses. In the fol-
lowing sections, we first consider LME models with censored responses and
covariate measurement errors, in which some analytic results can be obtained,
following Wu (2004). Then, we extend the method to GLMM and NLME mod-
els with censored response and covariate measurement errors, following Wu
(2002). For simplicity, we focus on a single time-dependent and error-prone
covariate.

6.3.1 LME Models

In this section, we consider a LME model with censoring in the response and
measurement errors in time-dependent covariates, following Wu (2004). Let
zik be the observed but possibly mis-measured covariate value for individual i
at time uik, i = 1, · · · , n; k = 1, · · · ,mi. To address measurement errors in
covariate zik, we consider a classical measurement error model and model the
covariate process by the following LME model

zik = uT
ikαi + εik ≡ z∗ik + εik, (6.12)

αi = α+ ai, i = 1, · · · , n; k = 1, · · · ,mi,

ai ∼ N(0, A), εi ∼ N(0, δ2I),

where uik is a p × 1 design vector, αi = (αi1, · · · , αip)T is a p × 1 vector
of individual-specific regression parameters, εik is the measurement error for
individual i at time uik and εi = (εi1, . . . , εimi

)T , α = (α1, · · · , αp)T is a
p×1 vector of unknown fixed parameters (fixed effects), ai are random effects,
A is a unknown p × p covariance matrix, and δ2 is the unknown variance for
within-individual measurements. We can interpret

z∗ik ≡ uT
ikαi
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as the “true” covariate value for individual i at time uik. In covariate model
(6.12), we allow the covariate observation times uik to possibly differ from
the response observation times tij , i.e., we allow missing data in the covariate
where the missing data mechanism is assumed to be ignorable.

Note that, at a given time, the covariate trajectory up to that time may be
summarized by the individual-specific parameters αi. For example, if we fit
a straight line to the covariate process, i.e., uik = (1, uik)T , then parameters
αi represents the individual-specific intercept and slope of the covariate pro-
cess. When the observed covariates zij’s are measured with errors, we may
be interested in the relationship between the response and the true covariate
values z∗ij or the past history or summaries of the regularized covariate val-
ues. That is, the response is assumed to be related to the covariate through the
individual-specific parameter αi or the random effects ai. We assume that zi

is a surrogate for αi.

Let h(αi) be a known linear function which summarizes the covariate process.
For the response process, we consider the following LME model

yij = xT
ijβi + eij , i = 1, · · · , n; j = 1, · · · , ni, (6.13)

βi = d(z∗i ,β,bi) ≡ d(h(αi),β,bi),
bi ∼ N(0, B), ei ∼ N(0, σ2I),

where xij is a s× 1 design vector, βi = (βi1, · · · , βis)T is a (s× 1) vector of
individual-specific regression parameters,β = (β1, · · · , βr)T is a (r×1) vector
of population parameters (fixed effects), d(·) is a s-dimensional known linear
function, ei = (ei1, · · · , eini

)T , σ2 is the unknown within individual variance,
I is the identity matrix,B is a s×s covariance matrix, and bi = (bi1, · · · , bis)T

is a vector of random effects.

A common form for the linear function d(·) is

d(h(αi),β,bi) = Dijβ + Vibi,

where the matrix Dij depends on αi and other covariates such as time and Vi

is a matrix of 0’s and 1’s. We assume that εi is independent of ai, ei is inde-
pendent of εi, and bi is independent of ei and ai. In model (6.13), we link
the individual-specific regression parameters βij to the error-prone covariate
through the function h(αi) which summarizes the true covariate process. Note
that the parameters of the unrestricted covariance matrices A and B are identi-
fiable only if n > max{1 + p(p+ 1)/2, 1 + s(s+ 1)/2}.

In the presence of censoring in the response and measurement error in the
covariate, we consider a joint likelihood based on the covariate and response
models (6.12) and (6.13). The observed data are {(qi, ci, zi), i = 1, . . . , n}



218 MIXED EFFECTS MODELS FOR COMPLEX DATA

and the observed-data joint likelihood can be written as

Lo(θ) =
n∏

i=1

[∫ ∫ { ni∏
j=1

(
f(yij |z∗ij ,αi,bi)

)1−cij

×
(
F (d | z∗ij ,αi,bi)

)cij

}

×

{
mi∏
k=1

f(zik|αi)

}
f(αi)f(bi)dαidbi

]
, (6.14)

where

(yij |z∗ij ,αi,bi) ∼ N(xT
ijβij , σ

2) ≡ N(xT
ijd(h(αi),β,bi), σ2)

(zik|αi) ∼ N(uT
ikαi, δ

2) ≡ N(z∗ik, δ
2).

We consider an EM algorithm for computing the MLEs of the parameters. The
E-step for the i-th observation at the (k + 1)st EM iteration can be written as

Qi(θ|θ(k)) = E
[{

log f(yi|αi,bi,θ) + log f(zi|αi,θ)

+ log f(αi|θ) + log f(bi|θ)
} ∣∣ qi, ci, zi;θ(k)

]
.

As in Section 6.2, to carry out the E-step, we only need to compute the follow-
ing conditional expectations of the sufficient statistics (also see the Appendix):

E(yi|qi, ci, zi;θ(k)), E(αi|qi, ci, zi,θ
(k)), E(αiα

T
i |qi, ci, zi,θ

(k)),
E(bi|qi, ci, zi,θ

(k)), E(bibT
i |qi, ci, zi,θ

(k)).

To compute these quantities, we note that

E(αi|qi, ci, zi;θ(k)) =
∫

Ri

E(αi|yi, zi;θ(k))f(yi|qi, ci, zi;θ(k))dyi,

E(αiα
T
i |qi, ci, zi;θ(k)) =

∫
Ri

E(αiα
T
i |yi, zi;θ(k))

×f(yi|qi, ci, zi;θ(k))dyi,

where Ri is the set of yi consistent with the observed data (qi, ci). Similar
expressions hold for E(bi|qi, ci, zi;θ(k)) and E(bibT

i |qi, ci, zi;θ(k)).

The Monte Carlo EM algorithm then proceeds by generating yi from the con-
ditional distribution f(yi|qi, ci, zi;θ(k)) using the Gibbs sampler, and then
approximate the expectation in the E-step by an empirical mean, as in Sec-
tion 6.2. These computations involve evaluating the conditional expectations:
E(αi|yi, zi;θ(k)), E(αiα

T
i |yi, zi; θ(k)), E(bi|yi, zi;θ(k)), andE(bibT

i |yi, zi;θ(k)).
To obtain these conditional expectations, note that (αi,yi, zi) and (bi,yi, zi)
follow multivariate normal distributions. Thus the conditional expectations can
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be obtained using well-known results for multivariate normal distributions (see
the Appendix).

The M-step of the Monte Carlo EM algorithm is like a complete-data max-
imization and is thus straightforward. Let θ̂ denote the estimate of θ at the
convergence of the Monte Carlo EM algorithm. The observed information ma-
trix is given by

I(qi, ci, zi; θ̂) = Eθ

(
∂2lc(θ)
∂θ∂θT

∣∣∣ qi, ci, zi

) ∣∣∣∣∣
θ=

ˆθ

−Eθ
(
Sc(θ̂)ST

c (θ̂)
∣∣∣qi, ci, zi

)
,

where

Sc(θ̂) =
∂lc(θ)
∂θ

∣∣∣
θ=

ˆθ
.

This information matrix can be computed using the conditional expectations
derived in the Appendix. The estimate of the asymptotic covariance matrix of
(α̂, β̂) is the upper (p+ r)× (p+ r) block of I−1(qi, ci, zi; θ̂).

6.3.2 GLMM and NLME Models

The method for LME models in Section 6.3.1 can be extended to GLMM and
NLME models with censored response and covariate measurement errors. The
extension is relatively straightforward but the computation can be much more
challenging. In this section, we follow Wu (2002) and focus on NLME models,
but the method can also be applied to GLMMs.

Consider a NLME model with an error-prone time-dependent covariate. We
write the NLME model as a hierarchical two-stage model (Davidian and Gilti-
nan 1995), i.e., the first stage models the within-individual data and specifies
the intra-individual variation

yij = g(tij ,βij) + eij , ei ∼ N(0, σ2I), (6.15)
j = 1, · · · , ni, i = 1, · · · , n,

while the second stage introduces covariates and random effects to account for
inter-individual variation

βij = d(z∗ij ,β,bi), bi i.i.d. ∼ N(0, B), (6.16)

where g(·) is a known nonlinear function, tij is a vector containing indepen-
dent variables such as time, βij = (βij1, · · · , βijs)T are individual-specific re-
gression parameters, β = (β1, · · · , βr)T are population parameters or fixed ef-
fects, d(·) is a s-dimensional known linear function, σ2 is the unknown within
individual variance, I is the identity matrix, bi’s are random effects, and B is
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an unknown covariance matrix. We assume that ei = (ei1, · · · , eini
)T , bi, εi,

and αi are independent of each other. The dependence of βij on tij through
the function d(·) is suppressed in the models. We also assume that the within-
individual errors eij are conditionally independent given the random effects
bi, but the method adapt readily to relaxation of this assumption.

As in Section 6.3.1, we consider the following classical measurement error
model for the error-prone covariate

zik = uT
ikαi + εik ≡ z∗ik + εik, (6.17)

αi = α+ ai, i = 1, · · · , n; k = 1, · · · ,mi,

αi ∼ N(α, A), εi ∼ N(0, δ2I),

where εik represents measurement error and other notation is the same as that
in Section 6.3.1.

Let θ = (β,α, A,B, σ, δ) be the collection of all unknown parameters. The
joint likelihood for the observed data {(qi, ci, zi), i = 1, . . . , n} can be written
as follows

Lo(θ) =
n∏

i=1

[∫ ∫ { ni∏
j=1

(f(yij |αi,bi))
1−cij (F ( d | αi,bi))

cij

}

×

{
mi∏
k=1

f(zik|αi)

}
f(αi)f(bi) dαi dbi

]
,

where

f(yij |αi,bi) = (2πσ2)−1/2exp

[
−
{
yij − g

(
tij ,d(uT

ijαi,β,bi)
)}2

2σ2

]
,

F ( d |αi,bi) =
∫ d

−∞
f(yij |αi,bi) dyij ,

f(zik|αi) = (2πδ2)−1/2exp
{
− 1

2δ2
(zij − uT

ikαi)2
}
,

f(αi) = (2π|A|)−1/2exp
{
−1

2
(αi −α)TA−1(αi −α)

}
,

f(bi) = (2π|B|)−1/2exp
{
−1

2
bT

i B
−1bi

}
.

We again consider a Monte Carlo EM algorithm to obtain the MLE of θ. The
E-step at the k-th EM iteration computes

Q(θ|θ(k)) =
n∑

i=1

E
[(

log f(yi|zi,αi,bi,θ) + log f(zi|αi,θ)
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+ log f(αi|θ) + log f(bi|θ)
) ∣∣ qi, ci, zi;θ(k)

]
.

Since the expectation in Q(θ|θ(k)) is difficult to evaluate analytically, we can
use a Monte Carlo method to generate large samples of the “missing data”
(ycen,i,αi,bi) from the conditional distribution f(yi,αi,bi | qi, ci, zi;θ(k)),
and then approximateQ(θ|θ(k)) by an empirical mean. This can again be done
using the Gibbs sampler by iteratively sampling from the following full condi-
tionals

f(ycen,i|qi, ci, zi,αi,bi;θ(k)),

f(αi | yi, zi,bi;θ(k)), f(bi | yi, zi,αi,θ
(k)),

where sampling from the full conditionals can be done using rejection sam-
pling methods. Other MCMC or importance sampling methods can also be
used. The procedures are similar to that in Chapter 5. However, such an Monte
Carlo EM algorithm can be computationally very intensive and may offer con-
vergence problems. Therefore, in the following we describe a computationally
more efficient approximate method based on a first-order Taylor approximation
(linearization), following Wu (2002).

We can write the NLME model (6.15) and (6.16) as a single equation as fol-
lows:

yij = gij(β,bi) + eij (6.18)

where gij(·) is a nonlinear function and the covariates are suppressed in the
expression. Let gi = (gi1, . . . , gini

)T . In the following iterative algorithm,
denote the current estimate of (β,bi) by (β̂, b̂i). The linearization step yields
the following working LME model

wi = X̃iβ + Z̃ibi + ei (6.19)
= X̃i(1)β−r + βrX̃i(2)uT

ijαi + Z̃ibi + ei, (6.20)

where

wi = yi − gi(β̂, b̂i) + X̃iβ̂ + Z̃ib̂i,

X̃ij =
∂gij(β,bi)

∂βT

∣∣∣
(
ˆβ,b̂i)

, Z̃ij =
∂gij(β,bi)

∂bT
i

∣∣∣
(
ˆβ,b̂i)

,

X̃i = (X̃T
i1, . . . , X̃

T
ini

)T , Z̃i = (Z̃T
i1, . . . , Z̃

T
ini

)T , wi = (wi1, . . . , wini
)T ,

X̃i(1) is the first (r − 1) columns of X̃i, X̃i(2) is the last column of X̃i, and
β−r = (β1, · · · , βr−1)T .

The approximate method is to iteratively solve the LME model (6.19) or (6.20),
so in each iteration we can use the closed-form results in Section 6.3.1 for LME
models where the computation is much simpler. Specifically, in the E-step of
the k-th EM iteration, we only need to compute the following conditional ex-
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pectations

E(αi|qi, ci, zi,θ
(k)), E(αiα

T
i |qi, ci, zi,θ

(k)),
E(bi|qi, ci, zi,θ

(k)), E(bibT
i |qi, ci, zi,θ

(k)).

To compute these quantities, we can use a Monte Carlo method to generate
ycen,i from f(yi|qi, ci, zi,θ

(k)) and then approximate the conditional expec-
tations by their empirical means, as in Section 6.3.2. This greatly simplifies
the computation. Recall that in the Monte Carlo EM algorithm for exact likeli-
hood estimation, which is described earlier, we need to sample (ycen,i,αi,bi)
from the conditional distribution f(yi,αi,bi | qi, ci, zi;θ(k)). This sampling
step can be a big computational burden and may lead to many computational
difficulties such as non-convergence or very slow convergence. The above ap-
proximate method simplifies the computation by avoiding sampling the high-
dimensional random effects (αi,bi) since sampling these random effects often
causes convergence problems.

Under the working LME model (6.19) or (6.20), closed-form expressions of
the updated parameter estimates in the M-step can be written as follows (Wu
2002):

α̂(k+1) =
1
n

n∑
i=1

E(αi

∣∣qi, ci, zi, θ̂
(k)

),

β̂
(k+1)

=

 n∑
i=1

ni∑
j=1

E
(
X̃T

ijX̃ij

∣∣∣qi, ci, zi, θ̂
(k)
)−1

×
n∑

i=1

ni∑
j=1

E
[
X̃T

ij(wij − Z̃ijbi)
∣∣∣qi, ci, zi, θ̂

(k)
)
]
,

Â(k+1) =
1
n

n∑
i=1

E
[
(αi − α̂)(αi − α̂)T

∣∣qi, ci, zi, θ̂
(k)
]
,

B̂(k+1) =
1
n

n∑
i=1

E(bibT
i

∣∣qi, ci, zi, θ̂
(k)

),

δ̂2(k+1) =
1
N1

n∑
i=1

mi∑
k=1

E
[
(zik − uT

ikαi)2
∣∣qi, ci, zi, θ̂

(k)
]
,

σ̂2(k+1) =
1
N2

n∑
i=1

ni∑
j=1

E
[
(wij − X̃ijβ − Z̃ijbi)2

∣∣qi, ci, zi, θ̂
(k)
]
,

k = 1, 2, · · · ,

where N1 =
∑n

i=1mi, N2 =
∑n

i=1 ni. Note that such closed-form expres-
sions are unavailable for exact likelihood estimation in which iterative algo-
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rithms are required to update the parameter estimates. Iterating the above E-
step and M-step until convergence, we obtain an approximate MLE (or local
maximum) of θ.

Approximate methods based on Laplace approximations can also be devel-
oped. In this case, we can directly approximate the observed-data likelihood
Lo(θ) using a first-order Laplace approximation, and thus completely avoid
any Monte Carlo simulations.

6.4 Mixed Effects Models with Censoring and Missing Data

Censoring and Missing data

In many longitudinal studies, censored data and missing data may arise simul-
taneously. For example, in addition to some data being censored, subjects may
also drop out and covariates and responses may have missing data. In other
words, in some applications, in addition to the responses being censored, the
responses may have other types of non-ignorable missing data, and covari-
ates may have missing data as well. In fact, in practice censoring, dropouts,
missing data, and measurement errors may all arise simultaneously. Statistical
analyses failing to address any one of these problems may lead to biased re-
sults. Therefore, it is important to address all these incomplete data problems
simultaneously.

In Section 6.3, we address censored response and covariate measurement errors
simultaneously. In this section, we address censored response and missing data
simultaneously. We focus on mixed effects models with censoring and non-
ignorable missing data in the response, including informative dropouts. The
methods for mixed effects models with censored responses and non-ignorable
missing data in the covariates are similar and thus are omitted here.

Let ri = (ri1, . . . , rini
)T be a vector of missing response indicators such that

rij = 1 if yij is missing and 0 otherwise, i = 1, 2, · · · , n. For monotone
dropouts, i.e., subjects never return to the study once they dropout, the ri’s have
a monotone pattern. Let ci = (ci1, . . . , cini

)T be the censoring indicator. We
write yi = (ycen,i,ymis,i,yobs,i), where ycen,i, ymis,i, and yobs,i correspond
to the censored, missing, and observed components of yi respectively. Let zi

be the completely observed covariates.

As in previous sections, we write the mixed effects response model as f(yi|zi,bi,β,σ),
where β is a r × 1 vector of fixed-effects parameters and σ contains param-
eters characterizing within individual variation, and bi is a s × 1 vector of
random-effects for individual i. We assume that bi ∼ N(0, D), where D is
an unstructured covariance matrix. Given bi, we assume that yi1, · · · , yini

are
conditionally independent. We consider non-ignorable missing responses, i.e.,
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the distribution of ri may depend on the unobserved values (yi,mis,yi,cen) or
on the unobservable random effects bi.

Let θ be the collection of all parameters. All the observed data are

{(yobs,i, zi, ci, ri), i = 1, . . . , n}.

Consider a non-ignorable missing data model f(ri|yi, zi, ci,φ) where the
missingness of the response may depend on the missing or censored values
(yi,mis,yi,cen). The observed data likelihood can be written as

Lo(θ) =
n∏

i=1

[∫ ∫ ∫ 
ni∏

j=1

f(yij |zij ,bi,θ)1−cijF (d|zij ,bi,θ)cij


×f(bi|θ)f(ri|yi, zi, ci,φ) dyi,mis dyi,cen dbi

]
,

where

F ( d | zij ,bi,θ) =
∫ d

−∞
f(yij |zij ,bi,θ) dyij .

Since the observed data likelihood is intractable, we can again consider a
Monte Carlo EM algorithm for likelihood inference. Let θ(k) be the param-
eter estimates from the k-th EM iteration. The E-step for individual i at the
(k + 1)st EM iteration can be written as

Qi(θ|θ(k)) =
∫ ∫ ∫ [{

log f(yi|zi,bi,θ) + log f(bi|θ)

+ log f(ri|yi, zi, ci,φ)
}

×f(ycen,i,ymis,i,bi|yobs,i, zi, ci, ri,θ
(k))
]

dbi dycen,i dymis,i.

To approximateQi(θ|θ(k)) using a Monte Carlo method, we may again use the
Gibbs sampler to generate samples of the “missing data” (ycen,i,ymis,i,bi)
from the distribution f(ycen,i,ymis,i,bi|yobs,i, zi, ci, ri,θ

(t)) by iteratively
sampling from the full conditionals f(ycen,i|yobs,i,ymis,i, zi,bi, ci, ri,θ

(k)),
f(ymis,i |yobs,i,ycen,i, zi,bi, ci,θ

(k)), and f(bi|yi, zi, ci, ri,θ
(k)). The method

is similar to that in Chapter 4 so the detail is omitted here.

When a time-dependent covariate zi is also measured with errors, a similar
likelihood method can be considered. For example, suppose that we consider a
classical measurement error model for covariate zi, as in previous sections, and
the missingness of the response is assumed to depend on the random effects in
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the models. Then, we have the following observed-data likelihood

Lo(θ) =
n∏

i=1

[∫ ∫ ∫ 
ni∏

j=1

f(yij |ai,bi,θ)1−cijF (d|ai,bi,θ)cij


×f(zi|ai,θ)f(ai|θ)f(bi|θ)f(ri|ai,bi,φ) dyi,cen dai dbi

]
.

An EM algorithm or computationally more efficient approximate methods,
similar to those in the previous sections, can be then developed. The details
are omitted here.

Censoring and Time-to-Event

In some applications, when modeling the longitudinal process, we also need
to model a time-to-event process, such as time to dropout and time to death.
In these situations, joint modeling of the longitudinal process and the time-
to-event process is often required since the two processes are associated. For
example, inference for the longitudinal model must incorporate the time-to-
dropout model if the dropouts are informative. In this section, we briefly dis-
cuss joint inference for a mixed effects model with censored response and
a time-to-event model. Survival models or time-to-event models will be de-
scribed in details in Chapter 7. In Chapter 8, we will provide a more compre-
hensive discussion of joint models for longitudinal data and survival data, so
we skip the details here.

Note that here both the longitudinal response and the event time may be cen-
sored, so we have two censored processes which must be taken into account
simultaneously. We focus on longitudinal responses with left censoring and
survival data with right censoring. Let si = (si1, . . . , sim)T be a vector of
censored response indicators for the longitudinal process such that sij = 1 if
yij is censored and 0 otherwise. Let ri = (ri1, . . . , rim)T be a vector of event
indicators such that rij = 1 if the event has happened by time tij for individual
i and rij = 0 otherwise.

Let Ti be the time to an event for individual i. In many cases in practice, the
distribution of event time Ti may depend on the random effects bi in the lon-
gitudinal model. For example, in a longitudinal study, time to dropout of an
individual in the study may be related to the initial intercept and slope of this
individual’s longitudinal trajectory, such as the initial viral load level and de-
cay rate in an AIDS study. Thus we may assume the following frailty model
for modeling the time to the event of interest:

λ(ti|zi,bi) = λ0(ti) exp(γT
1 zi + γT

2 bi), (6.21)

where λ(ti|zi,bi) is a hazard function, λ0(ti) is an unspecified baseline hazard
function, and γ1 and γ2 are vectors of unknown parameters (see Chapter 7 for
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more details of this survival model). We assume that the longitudinal response
yi and the event process ri are conditionally independent given the random
effects bi in the longitudinal model.

The observed data are

{(yobs,i, ri, zi, si), i = 1, 2, · · · , n}.

The joint likelihood for the observed data can be written as

Lo(θ) =
n∏

i=1

[∫ ∫ ∫
f(yi|zi,bi,β,σ)f(bi|D)

×f(ri|zi,bi,γ)f(si|yi,φ) dyi,cen dbi

]
,

where

f(ri

∣∣zi,bi,γ) =
m∏

k=1

f(rik
∣∣ri0, · · · , ri,k−1; zi,bi,γ),

f(rik
∣∣ri0, · · · , ri,k−1; zi,bi,γ) = prik

ik (1− pik)1−rik .

pik = 1− exp
[
− exp(γ0k + γT

1 zi + γT
2 bi)

]
.

We can again use a Monte Carlo EM algorithm to obtain the MLE of θ, but the
computation is highly intensive. We will present some details in Chapter 8 for
similar joint models.

For likelihood methods addressing censoring, missing data, and measurement
errors simultaneously, the major difficulties are computational challenges and
potential identifiability problems. Monte Carlo EM algorithms for joint like-
lihood estimation can be computationally very intensive, so computationally
much more efficient approximate methods based on linearization procedures
or Laplace approximations are extremely valuable for these problems. In fact,
sometimes these approximate methods may be the only choice since exact like-
lihood estimation may be computationally infeasible. For avoid parameter or
model non-identifiability, one should avoid building too complicated models
or impose some restrictions on parameter space such as diagonal covariance
matrices.

The foregoing methods may also be extended to mixed effects models with
censored covariates. Such an extension is conceptually straightforward, but the
implementations may be very tedious due to intensive computation.

6.5 Appendix

In this Appendix, we provide detailed derivations of some results for the EM
algorithms in Section 6.3, following Wu (2002, 2004). To simplify presenta-
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tion, we focus on the following quadratic LME model for the response

yi = X̃iβ + Z̃ibi + ei

= xT
ijβ

(1) + x̃ijβ
(2)xT

ijαi + xT
ijbi + eij ,

where x̃ij = (tij , t2ij), β
(1) = (β1, β2, β3)T , and β(2) = (β4, β5)T .

We first consider the M-step. The updated estimates in the M-step of the EM
algorithm can be obtained as follows. To facilitate the maximization procedure,
we can write Qi(θ|θ(k)), the conditional expectation of the complete-data log-
likelihood given the observed data and current estimates at k-th EM iteration,
as follows

Qi(θ|θ(k)) = E(lc(θ)|qi, ci, zi;θ(k))
= h1(β, σ2) + h2(δ2) + h3(α, A) + h4(B).

The first part contains the parameters β and σ2:

h1(β, σ2) = −1
2

n∑
i=1

ni log(2πσ2)− 1
2σ2

n∑
i=1

E
[
(yi − X̃iβ − Z̃ibi)T

×(yi − X̃iβ − Z̃ibi)
∣∣ qi, ci, , zi, θ̂

(k)
]
.

The updated estimates β̂
(k+1)

and σ̂2(k+1) can be obtained from the equations

∂h1(β, σ2)/∂β = 0, ∂h1(β, σ2)/∂σ2 = 0.

The second part contains the parameter δ2:

h2(δ2) = −1
2

n∑
i=1

ni log(2πδ2)

− 1
2δ2

n∑
i=1

ni∑
k=1

E
(
(zik − uT

ikαi)2|qi, ci, zi, θ̂
(k)
)
,

and the updated estimate δ̂2(k+1) can be obtained from the equation

∂h2(δ2)/∂δ2 = 0.

The third part contains the parameters α and A:

h3(α, A) = −p
2

log(2π|A|)

−1
2
E
(
(αi −α)TA−1(αi −α)|qi, ci, zi, θ̂

(k)
)
,

and the updated estimates α̂(k+1) and Â(k+1) can be obtained from the equa-
tions

∂h3(α, A)/∂α = 0, ∂h3(α, A)/∂A = 0.
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The fourth part contains parameters B:

h4(B) = −p
2

log(2π|B|)− 1
2
E(bT

i B
−1bT

i |qi, ci, zi, θ̂
(k)

),

and the updated estimate B̂(k+1) can be obtained from the equation

∂h4(B)/∂B = 0.

Note that, in the foregoing equations, we need to compute some conditional
expectations, which are given below.

To compute the conditional expectations in the foregoing equations, note that

(αi,yi, zi) ∼ N(µαi
,Σαi

),

where

µαi
=

 α
µ2

Uiα

 , Σαi
=

 A ΣT
21 ATUT

i

Σ21 Qi ΣT
32

UiA Σ32 UiAU
T
i + σ2I

 ,

Ui = (ui1, · · · ,uini
)T , µ2 = (µ2(1), · · · , µ2(ni))T , Σ21 = (Σ21(j, k)), Σ32 =

(Σ32(j, k)), with

µ2(k) = xT
ikβ

(1) + x̃T
ikβ

(2)xT
ikα,

Σ21(j, k) = x̃T
ikβ

(2)xT
ikA,

Qi = x̃T
ijβ

(2)xT
ijAxikβ

(2)x̃T
ik + xT

ijBxik,

Σ32(j, k) = x̃T
ijβ

(2)xT
ijAxik.

We also have
(bi,yi, zi) ∼ N(µbi

,Σbi
),

where

µbi
=

 0
µ2

Uiα

 , Σbi
=

 B BT Z̃T
i 0

Z̃iB Qi ΣT
32

0 Σ32 UiAU
T
i + σ2I

 .

Based on the above results, the conditional expectations and conditional covari-
ancesE(αi|yi, zi,θ), E(bi|yi, zi,θ), Cov(αi|yi, zi,θ), and Cov(bi|yi, zi,θ)
can be computed using well-known properties of multivariate normal distribu-
tions.

To compute E(αiα
T
i |yi, zi,θ) and E(bibT

i |yi, zi,θ), note that

E(αiα
T
i |yi, zi,θ) = E(αi|yi, zi,θ)E(αi|yi, zi,θ)T

+ Cov(αi|yi, zi,θ),
E(bibT

i |yi, zi,θ) = E(bi|yi, zi,θ)E(bi|yi, zi,θ)T

+ Cov(bi|yi, zi,θ).
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To compute the observed information matrix I(qi, ci, zi; θ̂), note that

∂l(i)c (θ)/∂α = −A−1(αi −α),

∂l(i)c (θ)/∂β(1) = − 1
σ2

ni∑
j=1

eijxij ,

∂l(i)c (θ)/∂β(2) = − 1
σ2

ni∑
j=1

eijx̃ijα
T
i xij ,

∂2l(i)c (θ)/∂α∂αT = A−1,

∂2l(i)c (θ)/∂β(1)∂β(1)T = − 1
σ2

ni∑
j=1

xijxT
ij ,

∂2l(i)c (θ)/∂α∂αT =
1
σ2

ni∑
j=1

(x̃ijα
T
i xij)xT

ijαix̃T
ij ,

∂2l(i)c (θ)/∂β(1)∂β(2)T =
1
σ2

ni∑
j=1

(x̃ijα
T
i xij)xT

ij ,

∂2l(i)c (θ)/∂β(2)∂β(1)T =
1
σ2

ni∑
j=1

xijxT
ijαix̃T

ij .

Therefore, the observed information matrix can be computed using the condi-
tional expectations given above.

For the EM algorithm in Section 6.3.1, the expressions of the M-step are similar
as above. For the E-step, note that

(αi,yi, zi) ∼ N(µαi
,Σαi

),

where

µαi
=

 α
gi(β,bi)
Uiα

 ,

Σαi
=

 A βrA
T uijX̃

T
i(2) ATUT

i

βrX̃i(2)uT
ijA Qi UiA

T uijX̃i(2)βr

UiA X̃T
i(2)u

T
ijAU

T
i βr UiAU

T
i + σ2I

 ,

Qi = X̃i(2)uT
ijAuijX̃

T
i(2)β

2
r + Z̃iDZ̃

T
i + δ2I,

and Ui = (ui1, · · · ,uini
)T . We also have

(bi,yi, zi) ∼ N(µbi
,Σbi

),
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where

µbi
=

 0
gi(β,bi)
Uiα

 ,

Σbi
=

 D DT Z̃T
i 0

Z̃iD Qi UiA
T uijX̃i(2)βr

0 X̃T
i(2)u

T
ijAU

T
i βr UiAU

T
i + σ2I

 .

Then, the conditional expectations and the conditional covariance matrices
E(αi|yi, zi,θ), E(bi|yi, zi,θ), Cov(αi|yi, zi,θ), and Cov(bi|yi, zi,θ) can
be computed using well-known properties of multivariate normal distributions.



CHAPTER 7

Survival Mixed Effects (Frailty)
Models

7.1 Introduction

In practice we are often interested in modeling the time to an event of interest.
For example, in a longitudinal study some subjects may drop out before the
end of the study, so one may be interested in finding any possible relationship
between dropout times and covariates such as age and gender (e.g., are younger
subjects more likely to drop out earlier?). Other common events of interest
include time to death, time to infection of a disease, time to a car accident,
time to completion of a task, etc. These types of data are called event-time
data or survival data. The analysis of event-time data or survival data is called
survival analysis. Survival data or event time data are very common in practice.
For simplicity, in this chapter we will often treat the event as “death”, but the
event can be defined in a much broader sense (e.g., dropout, infection, accident,
etc.).

There are some special characteristics of survival data:

• survival data may be censored. For example, the event of interest may not be
observed for some subjects in the study, possibly due to subjects’ dropouts,
loss of follow-up, or early termination of the study.

• survival data are often skewed, and many data are skewed to the right. So
survival data may not follow symmetric distributions such as the normal
distributions.

• survival data may have unequal follow-up times. For example, subjects may
enter the study at different times.

In the analysis of survival data or event-time data, these special features must
be incorporated, so special statistical methods are often required. Figure 7.1
shows typical survival data for four subjects and how the data may be censored:
one event time is censored due to early termination of the study, the other
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Figure 7.1 Survival data for four individuals. The event times for two individuals are
observed, while the event times for the other two individuals are censored (one censor-
ing is due to the termination of the study while the other censoring is possibly due to
dropout).

event time is censored possibly due to dropout or loss of follow-up, while the
other two event times are observed. So the observed survival data for these four
subjects consist of two observed event times and two censoring times.

In survival regression models, our goal is to find any possible relationship be-
tween survival times and important covariates. A common approach is to model
the hazard (or risk) of the event (see definition of hazard in Section 7.2.1),
rather than the mean of the response as in classical regression models, incor-
porating censoring in the data. Thus, statistical inference for survival regres-
sion models typically requires special considerations. Semiparametric regres-
sion models, such as the Cox proportional hazards models, are particularly
popular in survival analysis.

In some applications, survival data may be clustered. For example, in a multi-
center study survival data from the same center may be more similar than data
from different centers; people living in the same neighborhood may have more
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similar records of car accidents than people living in different neighborhoods;
patients’ survival rates may differ substantially across different hospitals but
may be similar within the same hospitals, and so on. In these cases, each cen-
ter or neighborhood or hospital may be viewed as a cluster. While survival
data between different clusters may be independent, survival data within the
same cluster may be more similar so they may be correlated. In the analysis of
clustered survival data, one approach is to introduce random effects to repre-
sent cluster effects or variations between clusters and to incorporate correlation
within the same clusters since the same cluster shares the same random effects.
This leads to survival models with random effects, or survival mixed effects
models, or frailty models.

In a survival mixed effects regression model, covariates may be missing or may
be measured with errors. In these cases, special statistical methods are often
required due to special features of survival data and models. In this chapter, we
first give a brief review of survival models and methods, and then we discuss
frailty models with missing data and measurement errors. In Chapter 8, we will
consider joint inference of survival models and longitudinal models.

7.2 Survival Models

There have been extensive developments of statistical models and methods for
the analysis of survival data or event time data. Due to the nature of survival
data, nonparametric and semiparametric models are widely used, since these
models do not make distributional assumptions for the survival data. Paramet-
ric models are also used in survival analysis, and these models may be more
efficient than nonparametric or semiparametric models if the distributional as-
sumptions hold. In the following sections, we give a brief review of com-
monly used nonparametric, semiparametric, and parametric survival models
and methods. More comprehensive discussions of survival models and meth-
ods can be found in Fleming and Harrington (1991), Andersen et al. (1993),
Collett (2003), Lawless (2003), and Cook and Lawless (2007).

Let T be the time to an event of interest, called survival time, such as the time
to dropout or time to death. Suppose that there are n individuals in the sample
with independently observed survival times t1, t2, · · · , tn. We may arrange the
distinct survival times in ascending order: t(1) < t(2) < · · · < t(r), where
r ≤ n since there may be ties. In practice, some of the survival times tj’s may
be censored. We first focus on right censored data, i.e., for an individual with
censored data the observed time tj is the censoring time, with the unobserved
true survival time known to be larger than the censoring time. We assume that
the censoring is random or non-informative in the sense that the (true) survival
time is independent of the censoring time, i.e., individuals with censored data
may be viewed as a random sub-sample.
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For individual i, let si be the true survival time, which may not be observed
for some individuals due to censoring, and let ci be the censoring time if the
survival time is censored. Then, the observed survival times are

ti = min(si, ci), i = 1, 2, · · · , n. (7.1)

Let

δi = I(si ≤ ci) =
{

1 if an event is observed for individual i
0 if event time is right censored for individual i

be the censoring indicator. Then, the observed data can be written as

{(ti, δi), i = 1, 2, · · · , n}, (7.2)

i.e., for each individual we either observe a survival time or observe a censoring
time and the censoring status.

7.2.1 Nonparametric Methods

In survival analysis, the survival function and the hazard functions play im-
portant roles. In this section, we briefly introduce these concepts and related
estimates and properties. The survival function is the probability that an indi-
vidual survives to some time beyond time t, i.e.,

S(t) = P (T ≥ t) = 1− F (t), t > 0,

where F (t) = P (T < t) is the usual cumulative distribution function (cdf).
The survival function summarizes the survival experience of the event-time
process.

Given observed data t(1) < t(2) < · · · < t(r), let nj be the number of individ-
uals who have not experienced any events before time t(j) (i.e., the number of
individuals who are at risk at time t(j)), and let dj be the number of individuals
who experience the event at time t(j). Then, the survival function S(t) can be
estimated by the following nonparametric estimator Ŝ(t), called Kaplan-Meier
estimator,

Ŝ(t) =
k∏

j=1

(
nj − dj

nj

)
, for t(k) ≤ t < t(k+1), k = 1, 2, · · · , r, (7.3)

with Ŝ(t) = 1 for t < t(1) and the assumption that t(r+1) = ∞. The standard
error of the estimated survival function is given by

SE(Ŝ(t)) = Ŝ(t)

(
k∑

i=1

dj

nj(nj − dj)

)1/2

.

Note that, when there is no censoring, the Kaplan-Meier estimate reduces to
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the empirical survival function Ŝ(t) = S̃(t) = 1 − F̃ (t) where F̃ (t) is the
empirical cdf.

In survival regression models, a popular approach is to model the hazard func-
tion, rather than the mean functions as in classical regression models. The haz-
ard function is defined as

h(t) = limit∆t→∞
P (t ≤ T ≤ t+ ∆t | T ≥ t)

∆t
, t > 0,

which is the risk or hazard of death (or event) at time t, i.e., the probability
that an individual dies at time t given that he/she has survived to time t. In
other words, the hazard function h(t) may be interpreted as the approximate
probability that an individual, who is alive on day t, dies in the following day.
The cumulative hazard function is defined as

H(t) =
∫ t

0

h(u)du, t > 0.

It is easy to see that the relationships between survival function, hazard func-
tion, and cumulative hazard function are

f(t) = h(t)S(t), h(t) = − d

dt
(logS(t)) , H(t) = − logS(t), (7.4)

where f(t) is the probability density function of T . Thus, a model based on one
of the three functions may also be expressed in terms of another function. The
choice may be based on simplicity of the formulation and easy interpretation.

The probability distribution for the observed data (ti, δi) is given by

f(ti, δi) ∝ f(ti)δiS(ti)1−δi = h(ti)δiS(ti). (7.5)

So the log-likelihood for individual i is given by

li = δi log f(ti) + (1− δi) logS(ti), (7.6)

which can be used for likelihood inference.

Often we wish to compare the survival experiences of two groups, such as a
treatment group and a control group. In this case, a commonly used test is the
so-called (weighted) log-rank test. There are different versions of this test. The
test statistics of the log-rank tests can be expressed as weighted (and scaled)
sums of the differences between the observed number of death and the ex-
pected number of death. One can choose appropriate weights to emphasize
early or late survival differences between the two groups (Fleming and Har-
rington 1991; Wu and Gilbert 2002). The test statistics asymptotically follow
χ2-distributions under the null hypothesis of no survival difference between
the two groups.

Both the Kaplan-Meier estimate of the survival function and the log-rank test
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for survival differences are nonparametric since they do not require any dis-
tributional assumptions for the survival data.

7.2.2 Semiparametric Models

In survival regression models, we wish to determine if the variation in subjects’
survival experiences may be partially explained by covariates. In survival anal-
ysis, a popular approach is to model the hazard function rather than the mean
of the survival times as in classical regression models. Since a hazard func-
tion may be complicated, we can avoid a parametric assumption and allow the
hazard function to be nonparametric. Then, one may link the hazard function
to covariates xi through the usual (parametric) linear predictor xT

i β, which
is sometimes called a risk score or prognostic index in survival analysis. This
leads to a semiparametric regression model.

A widely used semiparametric survival regression model is the following Cox
proportional hazards model (Cox 1972)

hi(t) = h0(t) exp(xT
i β), or Si(t) = S0(t)exp(xT

i β), (7.7)

where h0(t) is an unspecified baseline hazard function, β is a vector of un-
known regression parameters, and xi = (xi1, · · · , xip)T is a vector of covari-
ates, i = 1, 2, · · · , n. The baseline hazard function h0(t) may be interpreted as
the hazard when all the covariate values are zero (i.e., xi = 0). Note that in the
Cox proportional hazards model (7.7), no distributional assumption is made
for the survival data, so it is very flexible. The assumption in the model is
that the hazards ratio hi(t)/h0(t) does not change over time (i.e., proportional
hazards), which should be checked in a particular application.

Statistical inference for the regression parameters β can be based on the like-
lihood method. The log-likelihood for individual i is given by

li(β) = δi log(f(ti|xi,β)) + (1− δi) log(S(ti|xi,β))
= δi

[
log h0(ti) + xT

i β
]
− exp(xT

i β)H0(ti), (7.8)

where h0(t) and H0(t) are nonparametric functions, and

H0(t) =
∫ t

0

h0(u)du

is the baseline cumulative hazard function. For inference on β, the nonpara-
metric functions h0(t) and H0(t) may be viewed as nuisance parameters. To
avoid estimating these nuisance parameters, inference can be based on the fol-
lowing partial likelihood (Cox, 1972), assuming no ties in the data,

L(β) =
n∏

i=1

{
exp(xT

i β)∑
j∈R(ti)

exp(xT
j β)

}δi
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=
n∏

i=1

{
exp(xT

i β)∑n
j=1 I(tj ≥ ti) exp(xT

j β)

}δi

,

where R(ti) is the set of individuals who are at risk at time ti, i.e., the set of
individuals who are still alive at a time just before ti, and I(tj ≥ ti) is the usual
indicator function. An estimate of β can then be obtained by maximizing the
partial likelihood, e.g., solving the following partial likelihood score equation

u(β) = ∂ logL(β)/∂β = 0

to obtain an estimator β̂, using (say) the Newton-Raphson method.

Standard results for maximum likelihood estimation carry over without mod-
ification to maximum partial likelihood estimation. For example, under some
regularity conditions, we have

√
n(β̂ − β) d−→ N(0, nI−1(β)), as n→∞,

where the information matrix is given by

I(β) = −E
(
∂2 logL(β)
∂β∂βT

)
.

See Fleming and Harrington (1991) and Andersen et al. (1993) for details of
asymptotic results. Approximate variance of β̂ can be obtained based on the
diagonal elements of matrix I−1(β̂).

Model selection or variable selection can be based on the likelihood ratio test
and AIC criteria, similar to classical regression models. However, model diag-
nostics for Cox proportional hazards models are more complicated than that
for classical regression models because of the censoring (usual residuals may
not be easily defined due to censoring). Model diagnostics can still be based
on “residuals”, as in classical regression models, but there are various ways
to define residuals, including the Cox-Snell residuals, the martingale residuals,
the deviance residuals, the Schoenfeld residuals, and score residuals. Collett
(2003) provided a discussion and overview.

In longitudinal studies, some covariates may be measured over time, i.e., some
covariates are time dependent. Let xij(t) be the j-th covariate for individual i
at time t. In this case, the Cox model may be modified as follows

hi(t) = h0(t) exp

 p∑
j=1

xij(t)βj

 , i = 1, 2, · · · , n.

However, in this case the above model is no longer a proportional hazards
model since the hazards ratio hi(t)/h0(t) changes over time. Nevertheless,
statistical inference can still be based on partial likelihoods, similar to that for
the Cox proportional hazards model.
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7.2.3 Parametric Models

Although the semiparametric Cox proportional hazards model (7.7) is widely
used in the analysis of survival data, parametric regression models for survival
data have also been developed. These parametric models assume that the sur-
vival data follow some parametric distributions, and they may be preferred if
the distributional assumptions hold. A major advantage of parametric regres-
sion models is that, if the parametric distributional assumption holds for the
survival data, statistical inference based on the parametric model will be more
efficient than a semiparametric model which makes no distributional assump-
tions. On the other hand, a major advantage of semiparametric models such as
the Cox proportional hazards models is that they are robust against distribu-
tional assumptions.

Weibull Distribution and Model

For modeling survival data, the (parametric) Weibull distribution plays an im-
portant role, similar to the normal distribution in linear regression models in
some sense. The Weibull distribution is popular in survival analysis because

• its hazard function can take a variety of forms, which offers much flexibility
in modeling survival data, and it includes the exponential distribution as a
special case;

• summary statistics such as the median and percentiles can be easily obtained
(in survival analysis the median and percentiles are perhaps more useful in
summarizing data than the mean and standard deviation since survival data
are often skewed);

• it has both the proportional hazards property and the accelerated failure time
property (to be described later).

For these reasons, the Weibull distribution is widely used in survival analysis.

The Weibull distribution, denoted by W (λ, γ), has the following probability
density function (pdf):

f(t) = λγtγ−1 exp(−λtγ), 0 ≤ t <∞,

where λ > 0 is the scale parameter and γ > 0 is the shape parameter. When
the shaper parameter γ = 1, the Weibull distribution reduces to an exponen-
tial distribution. The survival function and the hazard function of the Weibull
distribution W (λ, γ) are given by

S(t) = exp(−λtγ), h(t) = λγtγ−1, 0 ≤ t <∞.

Note that the hazard function h(t) is monotonically increasing for γ > 1 and is
monotonically decreasing for γ < 1. Figure 7.2 shows the probability density
functions and the hazard functions for the Weibull distribution for selected
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Figure 7.2 The probability density function (left figure) and hazard function (right fig-
ure) for Weibull distributions with λ = 1 and γ = 1, 0.5, and 3 respectively.

parameter values. We see that the Weibull distribution can take a variety of
forms and is thus very flexible in modeling survival data.

The Weibull proportional hazards model, which is a parametric survival regres-
sion model, can be written as

hi(t) = h0(t) exp(xT
i β), i = 1, 2, · · · , n, (7.9)

where β = (β1, · · · , βp)T ,xi = (x1i, · · · , xpi)T , and h0(t) is the hazard func-
tion of a Weibull distribution W (λ, γ), i.e.,

h0(t) = λγtγ−1,

which is a parametric function.

Note that, based on the Weibull proportional hazards model (7.9), we have

hi(t) = λγtγ−1 exp(xT
i β) =

[
λ exp(xT

i β)
]
γtγ−1,

which is just the hazard function of the Weibull distribution W (λex
T
i β , γ).

Thus, the effect of covariate xi is to alter the scale parameter from λ to λ exp(xT
i β),

while the shape parameter γ remains unchanged. Note also that, in the Weibull
proportional hazards model (7.9), the hazard functions hi(t) and h0(t) are
parametric, while in the Cox proportional hazards model (7.7), the correspond-
ing hazard functions are nonparametric, although these two types of propor-
tional hazards models have the same form.
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For parametric survival regression models, statistical inference can be based
on standard likelihood methods. For example, the likelihood for the Weibull
proportional hazards model is given

L(β, λ, γ) =
n∏

i=1

(hi(ti))δiSi(ti),

where hi(t) and Si(t) are the hazard function and survival function of the
Weibull distribution respectively. Numerical methods such as the Newton-Raphson
method can then be used to obtain the MLEs of the model parameters.

Accelerated failure time (AFT) models

For both the Cox and Weibull proportional hazards models, we assume that
the hazards ratio hi(t)/h0(t) is constant over time. In practice, however, the
proportional hazards assumption may not be valid, so the Cox and/or Weibull
proportional hazards models may not be appropriate in these situations. An
alternative and popular survival regression model is the so-called accelerated
failure time (AFT) model, which does not require the proportional hazards as-
sumption.

An AFT model may be interpreted as the speed of disease progression. For
example, the effect of a treatment may be assumed to “speed up” or “slow
down” the passage of time, which can be expressed as

ST (t) = SC

(
t

φ

)
, or hT (t) =

1
φ
hC

(
t

φ

)
,

where T denotes the treatment group, C denotes the control group, ST (t) and
hT (t) (SC(t) and hC(t)) are the survival function and hazard function in the
treatment (control) group respectively, and φ > 0 reflects the impact of the
treatment. We call 1/φ the acceleration factor. Thus, if the “event” is death,
“φ < 1” suggests an acceleration in the time to death in the treatment group
compared with the control group. Such an interpretation is very appealing in
practice.

A general AFT model can be written as

hi(t) = exp(−xT
i β) h0

(
t exp(−xT

i β)
)
, i = 1, 2, · · · , n. (7.10)

For a parametric AFT model, the following alternative log-linear representa-
tion is widely used

log(Ti) = xT
i β + σεi, i = 1, 2, · · · , n, (7.11)

where σ is a scale parameter and εi’s are random errors. If we assume that εi
follows a parametric distribution, we have a parametric AFT model.

Different choices of the distributions for εi lead to different AFT models. The
following are three commonly used parametric AFT models. One common
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choice for the distribution of εi is the Gumbel distribution, which is an extreme
value distribution with survival function and hazard function given by

S(t) = exp(−et), h(t) = et, −∞ < t <∞.

If εi follows the Gumbel distribution, the survival time Ti follows a Weibull
distribution. Thus, the Weibull distribution has both the proportional hazards
property and the accelerated failure time property, which is very appealing and
makes the Weibull survival model very attractive.

Another common choice for the distribution of εi is the standard normal distri-
butionN(0, 1). If εi followsN(0, 1), the survival time Ti follows a log-normal
distribution, whose survival functions are given by

S0(t) = 1− Φ
(

log(t)− β0

σ

)
, Si(t) = 1− Φ

(
log(t)− xT

i β

σ

)
.

The third common choice for the distribution of εi is the logistic distribution,
such as a logistic distribution with mean zero and variance π2/3 which has the
survival function and hazard function given respectively by

S(t) =
1

1 + exp(t)
, h(t) =

1
1 + exp(−t)

.

If εi follows a logistic distribution, the survival time Ti follows a log-logistic
distribution, whose survival function is given by

Si(t) =
1

1 + exp[(log(t)− xT
i β)/σ]

.

The foregoing three parametric AFT models are perhaps most commonly used
in practice.

Inference for parametric AFT model (7.10) or (7.11) can be based on the like-
lihood method. The likelihood is given by

L(β, σ) =
n∏

i=1

(fi(ti))
δi (Si(ti))1−δi ,

where fi(t) and Si(t) are the parametric density function and survival func-
tion for individual i respectively. The MLE of (β, σ) satisfies the following
equation

∂ logL(β, σ)
∂(β, σ)

= 0,

which may be solved using the Newton-Raphson method. Likelihood inference
then proceeds in the usual way, and standard asymptotic properties for MLE
also hold under some regularity conditions. Note that, when the distributional
assumptions hold, likelihood inference based on parametric models leads to
asymptotically most efficient estimates.
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Figure 7.3 Kaplan-Meier estimators for dropout times of subjects with CD4 less than
200 and subjects with CD4 greater or equal to 200.

Example 7.1 Modeling time to dropout

In the AIDS study described in Chapter 1, some patients dropped out of the
study early for various reasons such as drug side-effects. It would be of interest
to explore the characteristics of dropout patients which may be predictive for
times to dropout. For example, CD4 cell count is an important measure of
disease progression, so we may be interested in testing whether baseline CD4
values are predictive for patients’ dropout times. For AIDS patients, a threshold
CD4 value of 200 is commonly used in many studies. Therefore, we wish to
compare the dropout times of patients with CD4 values of 200 or higher to
those with CD4 values less than 200. The dropout times for patients who never
dropped out may be considered as right censored, with the study end time as
the censoring time.

Figure 7.3 shows the Kaplan-Meier estimates of the survival functions of the
dropout times (in days) for the two groups of patients. From the figure, it is
not clear if there is a significant difference between these two groups. In fact,
the log-rank test for testing the survival differences between the two groups
produces a p-value of 0.103, indicating some marginal evidence of survival
differences between the two groups.
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Table 7.1 Parameter estimates of the three survival regression models

Model Par. Est. S.E. p-value Par. Est. S.E. p-value

Cox PH – – – β1 0.042 0.128 0.74
Weibull β0 5.228 0.108 0.000 β1 –0.161 0.093 0.083
Log-Normal β0 5.033 0.149 0.000 β1 –0.241 0.148 0.103

Par.: parameter, Est.: estimate, S.E.: standard error.

In the following, we consider several survival regression models for time to
dropout, with the original baseline CD4 value as a covariate. Each type of
regression models has its advantages and disadvantages. For example, a Cox
proportional hazards model is robust to distributional assumptions but it has
the proportional hazards assumption. A Weibull model may produce more ef-
ficient parameter estimates than a Cox model but it has the distributional as-
sumption. An parametric AFT model does not require the proportional hazards
assumption but it also has the distributional assumption. For comparison, here
we consider the following three models for the times Ti to dropout: a semi-
parametric Cox proportional hazards model, a parametric Weibull model, and
a parametric log-normal AFT model. We standardize CD4 values to avoid very
small/large estimates, which may be unstable.

Here the Cox proportional hazards model can be written as

hi(t) = h0(t) exp(β1zi), i = 1, 2, · · · , n, (7.12)

where h0(t) is a unspecified nonparametric baseline hazard function and zi is
the baseline CD4 value for individual i. The Weibull regression model can be
written in a log-linear form as follows:

log(Ti) = β0 + β1zi + σεi, i = 1, 2, · · · , n, (7.13)

where the random error εi follows the Gumbel distribution so the event time
Ti follows a Weibull distribution. The log-normal AFT model has the same
form as the model (7.13), but with the error εi following a standard normal dis-
tribution N(0, 1). Both the Weibull model and the log-normal AFT model are
parametric regression models, and the Weibull model has both the proportional
hazards and accelerated failure time properties.

Table 7.1 shows the parameter estimates of the regression coefficients in the
three models. Note that the parameters in the semiparametric Cox model and
the Weibull/log-normal models have different interpretations, due to different
model formulations, so they are not directly comparable. Moreover, the Cox
model does not have an intercept term since the intercept is absorbed into the
baseline hazard. However, parameter β1 in all three models measures the ef-
fects of baseline CD4 values on event times, so its estimates and the associated
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p-values under the three models can be used to check if baseline CD4 values
are predictive for times to dropout.

From Table 7.1, there seems a big difference between the p-values of β̂1 un-
der the Cox model and the two parametric models. This is probably because
the two parametric models are more efficient (e.g., smaller standard errors)
than the semiparametric Cox model. The semiparametric Cox model shows no
significant effect of CD4 value on dropout time, while the two parametric mod-
els (Weibull and log-normal) show some evidence of CD4 effects on times to
dropout: patients with higher initial CD4 values appear to have later dropout
times. The estimates of the scale parameter σ are 0.52 (Weibull model) and
0.86 (log-normal model). Model diagnostics, such as residual plots, are needed
to check the assumptions of the models. In conclusion, baseline CD4 values
may be related to times to dropout, but the evidence is not strong.

7.2.4 Interval Censoring and Informative Censoring

Interval Censored Data

In previous sections we assume that the exact survival times and censoring
times can be observed and the censoring is right censoring. In practice, how-
ever, we sometimes do not observe the exact survival times. Instead, we only
know that the event has occurred during a particular time interval. For example,
we may know that a subject in a study dropped out last month but we do not
know the exact dropout day, or we may know that a patient got an infection last
week but we do not know the exact time of infection. In both cases, the exact
event times are not observed, but the event times are known to be in some time
intervals. Such survival data are called interval-censored. In practice, perhaps
most survival data may be viewed as interval-censored since the event times
are often recorded as the nearest day or week or month.

Suppose that, for each individual, information is recorded on whether or not
an event has occurred at scheduled times t1 < t2 < · · · < tk, with t0 = 0
and tk+1 = ∞. Then, an individual who has an event detected at time tj has
an actual or exact event time t between tj−1 and tj , i.e., tj−1 ≤ t < tj . Let
pij = P (tj−1 ≤ Ti < tj) be the probability that individual i experiences an
event in the j-th time interval [tj−1, tj). Let

πij = P (tj−1 ≤ Ti < tj | Ti > tj−1)

be the probability that individual i is free of the event at time tj−1 but has an
event between tj−1 and tj . Then we have

pij = (1− πi1)(1− πi2) · · · (1− πi,j−1)πij , j = 2, 3, · · · , k + 1.

Let rij be an event indicator such that rij = 1 if subject i has an event in
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[tj−1, tj) and rij = 0 otherwise. The likelihood for the observed data can be
written as

L =
n∏

i=1

k+1∏
j=1

p
rij

ij =
n∏

i=1

k+1∏
j=1

[(1− πi1)(1− πi2) · · · (1− πi,j−1)πij ]
rij .

Note that for a proportional hazards model, we have

πij = 1− P (Ti ≥ tj |Ti ≥ tj−1) =
(

Si(tj)
Si(tj−1)

)exp(xT
i β)

.

Likelihood estimation and inference can then proceed in the usual way, based
on the partial likelihood or full likelihood methods.

Informative Censoring

The models and methods for survival analysis in previous sections are based
on the assumption that the censoring is non-informative or random, i.e., the
censoring is not related to any factors associated with the survival times. In
practice, however, sometimes the censoring may be informative. For example,
an individual may drop out from a study because of drug side effects or other
factors associated with the survival times, so individuals with censored survival
times may offer valuable information about the study, and individuals without
censoring may not be representative of the sample or the population. Thus,
in statistical analysis we must incorporate such information in order to avoid
biased results. We may, for example, assume a possible model for the informa-
tive censoring to check if the probability of censoring is related to covariates.
For example, a logistic regression model may be used to model the censoring
indicator. The procedure is similar to non-ignorable missing data problems.

7.3 Frailty Models

7.3.1 Clustered Survival Data

In Section 7.2, the event times or the sample members are assumed to be inde-
pendent, as in cross-sectional studies. In some applications, however, the event
times or the sample members may be correlated. The correlation often arises
because there are clusters in the data, so the event time data in the same clus-
ters may be correlated since they may be more similar than data from different
centers, although event time data from different clusters are still assumed to be
independent.

The following examples show how clustered data may arise in practice: (i) in a
multi-center study data from the same center may be correlated but data from
different centers may be independent (here each center may be viewed as a
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cluster); (ii) in a sample survey individuals from the same family may be cor-
related but individuals from different families may be independent (here each
family may be viewed as a cluster); (iii) in a large-scale medical study patients
from the same hospital may have similar survival rates (here each hospital may
be viewed as a cluster); (iv) in a study with repeated measurements, such as
multiple car accidents caused by the same individuals in a given year, the event
data on the same individual may be correlated (here each individual may be
viewed as a cluster). In these examples, the survival data from the same clus-
ters may be correlated because each cluster shares the same characteristics, but
survival data from different clusters may be independent. These survival data
are called clustered survival data.

For clustered survival data, although the data within the same cluster may be
similar, data from different clusters are typically more different, i.e., there is
often a large variation between different clusters. In analysis of clustered sur-
vival data, we can use random effects to represent cluster-effects or variations
between clusters. These random effects also incorporate correlation within the
same clusters because the random effects are common to all data within the
same cluster, which induces some dependence among the data in the same clus-
ter. A survival model with random effects is often called a frailty model (Clay-
ton and Cuzick 1985; Oakes 1989; Liang, Self, Bandeen-Roche, and Zeger
1995; Li and Thompson 1997). Here a random effect is called a frailty, be-
cause individuals with a larger (smaller) value of the effect will have a larger
(smaller) value of the hazard function, i.e., they are more (less) likely to die or
experience an event sooner so are considered to be more (less) frail.

As in GLMM or NLME models, the random effects or frailties in a survival
model for clustered data play two roles:

• they incorporate the correlation between the survival data within the same
clusters because the data in the same cluster share the same traits;

• they incorporate the variation in the survival data between different clusters
since survival data may vary substantially across clusters.

Thus, random effects in a frailty model have similar interpretations as that in
GLMM and NLME models. Moreover, frailty models are also nonlinear mod-
els, similar to GLMM and NLME models. The unique characteristics of sur-
vival or frailty models are that the data are often censored and the assumed
distributions in parametric models are not necessarily in the exponential fam-
ily. Moreover, semiparametric models are perhaps more commonly used in
survival or frailty models in which one models the hazard functions rather than
the mean functions of the responses, without distributional assumptions for the
response data.

Statistical inference for frailty models is often based on the likelihood or partial
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likelihood methods. The computation can be more tedious for frailty models
than for GLMM and NLME models, especially for semiparametric Cox pro-
portional hazards models where the baseline hazard functions are unspecified.
In the next section, we provide more details of frailty models and methods for
inference.

7.3.2 Models and Inference

Consider clustered survival data. For individual j in cluster i, let sij be the
true survival time, some of which may not be observed due to censoring, and
let cij be the censoring time, j = 1, 2, · · · , ni; i = 1, 2, · · · , n, where ni is
the number of individuals in the i-th cluster. The observed survival times are
tij = min(sij , cij), which are either true survival times or censoring times.
Let δij = I(sij ≤ cij) be the censoring indicator function. The observed data
are

{(tij , δij), j = 1, 2, · · · , ni; i = 1, 2, · · · , n}.

Let hij(t),xij , zij be respectively the hazard function and covariate vectors
for individual j in cluster i. To model clustered survival data, we can extend
the Cox proportional hazards model to a frailty model by introducing random
effects as follows

hij(tij |bi,β) = h0(tij) exp(xT
ijβ + zT

ijbi), (7.14)
bi ∼ N(0, D), i = 1, 2, · · · , n, j = 1, 2, · · · , ni,

where bi contains random effects for cluster i. Note that the distribution of the
random effects bi is not restricted to a normal distribution. We assume that,
conditional on the random effects bi, the event times Tij are independent. A
commonly used class of frailty models is the multiplicative frailty model with
zij = 1 and exp(bi) ∼ gamma(λ, λ).

Statistical inference for frailty model (7.14) can be based on the likelihood
methods. Assuming non-informative censoring, the probability distribution for
the observed data (tij , δij) of individual j in cluster i, given the random effects
bi, can be written as

f(tij , δij |bi,β) ∝ f(tij |bi,β)δijS(tij |bi,β)1−δij

= hij(tij |bi,β)δijS(tij |bi,β), (7.15)

suppressing the covariates. So the corresponding log-likelihood can be written
as

lij(β) = δij log(f(tij |bi,β)) + (1− δij) log(S(tij |bi,β)) (7.16)
= δij

[
log h0(tij) + xT

i β + zT
ijbi

]
− exp(xT

i β + zT
ijbi)H0(tij).
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Inference can again be based on the partial likelihood (Klein 1992), but the
computation can be challenging due to the unobservable random effects.

To model clustered survival data based on an accelerated failure time model,
the corresponding frailty model can be written in the following log-linear form

log(Tij) = xT
i β + zT

ijbi + εij , (7.17)
bi ∼ N(0, D), i = 1, 2, · · · , n, j = 1, 2, · · · , ni.

If εij is assumed to follow a parametric distribution, inference can be based on
the following likelihood

L(β, D) =
n∏

i=1

∫ 
ni∏

j=1

hij(tij)δijSij(tij)f(bi|D)

 dbi. (7.18)

MLE of (β, D) can be obtained by maximizing L(β, D). Usual asymptotic
results hold for the MLE under some regularity conditions.

For a parametric frailty model, such as that based on the Weibull proportional
hazards model or a parametric accelerated failure time model, likelihood infer-
ence can be based on the full likelihood such as (7.18). For a semiparametric
frailty model, such as that based on the Cox proportional hazards model, likeli-
hood inference can be based on the partial likelihood. For either semiparamet-
ric or parametric frailty models, the EM algorithm can be used for estimation
where the unobservable random effects are treated as missing data (Nielsen et
al. 1992). Likelihood computation for frailty models can be computationally
very intensive due to the unobservable random effects and the nonparametric
hazard functions.

7.4 Survival and Frailty Models with Missing Covariates

7.4.1 Survival Models with Missing Covariates

In survival regression models, covariates may contain missing data, as in other
regression models. The complete-case method, which discards all incomplete
observations, may lead to biased or inefficient estimates. So the missing data
must be addressed appropriately. Statistical methods for missing covariates in
survival regression models are similar to those for nonlinear or generalized
linear models, but the computation can become more challenging due to the
natures of survival models. In particular, for Cox proportional hazards mod-
els, one models the hazard function rather than the mean function, leading to
more computational challenges. In this section, we focus on Cox proportional
hazards models with missing covariates, and consider likelihood methods for
inference, following Herring and Ibrahim (2001). We assume that the missing
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data are missing at random or ignorable and that the censoring distribution is
independent of missing data.

Consider the following Cox proportional hazards model

hi(t) = h0(t) exp(xT
i β), i = 1, 2, · · · , n, (7.19)

where the baseline hazard function h0(t) is unspecified. Suppose that covari-
ates xi contain missing values. We write xi = (xmis,i,xobs,i) as in previ-
ous chapters. To address missing data in covariates xi, we assume a covari-
ate distribution with density f(xi|α). The likelihood for the observed data
(xobs,i, ti, δi) for individual i can be written as

Li(θ) ∝
∫
h(ti|xmis,i,xobs,i,θ)δiS(ti|xmis,i,xobs,i,θ)

×f(xmis,i,xobs,i|α) dxmis,i, (7.20)

where θ = (β, h0(t),α), and the completely observed covariates are sup-
pressed. The observed-data likelihood Li(θ) involves an intractable integral.

When covariates xi are categorical, the integral in (7.20) reduces to a summa-
tion, which simplifies the computation. When covariates xi are continuous, we
can use a Monte Carlo EM algorithm for likelihood computation, similar to
that in Chapter 4. As shown in Herring and Ibrahim (2001), the computation
of E-step in this case can be quite tedious, so they proposed an approximation
based on a first-order Taylor expansion which simplifies computation in the E-
step. The M-step is like a complete-data maximization, so usual optimization
procedures can be used.

As in Chapter 4, the Monte Carlo EM algorithm approximates the expectation
in the E-step by a Monte Carlo mean, where the missing data are substituted by
many simulated values from the predictive distribution of the missing covari-
ates given the observed values and current parameter estimates. Specifically, at
the k-th iteration of the EM algorithm, one simulates large samples of xmis,i

from the conditional distribution f(xmis,i|xobs,i, ti, δi,θ
(k)). To simulate the

desired values, note that

f(xmis,i|xobs,i, ti, δi,θ
(k)) ∝ f(ti, δi|xi,θ

(k))f(xi|α(k)),

where
f(ti, δi|xi,θ

(k)) ∝ h(ti|xi,θ
(k))δiS(ti|xi,θ

(k)).
Thus, we can use the Gibbs sampler along with rejection sampling methods to
simulate samples from the conditional distribution f(xmis,i|xobs,i, ti, δi,θ

(k)).
Details can be found in Herring and Ibrahim (2001).

For parametric survival models with missing covariates, such as parametric
accelerated failure time models and Weibull proportional hazards models, the
approach is similar and computation may be simpler since there are no non-
parametric components in the models.
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7.4.2 Frailty Models with Missing Covariates

The methods in the previous section can be extended to frailty models with
missing covariates. In a frailty model, we may view the unobservable random
effects as additional “missing covariates”, and then we may apply the methods
in the previous section in a relatively straightforward way. The idea is similar
to the methods for missing covariates in GLMM and NLME models in Chap-
ter 4. In the following, we focus on Cox proportional hazards models with
random effects and missing covariates, and we follow the approach in Herring,
Ibrahim, and Lipsitz (2002). We assume that the missing data are ignorable and
censoring is non-informative.

Let tij ,xij , zij be respectively the event time and covariates from individual j
in cluster i, i = 1, 2, · · · , n, j = 1, 2, · · · , ni. Consider the following frailty
model for clustered survival data

hij(tij |bi,β) = h0(tij) exp(xT
ijβ + zT

ijbi), (7.21)
bi ∼ N(0, D), i = 1, 2, · · · , n, j = 1, 2, · · · , ni,

where the event times are assumed to be conditionally independent given the
random effects. Suppose that covariates xij contain missing values. Let xij =
(xmis,ij ,xobs,ij). The observed data are

{(tij , δij ,xobs,ij , zij), i = 1, 2, · · · , n, j = 1, 2, · · · , ni},

and the observed-data likelihood for cluster i can be written as

Li(θ) =
∫ ni∏

j=1

[ ∫
hij(tij |xmis,ij ,xobs,ij ,bi,β)δij

×Sij(tij |xmis,ij ,xobs,ij ,bi,β)

×f(xmis,ij ,xobs,ij |α) dxmis,ij

]
f(bi|D) dbi, (7.22)

where θ contains all parameters and covariates zij are suppressed. In the fol-
lowing we briefly describe a Monte Carlo EM algorithm for likelihood com-
putation.

By treating the random effects as additional “missing data”, in the E-step of
the k-th EM iteration, we need to simulate large samples of the “missing data”
from the conditional distribution of these “missing data” given the observed
data and current parameter estimates, i.e., f(xmis,ij ,bi|xobs,ij , tij , δij ,θ

(k)).
This Monte Carlo sampling may be accomplished by noting that

f(xmis,ij ,bi|xobs,ij , tij , δij ,θ
(k)) ∝ f(tij , δij |xij ,bi,β

(k))

×f(xij |α(k))f(bi|D(k)).

Therefore, we can use the Gibbs sampler as follows, at the l-th iteration of the
Gibbs sampler,
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• generate a sample x(l)
mis,ij from

f(xmis,ij |xobs,ij , tij , δij ,b
(l−1)
i ,θ(k))

∝ f(tij , δij |xi,b
(k−1)
i ,β(k))f(xmis,ij |xobs,ij ,α

(k))

• generate a sample b(l)
i from

f(bi|x(l)
mis,ij ,xobs,ij , tij , δij ,θ

(k))

∝ f(bi|D(k))
ni∏

j=1

f(tij , δij |x(k)
mis,ij ,xobs,ij ,b

(l−1)
i ,θ(k)).

After a burn-in period for the Gibbs sampling, we obtain a desired sample of
(xmis,ij ,bi) from the conditional distribution f(xmis,ij ,bi|xobs,ij , tij , δij ,θ

(k))
in the k-th EM iteration. Repeating the procedure mk times, we obtain mk in-
dependent samples. Then, we can approximate the expectation in the E-step
by an empirical mean using the simulated values. The M-step is then like a
complete-data maximization, so standard optimization procedures can be used.

When the missing data are non-ignorable, one only needs to specify a non-
ignorable missing data model and then incorporate it in the likelihood. The
approach is similar to that in Chapter 4.

Multiple imputation methods can also be used to address missing covariates in
survival models and frailty models. A major advantage of a multiple imputation
method is that standard complete-data methods can be used, once each miss-
ing value is imputed by several plausible values. To generate proper multiple
imputations, one can use a Bayesian framework and generate xmis,ij from the
following predictive distribution of the missing data given the observed data

f(xmis,ij |xobs,ij , tij , δij) ∝
∫ ∫ ∫

f(tij , δij |xij ,bi,β)f(xij |α)

×f(bi|D)f(θ|η) dxmis,ij dbi dθ,

where θ contains all parameters and η contains hyper-parameters for the prior
distribution f(θ|η). The sampling can be accomplished using the Gibbs sam-
pler or data augmentation methods, as described in Chapter 4.

7.5 Frailty Models with Measurement Errors

The Models

Covariates are often introduced in frailty models to partially explain the vari-
ation in the event time data, but some of these covariates may be measured
with errors. As in GLMM and NLME models, statistical analysis ignoring co-
variate measurement errors in frailty models may lead to biased results (Li and
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Lin 2000), so measurement errors in covariates must be addressed. In this sec-
tion, we focus on covariate measurement errors in Cox models with random
effects, following Li and Lin (2000). We assume that the survival data are right
censored and the censoring is non-informative.

For individual j in cluster i, let sij be the true survival time, which may
not be observed due to censoring, and let cij be the censoring time, j =
1, 2, · · · , ni; i = 1, 2, · · · , n. The observed survival times are tij = min(sij , cij).
Let δij = I(sij ≤ cij) be the censoring indicator function. For simplicity, we
focus on a single univariate error-prone covariate xij . Let x∗ij be the true but
unobserved covariate value for individual j in cluster i, whose observed but
mis-measured value is xij . We assume that xij is a surrogate of x∗ij or that the
measurement error is nondifferential. Let ti = (ti1, ti2, · · · , tini

)T , and define
δi, xi, x∗i , and zi similarly, where zij contains covariates without measurement
errors. Conditional on the random effects bi, we assume that the observed data
{(tij , δij), j = 1, 2, · · · , ni; i = 1, 2, · · · , n} are independent and follow the
following proportional hazards model

λij(t|x∗ij ,bi) = λ0(t) exp(x∗ijβ + zT
ijbi), (7.23)

bi ∼ N(0, D). (7.24)

where the hazard function λij(t|x∗ij ,bi) is related to the unobserved true co-
variate value x∗i rather than the observed but mis-measured value xi.

We consider the following classical measurement error model

xij = x∗ij + εij , (7.25)

where εij i.i.d. ∼ N(0, σ2
e). For likelihood inference, we consider a structural

approach for measurement errors and assume that xi follows a LME model

xi = Uiα+ Vi ai + εi ≡ x∗i + εi, (7.26)

where Ui and Vi are design matrices, α contains unknown population parame-
ters (fixed effects) and ai ∼ N(0, A) are random effects, and εi ∼ N(0, δ2I)
are the measurement errors.

Likelihood Inference

The observed data are

{(ti, δi,xi, zi), i = 1, 2, · · · , n},

and the observed-data likelihood is given by

Lo(θ) =
n∏

i=1

∫
f(ti, δi|x∗i ,bi,θ)f(xi|ai,θ)f(bi|θ)f(ai|θ) dai dbi,
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where θ denotes the collection of all unknown parameters,

f(ti, δi|x∗i ,bi,θ) =
ni∏

j=1

{[
λ0(tij) exp(x∗ijβ + zT

ijbi)
]δij

× exp
(
− Λ0(tij) exp(x∗ijβ + zT

ijbi)
)}
,

and Λ0(t) is the cumulative baseline hazard. Here the observed-data likelihood
Lo(θ) is highly complicated and does not have a closed form expression. Li
and Lin (2000) proposed a Monte Carlo EM algorithm for likelihood estima-
tion, in a way similar to the ones in previous sections (but more complicated).
For computing standard errors, Li and Lin (2000) proposed to use the profile
likelihood method (Hu et al. 1998; Murphy 1995), since there are too many
parameters.

Due to the nonparametric hazards functions and censoring, there are many un-
known parameters in θ, so the above Monte Carlo EM algorithm can be com-
putationally very intensive and may exhibit convergence problems. Therefore,
computationally more efficient approximate methods are highly valuable to
frailty models with measurement errors. These approximate methods can be
developed in a way similar to the ones for GLMM and NLME models with
measurement errors, as described in previous chapters.

Li and Lin (2000) showed that, after adjusted for measurement errors, the orig-
inal frailty model leads to a new (but more complicated) frailty model, which
suggests that ignoring measurement errors in frailty models may lead to mis-
specification of both the fixed effects and the frailty structures. This also allows
some specific bias analysis, in a way similar to GLMMs.





CHAPTER 8

Joint Modeling Longitudinal Data
and Survival Data

8.1 Introduction

As shown in Chapter 7, survival data often arise in longitudinal studies. In prac-
tice, we may need to model a time-to-event process and a longitudinal process
jointly. A common situation is in survival models with time-dependent covari-
ates, in which covariate data may be missing at failure times, so a longitudinal
model for the covariates is required to address missing covariates or covariate
measurement errors. As another example, in modeling longitudinal data with
dropouts, we may also need to model the times to dropout or times to death,
with the objectives of avoiding possible biases in the estimation of the longi-
tudinal model, as well as studying the association between the time to event
and characteristics of the longitudinal trajectories such as initial slopes or in-
tercepts. In both cases, joint modeling of the longitudinal data and the survival
data is required.

In joint modeling of longitudinal data and survival data, the main focus may be
either the longitudinal model, or the survival model, or both models, depending
on the objectives of the studies. When the main focus is on one model, the
other model is then secondary so its parameters may be viewed as nuisance
parameters. In this case, one should focus on correct specification of the main
model and simplify the secondary model to reduce the number of nuisance
parameters and avoid potential parameter non-identifiability. If both models are
of primary interest, we may reduce the number of other secondary parameters
such as the association parameters.

In joint modeling of longitudinal data and survival data, we often have the
following three situations:

• the main focus is on modeling survival data, with modeling longitudinal
data being secondary. This situation may arise, for example, in survival

255



256 MIXED EFFECTS MODELS FOR COMPLEX DATA

models with measurement errors or missing data in time-dependent covari-
ates, where modeling the longitudinal covariate processes is only used to
address measurement errors or missing data (covariate data may be missing
at failure times);

• the main focus is on modeling longitudinal data, with modeling survival
data being secondary. This situation may arise, for example, in the analysis
of longitudinal data with informative dropouts, where a survival model is
only used to address the informative dropouts and is not of primary interest.

• the main focus is on modeling both the longitudinal data and the survival
data, with a goal of understanding the association between the two pro-
cesses. This situation may arise, for example, in AIDS studies where we are
interested in modeling both the viral load process and time to death, and our
goal is to understand the association between the survival times and char-
acteristics of the viral load process. In this case, the survival model and the
longitudinal model are usually linked (e.g., share some parameters).

In all three cases, we must model the longitudinal process and the time-to-event
process jointly, in order to avoid potential bias.

In some cases, the longitudinal and survival models may be linked through
shared parameters or shared variables, leading to so-called shared parameter
models. For example, when a mixed effects model is used to model the lon-
gitudinal process and a frailty model is used to model the event time process
(e.g., the dropout process in the longitudinal study), the two models may share
the same random effects since these random effects characterize the individual-
specific longitudinal process. Alternatively, the two models may be governed
by the same underlying latent process (shared variables). In these cases, the as-
sociation between the longitudinal and survival models is made clear so joint
inference is required.

Sometimes we may also need to model two or more longitudinal processes si-
multaneously. This situation may arise, for example, when the longitudinal pro-
cesses are correlated. For example, in many AIDS studies both viral load and
CD4 are measured repeatedly over time, and these two processes are usually
correlated. We may treat both variables as responses and model them jointly,
with a goal of understanding their association over time, or we may treat one
variable as the response and the other variable as a time-dependent covariate.

A Simple Two-Step Method

For joint inference of several models with shared parameters or shared unob-
served variables, a commonly used simple approach is the so-called two-step
method:

• Step 1: estimate the shared variables or parameters in one model based on
the observed data;
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• Step 2: estimate parameters in the other model separately, with the shared
variables or parameters substituted by their estimates from the first step as
if they were observed values.

Such a simple two-step method is closely related to the regression calibration
method in measurement error literature.

The naive two-step method is simple, and standard statistical software can be
readily used. However, the naive two-step method may lead to biased estima-
tion. Consider the two-step method for joint modeling of longitudinal data and
survival data. In the first step we can estimate the parameters in the longitudi-
nal model separately, and then in the second step we substitute the estimated
shared parameters or variables in the survival model and then proceed with
standard inference. This simple approach may lead to the following problems:
(i) estimation may be biased, especially when the longitudinal process and the
survival process are strongly associated; and (ii) the uncertainty of estimation
in the first step is not incorporated in the second step, so standard errors of the
parameter estimates in the survival model may be under-estimated. Therefore,
a third step is needed to correct the bias and incorporate the estimation un-
certainty in the first step, which may be difficult for some complex problems.
Often, a joint inference is preferred, such as a joint likelihood inference.

Joint Likelihood Method

Statistical inference for joint models can be based on the joint likelihood of
all the observed data. Such an approach is appealing because it provides valid
and reliable inference and the resulting MLEs are asymptotically efficient and
asymptotically normal under the usual regularity conditions. MLEs of all model
parameters can be obtained simultaneously by maximizing the joint likelihood.
Since the likelihood method is a standard approach for inference in mixed ef-
fects models, the joint likelihood method is a natural choice for joint mixed
effects models. So we focus on the joint likelihood method in this chapter.

There are two potential problems for joint likelihood approaches: (i) model or
parameter identifiability may be a potential problem since there are often many
unknown parameters in joint models so the models or parameters may become
non-identifiable in the sense that two sets of different parameters may lead to
the same likelihood; and (ii) computation can be quite challenging, since joint
likelihoods typically involve high-dimensional and intractable integrals. We
will discuss parameter identifiability and computational issues in this chapter.

Missing Data and Measurement Errors

Since missing data and measurement errors are very common in longitudi-
nal studies, in jointly modeling of longitudinal data and survival data, we of-
ten need to address these incomplete data problems. For the joint likelihood
approach, this is relatively straightforward since the joint likelihood methods
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with incomplete data are similar to the ones in previous chapters. A major dif-
ficulty is the computational challenge, since joint models are more complex,
especially joint inferences for GLMM or NLME models and Cox proportional
hazards models. Therefore, computationally more efficient approximate meth-
ods are highly valuable for joint models.

In this chapter, we will mainly focus on joint likelihood methods for joint
mixed effects models. We will also discuss missing data, measurement errors,
and computational issues. Due to space limitation, we will focus on selected
topics rather than a comprehensive overview.

8.2 Joint Modeling for Longitudinal Data and Survival Data

There is an extensive literature on joint modeling for longitudinal data and sur-
vival data. Some recent work includes Tseng, Hsieh, and Wang (2005), Nathoo
and Dean (2008), Ye, Lin, and Taylor (2008), Song and Wang (2008), and Wu
et al. (2008), among others. Tsiatis and Davidian (2004) provided a compre-
hensive review of earlier work. If the longitudinal and survival processes are
unrelated, we can simply model them separately. However, in practice the lon-
gitudinal process and the survival process in the same study are often associ-
ated or linked, so a joint inference is required to avoid biased results.

Sometimes a longitudinal model and a survival model may be from different
studies, but one wishes to borrow information across studies. In this case, a
joint modeling approach may also be desirable. For example, when addressing
measurement errors in time-dependent covariates of a survival model, we may
use external data or data from a similar study to estimate the measurement er-
rors in the covariates. Then a joint modeling approach would be appealing. In
some cases, we may also use the joint model framework to make more efficient
inference on the survival model by incorporating the longitudinal data as aux-
iliary information (e.g., Hogan and Laird 1997; Xu and Zeger 2001; Faucett et
al. 2002).

In the following sections, we consider mixed effects models for modeling the
longitudinal processes. For modeling the survival process, we consider data
with either right censoring or interval censoring.

8.2.1 Joint Models with Right Censored Survival Data

In this section, we consider joint modeling for longitudinal data and survival
data when the survival data are right censored. We focus on the case where
the main interest is in survival modeling, with modeling longitudinal data be-
ing secondary. Thus, parameters in the survival model are of primary interest,
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while parameters in the longitudinal model are usually treated as nuisance pa-
rameters. This situation often arises in modeling survival data with measure-
ment errors or missing data in time-dependent covariates. Here a longitudinal
model is assumed for the time-dependent covariates in order to address mea-
surement error and missing data, so the longitudinal model is secondary.

For individual i, let si be the survival time or event time, subject to right
censoring, i = 1, 2, · · · , n. We assume that the censoring is random or non-
informative. Let ci be the censoring time. Due to censoring, we only observe

ti = min{si, ci},

i.e., we only observe either the true survival time si or the censored time ci .
In the survival times are right censored, we know that the true but unobserved
survival times are greater than the censoring times, i.e., si > ci. Let

δi = I(si ≤ ci)

be the censoring indicator function such that δi = 0 if the survival time for
individual i is right censored and δi = 1 otherwise.

The objective is to model the survival data, with covariates being introduced
in the model to partially explain the variation in the survival data. Consider
a time-dependent covariate with possible measurement errors in the observed
data. Denote the observed covariate value for individual i at time uij by zij =
zi(uij) and denote the corresponding unobserved true covariate value by z∗ij , j =
1, 2, · · · ,mi. Let zi = (zi1, zi2, · · · , zimi

)T , and let xi be other covariates
without measurement errors.

Survival Model

For individual i, let Ti be the time to an event of interest and let ti be its
observed value, which may be right censored. For modeling survival data, we
consider the following model:

λi(t) = λ0(t) exp(z∗i (t)β1 + xT
i β2), i = 1, · · · , n, (8.1)

where β = (β1,β2) are unknown regression parameters. In model (8.1) we
link the hazard function to the unobserved true covariate z∗i (t) rather than the
observed but mis-measured covariate zi(t). We assume that the measurement
errors are non-differential so that

λi(t | z∗i (t), zi(t),xi) = λi(t | z∗i (t),xi).

Statistical inference can be based on the following partial likelihood (Cox
1972, 1975; Kalbfleisch and Prentice 2002)

L∗p =
n∏

i=1

[
exp{z∗i (ti)β1 + xT

i β2}∑n
j=1 exp{z∗j(ti)β1 + xT

i β2}I(tj ≥ ti)

]δi

, (8.2)
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where the survival times are assumed to be independent without ties.

For statistical inference based on the partial likelihood (8.2), the time-dependent
covariate value zi(t) must be available at each event time tj for all individuals.
In practice, however, this is usually not the case since covariate measurement
times usually do not coincide with event times. This leads to missing data in
time-dependent covariates in the survival model. Such missingness may be as-
sumed to be ignorable or MAR since the missingness may not be related to
the missing values. The last-value-carried-forward (LVCF) method for miss-
ing longitudinal data has been widely used to impute the missing covariates,
but it may lead to biased estimation (Prentice 1982). Moreover, the observed
covariates zi may be measured with errors, so the true covariate values z∗i are
unobserved. Therefore, we must address both measurement error and missing
data in the time-dependent covariate zi(t) in survival model (8.1).

Longitudinal Model

For time-dependent covariate zi(t) with measurement errors, we can viewed
the repeated measurements on each individual as replicates, which allows us to
partially address measurement error in the covariate. Assuming the covariate
values change smoothly over time, we can empirically model the covariate
process in order to address both measurement error and missing data. Consider
the following additive classical measurement error model

zi = Uiα+ Vi ai + εi ≡ z∗i + εi, i = 1, . . . , n, (8.3)

where Ui and Vi are known design matrices, α is a vector of fixed-effects
parameters, ai is a vector of random effects, and εi is a vector of measurement
errors for individual i. Assume that ai ∼ N(0, A) and εi ∼ N(0, δ2I) and ai

and εi are independent. We also assume that the true covariates are

z∗i = Uiα+ Vi ai,

which can be chosen empirically, such as a low-order polynomial with random
coefficients, to mimic the “true” covariate process. Ye, Lin, and Taylor (2008)
considered a more flexible semiparametric mixed effects model for the covari-
ate process to address measurement errors. Note that a semiparametric mixed
effects model may be approximated by a parametric mixed effects model.

To address missing data in the covariates at any event times, we can recast
covariate model (8.3) in continuous time:

zi(t) = uT
i (t)α+ vT

i (t)ai + εi(t), i = 1, . . . , n.

Thus, at any event time ti, the unobserved true covariate value can be taken as

z∗i (ti) = uT
i (ti)α+ vT

i (ti)ai.

Ye, Lin, and Taylor (2008) showed in a simulation study that this approach is
better than the naive last-value-carried-forward method.
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Joint Likelihood

The joint likelihood of the survival model (8.1) and the longitudinal model
(8.3) based on all observed data is given by

L(θ) =
n∏

i=1

∫ { [
λ0(ti) exp{z∗i (ti)β1 + xT

i β2}
]δi

× exp
[
−
∫ ti

0

λ0(u) exp{z∗i (u)β1 + xT
i β2}du

]
×f(zi|ai,α)f(ai|A)

}
dai.

The computation for likelihood inference based on the above joint likelihood
can be highly intensive. In Section 8.4.1 we will consider a Monte Carlo EM
algorithm, and in Section 8.4.2 we will consider a computationally more ef-
ficient approximate method based on Laplace approximations. Alternatively,
Tsiatis and Davidian (2001) proposed a conditional score approach which is
also computationally more efficient than a Monte Carlo EM algorithm and
yields consistent and asymptotically normal estimators.

Clustered Survival Data

Sometimes survival data may be clustered, such as data from a multi-center
study. As discussed in Chapter 7, for clustered survival data we can consider
a frailty model, in which random effects are introduced to represent cluster
effects and to incorporate correlation within clusters. Frailty models with co-
variate measurement error are discussed in Chapter 7. We briefly review the
models and methods here, using the same notation as in Chapter 7.

For individual j in cluster i, let sij be the survival time, subject to right cen-
soring, let cij be the censoring time, and let

tij = min(sij , cij), j = 1, 2, · · · , ni; i = 1, 2, · · · , n

be the observed time. Let

δij = I(sij ≤ cij)

be the censoring indicator. We again consider the classical measurement error
model (8.3). Assume that the data

{(tij , δij), j = 1, 2, · · · , ni; i = 1, 2, · · · , n}

are conditionally independent given the random effects bi. To model clustered
survival data, we consider the following frailty model

λij(t|z∗ij ,bi) = λ0(t) exp(z∗ijβ + wT
ijbi),

where z∗ij is the true but unobserved covariate value for individual j in clus-
ter i, and wij are covariates without measurement errors. We assume that the
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random effects bi ∼ N(0, D). The joint likelihood for all the observed data is
then given by

Lo(θ) =
n∏

i=1

∫ ∫
f(ti, δi|z∗i ,bi,θ)f(zi|ai,θ)f(bi|θ)f(ai|θ) dai dbi,

where

f(ti, δi|z∗i ,bi,θ) =
ni∏

j=1

{[
λ0(tij) exp(z∗ijβ + wT

ijbi)
]δij

× exp
(
− Λ0(tij) exp(z∗ijβ + wT

ijbi)
)}
,

and Λ0(t) is the cumulative baseline hazard. Computation for joint likelihood
inference in this case can be very tedious due to additional random effects
(frailties) in the survival models. We will discuss joint likelihood estimation in
Section 8.4.

8.2.2 Joint Models with Interval Censored Survival Data

In Section 8.2.1 we consider right censored survival data and assume that the
exact survival times and censoring times are observed. In practice, however, we
often cannot observe the exact survival or censoring times, but we only know
that some events have occurred during some particular time intervals. The re-
sulting survival data are called interval censored. In this section we consider
joint modeling for longitudinal data and interval-censored survival data.

To illustrate the points, we focus on the case where the main objective is to
model the longitudinal process, with modeling survival data being secondary.
For example, we may mainly focus on inference for a longitudinal model, but
we also consider a time-to-event model to incorporate informative dropouts in
the longitudinal model. Usually we do not know the exact dropout time of an
individual, but we do know that the individual dropped out during a particular
time period, so the observed event-time data is interval censored. In this case,
the longitudinal model and the survival model are clearly associated, so joint
modeling is required to avoid bias inference for the longitudinal model. Here
the longitudinal model is the main focus while the time-to-dropout model is
secondary, so the parameters in the survival model can be treated as nuisance
parameters. We do not consider covariate measurement errors in this section.

Let yij be the longitudinal response measurement for individual i at time tij ,
i = 1, . . . , n; j = 1, . . . ,m, and let yi = (yi1, . . . , yim)T . Let zi be time-
independent covariates for individual i, assuming no measurement errors. For
simplicity, we first assume that the measurement schedules are the same for
all individuals without missing data. Extensions to more general cases will be
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discussed in later sections. Let Ti be the time to an event for individual i. Let
ri = (ri1, . . . , rim)T be the vector of event indicators such that rij = 1 if
the event has happened by time tij for individual i and rij = 0 otherwise. We
assume that ri1 = 0 for all i.

For modeling the longitudinal data, we consider a mixed-effects model with
the conditional density given the random effects being f(yi|zi,bi,β,σ), such
as a GLMM or NLME model, where bi ∼ N(0, D) are random effects and β
and σ are mean parameters and variance-covariance parameters respectively.
For the time-to-event process, we assume that the event times Ti may depend
on the random effects bi in the longitudinal model, since these random effects
characterize the individual-specific longitudinal trajectories. This assumption
may also be reasonable when the event times depend on a latent process which
governs the longitudinal trajectories. For example, in a longitudinal study the
time to drop out may depend on an individual’s initial intercept and slope of
his/her longitudinal trajectory, which may be represented by the corresponding
random effects in the longitudinal model (DeGruttola and Tu 1994).

Therefore, for modeling event times Ti, we consider a Cox model in which the
random effects bi in the longitudinal model serve as additional “covariates” in
the Cox model:

λ(ti|zi,bi) = λ0(ti) exp(γT
1 zi + γT

2 bi), i = 1, 2, · · · , n, (8.4)

where λ0(ti) is the baseline hazard function and γ1 and γ2 are unknown pa-
rameters linking covariates zi and random effects bi to the conditional hazard
rate respectively. In the above setting, the longitudinal model and the survival
model are linked through the shared random effects bi. Such models are also
called shared parameter models (Wu and Carroll 1988; Little 1995). Wu et
al. (2008) also considered such a joint model, which is briefly described as
follows.

Let

pik = P (rik = 1
∣∣ri0 = · · · = ri,k−1 = 0, zi,bi)

= 1− P (Ti ≥ tik|Ti ≥ ti,k−1, zi,bi), k = 1, 2, · · · ,m, (8.5)

be the probability that an event has occurred during time interval [ti,k−1, tik)
given that no event was observed before time ti,k−1. Then, based on the as-
sumed survival model, we have

pik = 1− exp
[
− exp(γ0k + γT

1 zi + γT
2 bi)

]
, (8.6)

where

γ0k = log
∫ tik

ti,k−1

λ0(u)du, k = 1, · · · ,m.

Let γ0 = (γ01, · · · , γ0m)T and γ = (γT
0 ,γ

T
1 ,γ

T
2 )T . The density function for
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the event indicator vector ri can be written as

f(ri

∣∣zi,bi,γ) =
m∏

k=1

f(rik
∣∣ri0 = · · · = ri,k−1 = 0, zi,bi,γ), (8.7)

where

f(rik
∣∣ri0 = · · · = ri,k−1 = 0; zi,bi,γ) = prik

ik (1− pik)1−rik ,

is the conditional density for rik given previous values.

Simultaneous inference for all parameters in the longitudinal model and the
survival model can be based on the joint likelihood of the observed data. Specif-
ically, let θ = (β, σ,γ, D) denote the collection of all unknown parameters.
We assume that yi and ri are conditionally independent given the random ef-
fects bi, i.e., ri depends on yi through the random effects bi. Then the joint
conditional density of (yi, ri) given the random effects can be written as

f(yi, ri|zi,bi,θ) = f(yi|zi,bi,β, σ)f(ri|zi,bi,γ).

The joint likelihood for all the observed data can then be written as

Lo(θ) =
n∏

i=1

[∫
f(yi|zi,bi,β, σ)f(ri|zi,bi,γ)f(bi|D) dbi

]
. (8.8)

MLE of parameters θ can be obtained by maximizing the observed data like-
lihood Lo(θ). The observed-data likelihood Lo(θ) may be difficult to evaluate
because it involves an intractable and possibly high dimensional integral. We
will describe an Monte Carlo EM algorithm and a computationally more effi-
cient approximate method in Section 8.4.

Comments

For joint inference of a longitudinal model and a survival model, the joint like-
lihood approach is appealing if the assumed models hold, since it not only
provides valid inference but also retains the asymptotic normality and optimal-
ity of the resulting MLEs under usual regularity conditions. A major difficulty
with the joint likelihood approach is that it can be computationally very chal-
lenging, due to highly intractable joint likelihoods. Thus in Sections 8.4 we
will consider computationally much more efficient approximate methods.

Alternatively, a simple and widely used method is the two-step method or re-
gression calibration methods. These two-step methods can use available soft-
ware for implementation, so they are often computationally much simpler.
However, as discussed earlier, sometimes such an approach may lead to bi-
ased results, and one must adjust standard errors of the resulting estimates to
incorporate the uncertain in the estimation in the first step. We will provide
more details of two-step methods in Section 8.3.
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In previous sections, we consider the cases where either the longitudinal model
or the survival model is of primary interest, with the other model being sec-
ondary. In some studies, however, the main objective is to model both the lon-
gitudinal process and the survival process, with a goal of understanding the
association between the two processes. In this case, the parameters in both the
longitudinal model and the survival model may be of primary interest, espe-
cially the association parameters which link the two processes. For example,
during an anti-HIV treatment in an AIDS study, we may be interested in mod-
eling both the viral load trajectories and the times to viral rebound or the times
to viral suppression, and we may be interested in the relationship between vi-
ral load trajectories and time to viral rebound or viral suppression. In this case,
both the longitudinal model and the survival model are of interest and a main
objective is to estimate the association between the two processes.

8.3 Two-Step Methods

8.3.1 Simple Two-Step Methods

In joint modeling of longitudinal data and survival data, the longitudinal model
and the survival model are usually linked through some shared parameters or
shared variables. For example, the following two cases arise frequently in prac-
tice:

• the response of the longitudinal model is a time-dependent covariate in the
survival model. For example, this situation arises in survival analysis with
measurement error or missing data in time-dependent covariates;

• the longitudinal model and the survival model share the same parameters
or random effects. For example, this situation arises in longitudinal analysis
with dropouts or there is a latent process which governs both the longitudi-
nal and event time processes.

In both cases, the link between the two models is made clear.

In the above cases, a simple two-step approach is to first fit one model (often the
secondary model) to the observed data separately, ignoring the other model,
and then in the second step the shared parameters or variables in the other
model are substituted by their estimates from the first step. Then, one proceeds
with inference in the usual way as if the estimated parameters or variables
were observed data. This simple two-step method is related to the regression
calibration method in measurement error literature. A major advantage of the
two-step method is that it is simple and standard software is usually available.
However, as noted earlier, such a simple or naive two-step method may lead to
biased estimates and standard errors. In the following we discuss the two-step
method in more details.
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We consider the following semiparametric survival model for right-censored
survival data, with measurement errors or (ignorable) missing data in a time-
dependent covariate zi (see (8.1) on page 259)

λi(t) = λ0(t) exp(z∗i (t)β1 + xT
i β2), (8.9)

where xT
i contains covariates without measurement errors, and z∗i (t) is the

unobserved true covariate value and zi(t) is the observed error-prone covariate
value for individual i at time t. For the error prone time-dependent covariate
zi(t), we consider the following additive classical measurement error model
(see (8.3) on page 260)

zi = Uiα+ Vi ai + εi ≡ z∗i + εi, i = 1, . . . , n, (8.10)

where Ui and Vi are known design matrices,α contains population parameters,
ai are random effects, and εi represent measurement errors.

Given the observed data {(zi,xi, ti, δi), i = 1, 2, · · · , n}, with ti = min{si, ci}
being either the event time or the (right) censoring time and δi being the cen-
soring indicator, we can write the survival model (8.9) as

λi(t; zi(t),xi) = λ0(t)E
[
exp(z∗i (t)β1 + xT

i β2) | zi(t),xi, ti > t
]
. (8.11)

The conditional expectation in (8.11) is quite intractable. However, following
Dafni and Tsiatis (1998) and Ye, Lin, and Taylor (2008), we can approximate
this expectation by

E
[
exp(z∗i (t)β1 + xT

i β2) | zi(t),xi, ti > t
]

≈ exp
[
E
(
z∗i (t)β1 + xT

i β2 | zi(t),xi, ti > t
)]
,

where is often called a regression calibration approximation.

The two-step method proceeds as follows. In the first step, we estimate the con-
ditional expectation E

(
z∗i (t)β1 + xT

i β2 | zi(t),xi, ti > t
)

by fitting the co-
variate model (8.10) to the observed covariate data, ignoring the survival model,
and in the second step we substitute the conditional expectation in (8.11) by its
estimate from the first step and then proceed inference on the Cox model in
a usual way. Ye, Lin, and Taylor (2008) proposed two approaches for the first
step, called risk set regression calibration (RRC) method and ordinary regres-
sion calibration (ORC) method respectively. The idea is either to fit the LME
covariate model (8.10) to the observed covariate data in the risk set or to fit the
LME covariate model (8.10) to all observed covariate data.

8.3.2 Modified Two-Step Methods

As pointed out by Ye, Lin, and Taylor (2008) and Albert and Shih (2009), the
two-step method in Section 8.3.1 may lead to bias in two ways: (i) the covariate
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trajectories of subjects who experience an event (e.g., die or drop out) may be
different from those who do not experience any event, so estimation of the
covariate model in the first step based on all covariate data may be biased; and
(ii) inference in the second step that ignores the estimation uncertainty in the
first step may lead to biased results (e.g., under-estimating standard errors).
The bias in case (i), called bias from informative dropouts, may depend on the
strength of the association between the longitudinal process and the survival
process, and the bias in case (ii) may depend on the magnitude of measurement
errors in covariates. In the following, we consider some modified two-step
methods to address these biases.

The bias from informative dropout is due to the fact that the covariate trajec-
tory is related to the length of follow-up (e.g., subjects who drop out early or
die may have different trajectories), so much of the bias may be removed if
we can recapture these missing covariate measurements due to dropouts by
incorporating the event time information. Albert and Shih (2009) proposed to
recapture the missing measurements by generating data from the conditional
distribution of the covariate given the event time f(zi|Ti):

f(zi|Ti;θ) =
∫
f(zi|ai, Ti;θ)f(ai|Ti;θ) dai

=
∫
f(zi|ai;θ)f(ai|Ti;θ) dai,

where zi and Ti are assumed to be conditionally independent given the random
effects ai.

Albert and Shih (2009) approximate f(zi|Ti;θ) using a LME model, as in Wu
and Bailey (1989) and Wu and Follmann (1999), and then use standard soft-
ware to simulate missing data from f(zi|Ti;θ). Once the missing measure-
ments are simulated, the covariate model is fitted to the “complete data” to get
less biased estimates, which are used in the second step. The procedure is iter-
ated several times to incorporate the missing data uncertainty. Thus, the idea is
similar to a multiple imputation method with non-ignorable missing data.

In order to adjust the standard errors of the parameter estimates in the sur-
vival model to incorporate the estimation uncertainty in the first step, we can
consider a parametric bootstrap method as follows:

STEP 1. generate covariate values based on the assumed covariate model,
with the unknown parameters substituted by their estimates;
STEP 2. generate survival times from the fitted survival model;
STEP 3. for each generated bootstrap dataset from steps 1 and 2, fit the
models using the two-step method and obtain new parameter estimates.

Repeating the procedure B times (say, B = 500), we can obtain the estimated
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standard errors for the fixed parameters from the sample covariance matrix
across the B bootstrap datasets. This Bootstrap method produces more reliable
estimates of the standard errors than the naive two-step method, if the assumed
models are correct.

The foregoing two-step methods rely on certain assumptions and approxima-
tions and may not completely remove biases of the naive two-step method. In
Section 8.4, we consider a unified approach based on the joint likelihood of all
the observed data.

8.4 Joint Likelihood Inference

In this section we consider a unified approach based on the joint likelihood of
all observed longitudinal data and event-time data. We can estimate all param-
eters in the longitudinal model and the survival model simultaneously based on
the joint likelihood. This approach avoids much of the bias in the naive two-
step method noted in Section 8.3. Such a joint likelihood method provides the
most efficient estimation if the assumed models are correct. The joint likeli-
hood approach is quite general and can be extended to joint inference for more
than two models which are linked in some ways, either explicitly or implicitly.
Likelihood estimation is usually based on the EM algorithms.

In Section 8.2, we see that the joint likelihood for a survival model and a lon-
gitudinal model is often highly complicated, due to the unobservable random
effects, censoring, and the semiparametric or nonlinear structures of the mod-
els. Therefore, a major difficulty in joint likelihood inference is computational
challenges. In the following sections, we consider two approaches: a Monte
Carlo EM algorithm for exact likelihood inference, which can be computation-
ally very intensive, and an approximate method for likelihood inference, which
is computationally much more efficient. We focus the longitudinal models and
survival models presented in Section 8.2.2.

8.4.1 Exact Likelihood Inference

In this section, we consider a Monte Carlo EM algorithm to simultaneously
obtain “exact” MLEs of all parameters in the survival and longitudinal models
presented in Section 8.2.2 (page 262). Recall that in Section 8.2.2 we consid-
ered a joint model based on a mixed-effects longitudinal model and a survival
model for interval-censored survival data. In the following, we consider joint
likelihood inference for that joint model, with time-independent covariates for
simplicity.

Let yij be the longitudinal response measurements, zi be time-independent
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covariates, and ri = (ri1, . . . , rim)T be the vector of event indicators such that

rij =
{

1 an event has happened by time tij for individual i
0 otherwise, i = 1, . . . , n; j = 1, . . . ,m.

The observed data are {(yi, zi, ri), i = 1, 2, · · · , n}. The joint observed-data
likelihood Lo(θ), as given in (8.8) (page 264) in Section 8.2.2, is quite in-
tractable. In the following, we consider an Monte Carlo EM algorithm for es-
timation.

The “complete data” are given by

{(yi, zi, ri,bi), i = 1, 2, · · · , n}.

The complete-data log-likelihood for individual i can be written as

l(i)c (θ) = log f(yi|zi,bi,β,σ) + log f(bi|D) + log f(ri|zi,bi,γ).

The E-step of the Monte Carlo EM algorithm computes the conditional expec-
tation of the complete-data loglikelihood given the observed data and current
parameter estimates. Thus, at the t-th EM iteration, the E-step for individual i
can be written as

Qi(θ|θ(t)) =
∫ {

log f(yi|zi,bi,β,σ) + log f(bi|D)

+ log f(ri|zi,bi,γ)
}
f(bi|yi, zi, ri,θ

(t)) dbi.

It is difficult to evaluate the integral Qi(θ|θ(t)) analytically. However, we can
approximate the integral using Monte Carlo methods by simulating many sam-
ples of the unobservable random effects bi from its conditional distribution
given the observed data f(bi|yi, zi, ri,θ

(t)), which are then used to approxi-
mate the integral with an empirical mean, similar to the methods in Chapter 4.

To generate independent samples of the unobservable random effects bi from
the conditional distribution f(bi|yi, zi, ri,θ

(t)), we note that

f(bi|yi, zi, ri,θ
(t)) ∝ f(yi|zi,bi,β

(t), σ(t))f(ri|zi,bi,γ
(t))f(bi|D(t)),

where the density functions on the right-hand side are all known. Thus, we
may use the Gibbs sampler along with rejection sampling methods to gener-
ate Monte Carlo samples of the random effects bi, similar to the methods in
Chapter 4.

Let (b̃(1)
i , b̃(2)

i , · · · , b̃(mt)
i ) be a random sample of size mt simulated from

f(bi|yi, zi, ri,θ
(t)) at t-th EM iteration. The E-step of the Monte Carlo EM

algorithm at the (t+ 1)st EM iteration can be approximated as follows

Q(θ|θ(t)) =
n∑

i=1

Qi(θ|θ(t)) ≈
n∑

i=1

{
1
mt

mt∑
j=1

[
log f

(
yi|zi, b̃

(j)
i ,β,σ

)
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+ log f
(
b̃(j)

i |D
)

+ log f
(
ri|zi, b̃

(j)
i ,γ

) ]}
. (8.12)

The above approximation can be made arbitrary accurate by increasing the
number of Monte Carlo sample mt.

The M-step of the Monte Carlo EM algorithm is then to maximize Q(θ|θ(t)),
which is just like a complete-data maximization, so standard optimization pro-
cedures for complete-data mixed effects models and event-time models can be
used to obtain the updated parameter estimates θ(t+1). If we assume that the
parameters in the models are distinct, we can maximize each term ofQ(θ|θ(t))
separately using standard methods. Iterating the E-step and M-step until con-
vergence, we obtain the MLE (or a local maximizer) θ̂ of θ.

The variance-covariance matrix of θ̂ can be approximated as follows. At the
convergence of the Monte Carlo EM algorithm, let

Sij(θ̂) =
∂l

(ij)
c (θ)
∂θ

=
∂l

(i)
c (θ|yi, zi, b̃

(j)
i , ri)

∂θ
,

evaluated at θ = θ̂. We have

I(θ̂) ≈
n∑

i=1

mt∑
j=1

1
mt

Sij(θ̂)ST
ij(θ̂).

The approximate asymptotic covariance matrix of θ̂ is I−1(θ̂).

Zeng and Cai (2005) derived some asymptotic results for maximum likelihood
estimators in joint analysis of longitudinal data and survival data. They showed
the consistency of the maximum likelihood estimators, derived their asymp-
totic distributions, and showed that the maximum likelihood estimators in joint
analysis are semiparametrically efficient.

8.4.2 Approximate Inference

A major difficulty of the likelihood method for joint inference of longitudinal
and survival models is the intensive computation (Tsiatis and Davidian 2004),
due to evaluations of highly intractable integrals. The Monte Carlo EM algo-
rithm for exact likelihood estimation in the previous section can be computa-
tionally very intensive and may exhibit convergence problems. Therefore, in
this section we consider an approximate likelihood method based on a Laplace
approximation to the observed-data joint loglikelihood, which approximates
the intractable integral in the observed-data joint likelihood by an analytic ex-
pression, similar to the ones described in previous chapters. This approximate
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method is computationally much more efficient than the Monte Carlo EM al-
gorithm, so it is very appealing for joint likelihood inference of longitudinal
models and survival models.

We consider again the joint models in Section 8.2.2 or Section 8.4.1. For ap-
proximate inference, we consider a first-order Laplace approximation to the
observed-data joint likelihood Lo(θ) in (8.8) (page 264). Specifically, let

lc(θ,b) ≡
n∑

i=1

l(i)c (θ,bi)

=
n∑

i=1

[
log f(yi|zi,bi,β,σ) + log f(bi|D) + log f(ri|zi,bi,γ)

]
be the “complete-data” log-likelihood (or h-likelihood as in Lee et al. 2006).
Let b̃ = {b̃i, i = 1, 2, · · · , n} solve the following equations

∂l(i)c (θ,bi)/∂bi = 0, i = 1, 2, · · · , n.

It can be shown that, following Lee et al. (2006), the first-order Laplacian ap-
proximation to the observed-data joint log-likelihood lo(θ) = logLo(θ) is
given by

l̃o(θ, b̃) = lc(θ, b̃)− 1
2

log

∣∣∣∣∣− 1
2π

∂2lc(θ,b)
∂b2

∣∣∣∣∣
b=b̃

, (8.13)

i.e., l̃o(θ, b̃) is a first-order Laplacian approximation to lo(θ) by integrating
out the unobservable random effects b in lo(θ). Thus, an approximate MLE of
θ can be obtained by solving the following equation

∂l̃o(θ, b̃)/∂θ = 0.

Given starting values b(0) and θ(0), iterating the above procedure leads to an
approximate MLE θ̃. Similarly, REMLs of the variance-covariance parameters
can be obtained by integrating out the mean parameters and the random effects
in lo(θ) in a similar way (see Lee et al. 2006).

The above approximate method consists of the following steps:

STEP 1. Obtain initial parameter estimate θ(0) using a naive method, e.g.,
fit the survival model and the longitudinal model separately to obtain initial
parameter estimates;
STEP 2. Given the current parameter estimate θ(t) at t-th iteration (t =
0, 1, 2, · · ·), obtain a updated random-effects estimate b(t+1) by solving

∂l
(i)
c (θ(t),bi)
∂bi

= 0, i = 1, 2, · · · , n;
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STEP 3. Given the random-effects estimates b(t+1), obtain a updated pa-
rameter estimate θ(t+1) by solving

∂l̃o(θ,b(t+1))
∂θ

= 0;

STEP 4. Iterate between Step 2 and Step 3 until convergence.

Note that the above approximate method does not involve any intractable in-
tegration, so it offers a major computational advantage in joint estimation of
longitudinal models and survival models, which is highly desirable in joint
model inference.

The estimates of the random effects obtained in the above procedure can be
interpreted as empirical Bayes estimates. Approximate standard errors of the
approximate estimates can be obtained based on the following formula

Cov(θ̃) ≈

[
−∂

2 l̃o(θ, b̃)
∂θ∂θT

]−1

θ=
˜θ

,

where the estimates b̃ and θ̃ are from the last iteration.

8.5 Joint Models with Incomplete Data

In jointly modeling of longitudinal data and survival data, we often need to
address missing data and measurement error problems since these problems are
very common in longitudinal studies. In this section, we discuss missing data
and measurement error problems in joint models. Statistical methods for joint
models with incomplete data are conceptually similar to the ones discussed
in earlier chapters, but the computation typically becomes more tedious. In
fact, in likelihood inference computation may be the major challenge, due to
complexities of the models, censoring, missing data, and measurement errors.
Thus one should use computationally more efficient approximate methods for
estimation and inference.

Another major issue for joint models with incomplete data is parameter iden-
tifiability. In the presence of missing data and measurement errors, we need to
assume additional models to address the incomplete data. This leads to a large
number of unknown parameters to be estimated, so parameters may be non-
identifiable in the sense that two sets of unknown parameters may lead to the
same joint likelihood. If the sample size is not large enough, we may be un-
able to estimate all unknown parameters even if the parameters are identifiable.
In these cases, a reasonable strategy is to simplify the models, especially sec-
ondary models such as models for missing data or measurement errors, and to
impose certain restrictions on secondary parameters such as assuming diagonal
covariance matrices.
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In the following sections, we consider likelihood methods for joint models
with missing data and measurement errors. Since the likelihood methods are
conceptually similar to the ones in earlier chapters, we omit some of the details.

8.5.1 Joint Models with Missing Data

In joint models, missing data may arise in either longitudinal models or sur-
vival models, and missing data may occur in either covariates or responses or
both in any models. In practice, dropouts in a longitudinal study may lead to
missing data in any variables that are measured over time, including the longi-
tudinal response variable and time-dependent covariates, and the missingness
may be nonignorable in the sense that the dropouts or missingness may be
related to the longitudinal trajectories or the missing values. In this section,
we focus on the case where there are missing data in the response of the lon-
gitudinal model and in the covariates of both the longitudinal model and the
survival model, following Wu et al. (2008). We consider the joint model in
Section 8.2 where the survival data may be interval-censored, and we focus on
time-independent covariates for simplicity.

Let yij be the response value in the longitudinal model for individual i at time
tij , i = 1, . . . , n; j = 1, . . . ,m, and let yi = (yi1, . . . , yim)T be the repeated
measurements on individual i. For simplicity, here we assume that the mea-
surement schedules are fixed and are the same to all individuals. A response
value is assumed missing if its value is not observed at or near the scheduled
measurement time. Let zi be the collection of time-independent (baseline) co-
variates for individual i. We write yi = (yi,mis,yi,obs), where yi,mis is a col-
lection of missing responses and yi,obs is a collection of observed responses.
Similarly, we write zi = (zi,mis, zi,obs). Let di = (di1, . . . , dim)T be a vector
of missing response indicators such that

dij =
{

1 if yij is missing
0 if yij is observed .

If subject i drops out between time tik and ti,k+1 and does not return to study
later, then di1 = · · · = dik = 0, dij = 1 for j > k, but we allow subjects to
possibly return to the study at a later time after he/she drops out.

We also consider a time-to-event process. Let ri = (ri1, . . . , rim)T be the vec-
tor of event indicators such that rij = 1 if the event has happened on individual
i by time tij and rij = 0 otherwise. We assume that ri1 = 0 for all i. Let Ti

be the time to an event for individual i, or the duration time until an event oc-
curs. In practice, the exact event time Ti usually cannot be directly observed.
However, if we observe no events at times ti1, · · · , ti,k−1 but know an event
has occurred by time tik, we know that the actual event time is between ti,k−1

and tik, i.e., ti,k−1 < Ti ≤ tik. Note that if no event has been observed by the
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last time tim for individual i, it indicates that Ti > tim. This type of event time
data structure is referred to as interval censored event times (Lawless 2003).

The Models

For modeling the longitudinal data, we consider a mixed effects model with
conditional density function f(yi|zi,bi,β,σ) given the random effects bi,
such as a LME or a GLMM or a NLME model, where β contains mean pa-
rameters and σ contains variance-covariance parameters. For the survival data,
we consider a Cox proportional hazards model which links to the longitudinal
mixed effects model through the shared random effects bi. That is, the event
times are assumed to be associated with individual-specific longitudinal trajec-
tories such as individual slopes. For example, patients with faster increase in
viral load may be more likely to drop out earlier in an AIDS study. Thus, the
time-to-event model can be written as

λ(ti|zi,bi) = λ0(ti) exp(γT
1 zi + γT

2 bi), (8.14)

where λ0(ti) is a unspecified baseline hazard function and γ1 and γ2 are un-
known parameters linking baseline covariates zi and random effects bi to the
conditional hazard rate respectively.

We follow the setup in Section 8.2 and repeat some notation below. Let

pik = P (rik = 1
∣∣ril = 0, 0 ≤ l < k; zi,bi).

Then we have

pik = 1− exp
[
− exp(γ0k + γT

1 zi + γT
2 bi)

]
, (8.15)

where

γ0k = log
∫ tik

ti,k−1

λ0(u)du, k = 1, · · · ,m.

Note that, given the current observation mechanism, we only need to deal with
the finite number of parameters {γ0k, k = 1, 2, · · · ,m} instead of the un-
known nonparametric function λ0(t) in the likelihood estimation, which sim-
plifies computation. We assume that the event indicators ri1, · · · , ri,m are con-
ditionally independent given the random effects bi.

Let γ0 = (γ01, · · · , γ0m)T and γ = (γT
0 ,γ

T
1 ,γ

T
2 )T , and let γ = (γT

0 ,γ
T
1 ,γ

T
2 )T .

Note that

f(ri

∣∣zi,bi,γ) =
m∏

k=1

f(rik
∣∣ril, 0 ≤ l < k; zi,bi,γ),

where

f(rik
∣∣ril = 0, 0 ≤ l < k; zi,bi,γ) = prik

ik (1− pik)1−rik ,
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and rik equals 0 before an event and equals 1 after an event. We have

P (li < Ti ≤ ui

∣∣zi,bi) = exp
[
−
∫ ui

0

λ0(t)dt · exp(γT
1 zi + γT

2 bi)
]

−exp
[
−
∫ li

0

λ0(t)dt · exp(γT
1 zi + γT

2 bi)
]
,

where li = max(tij : rij = 0) and ui = min(til : ril = 1), which may reduce
some computing and simplify the presentation. Here ui = ∞ if ril = 0 for
l = 1, . . . ,m.

When there are informative dropouts or nonignorable missing longitudinal re-
sponses, the missing data mechanism must be taken into account for valid like-
lihood inference. Since the random effects bi characterize individual-specific
longitudinal trajectories, we can assume a missing data model which allows
the probability of missing a value to possibly depend on the random effects
bi, i.e., we can assume a shared-parameter model or a random-effect-based
dropout model (Wu and Carroll 1988; Follmann and Wu 1995; Ten Have et
al. 1998). In other words, the missingness depends on both the missing values
ymis,i and the observed values yobs,i through the random effects bi. The prob-
ability of missing a response value at time tij may also depend on the missing
status at the previous time point ti,j−1.

We assume that the missing baseline covariates are missing at random (or ig-
norable), so we do not need to specify a missing covariate mechanism. How-
ever, we need to make a distributional assumption for the incompletely ob-
served covariates for likelihood inference. No distributional assumption is needed
for covariates without missing data.

Based on the above arguments, for example, we may consider the following
model for the missing responses:

logit(P (dij = 1|di,j−1,bi,φ)) = φ0 + φ1di,j−1 + φT
2 bi,

f(di|bi,φ) = f(di1|bi,φ)
m∏

j=2

f(dij |di,j−1,bi,φ),

where the parameters φmay be viewed as nuisance parameters and are usually
not of inferential interest.

Joint Likelihood Inference

We consider simultaneous estimation for all parameters based on the joint
likelihood of all the observed data {(yi,obs, zi,obs, ri,di), i = 1, 2, · · · , n}.
Let θ = (β,σ,γ,φ, D) denote the collection of all unknown parameters.
We assume that the longitudinal responses yi and the event indicators ri are
conditionally independent given the random effects bi, i.e., ri depends on yi
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through the random effects bi, so the association between the longitudinal pro-
cess and the survival process is incorporated through the shared random effects
bi. Based on earlier discussion, we also assume that the missing data model
f(di|yi,bi,φ) = f(di|bi,φ). Thus we have

f(yi, ri,di|zi,bi,θ) = f(yi|zi,bi,β,σ)f(ri|zi,bi,γ)f(di|bi,φ).

The joint likelihood for all the observed data can then be written as

Lo(θ) =
n∏

i=1

[∫ ∫ ∫
f(yi|zi,bi,β,σ)f(ri|zi,bi,γ)f(di|bi,φ)

×f(zi|α)f(bi|D) dyi,mis dzi,mis dbi

]
,

where f(zi|α) is the assumed distribution for the incompletely observed co-
variates zi with unknown parameters α.

Wu et al. (2008) used a Monte Carlo EM (or ECM) algorithm to obtain the
MLE of θ. If we treat the unobservable random effects bi as additional “miss-
ing data”, we can write the “complete data” as

{(yi, zi, ri,di,bi), i = 1, 2, · · · , n}.

The E-step at the t-th iteration of the EM algorithm for individual i can then
be written as

Qi(θ|θ(t)) = E
(
l(i)c (yi, zi, ri,di,bi)

∣∣ yi,obs, zi,obs,di, ri,θ
(t)
)

=
∫ ∫ ∫ {

log f(yi|zi,bi,β,σ) + log f(zi|α)

+ log f(bi|D) + log f(ri|bi,γ) + log f(di|bi,φ)
}

×f(yi,mis, zi,mis,bi|yi,obs, zi,obs,di, ri,θ
(t))

×dyi,mis dzi,mis dbi,

which generally does not have an analytic expression. As in Wu et al. (2008),
we can approximate the integralQi(θ|θ(t)) by Monte Carlo methods combined
with Gibbs sampler and rejection sampling methods.

Specifically, we can simulate large samples of (yi,mis, zi,mis,bi) from the
conditional distribution f(yi,mis, zi,mis,bi|yi,obs, zi,obs,di, ri,θ

(t)), and then
approximate Qi(θ|θ(t)) by an empirical mean. To generate random samples
from the conditional density f(yi,mis, zi,mis,bi|yi,obs, zi,obs,di, ri,θ

(t)), one
approach is to use the Gibbs sampler by iteratively sampling from the full con-
ditionals f(yi,mis|yi,obs, zi,bi,di, ri,θ

(t)), f(zi,mis|zi,obs, yi,bi,di, ri,θ
(t)),

and f(bi|yi, zi,di, ri,θ
(t)). To sample these full conditionals, note that

f(yi,mis|yi,obs, zi,bi,di, ri,θ
(t)) ∝ f(yi|zi,bi,β

(t),σ(t)),
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f(zi,mis|zi,obs,yi,bi,di, ri,θ
(t)) ∝ f(yi|zi,bi,β

(t),σ(t))f(zi|α(t))

×f(ri|zi,bi,γ
(t)),

f(bi|yi, zi,di, ri,θ
(t)) ∝ f(bi|D(t))f(yi|zi,bi,β

(t),σ(t))
×f(ri|zi,bi,γ

(t))f(di|bi,φ
(t)).

Since the density functions on the right-hand sides of the above expressions
are known, rejection sampling methods such as the adaptive rejection sam-
pling method or a multivariate rejection method may be used to sample from
each of the full conditionals (Wu et al. 2008). Iteratively sampling from each
of the full conditionals in turn for a burn-in period until the Markov chain
converges, we obtain a random sample of (yi,mis, zi,mis,bi) from the con-
ditional distribution f(yi,mis, zi,mis,bi|yi,obs, zi,obs,di, ri,θ

(t)). Repeating
this procedure mt times, we obtain mt independent random samples from
f(yi,mis, zi,mis,bi|yi,obs, zi,obs,di, ri,θ

(t)). Then, in the E-step Qi(θ|θ(t))
is approximated by the sample average.

The M-step of the Monte Carlo EM algorithm is just like a complete-data maxi-
mization, so standard complete-data optimization procedures can be used. Due
to the large number of unknown parameters, it is preferred to use an Monte
Carlo ECM algorithm, in which the M-step is replaced by a sequence of max-
imizations over a subset of the parameters holding the remaining parameters
fixed. To choose the subsets of parameters in the M-step of an ECM algorithm,
we can consider the parameters in each model separately and consider the mean
parameters and variance-covariance parameters in each model separately.

The variance-covariance matrix of θ̂ can be approximated as follows. At the
convergence of the ECM algorithm, let (ỹ(j)

mis,i, z̃
(j)
mis,i, b̃

(j)
i ) be j-th simulated

sample from the last ECM iteration, and

Sij(θ̂) =
∂

∂θ
l(i)c (θ|yobs,i, ỹ

(j)
mis,i, zobs,i, z̃

(j)
mis,i, b̃

(j)
i ,di, ri),

evaluated at θ = θ̂. We have

I(θ̂) ≈
n∑

i=1

mt∑
j=1

1
mt

Sij(θ̂)ST
ij(θ̂),

where t is the last ECM iteration number. The approximate asymptotic covari-
ance matrix of θ̂ is I−1(θ̂).

The foregoing likelihood method based on a Monte Carlo ECM algorithm can
be computationally very intensive and may exhibit convergence problems. If
the ECM algorithm diverges quickly, it is possible that the joint models are
non-identifiable. If the ECM algorithm converges, it may converge very slowly.
To reduce the huge computational burden, we may consider approximation
methods based on Laplace or Taylor approximations, in a way similar to that in
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previous chapters. We will show such an approximate method in Section 8.5.2
for joint models with measurement errors and missing data in time-dependent
covariates.

Example 8.1 Joint inference for an NLME model and a survival model with
missing data

In Example 4.2 of Chapter 4, we considered an NLME model for modeling
HIV viral dynamics in the early period during an anti-HIV treatment, where
viral loads typically decline in the initial period and then some viral loads may
rebound later in the study. We may be interested in the relationship between
individual-specific characteristics of the viral dynamics in the early period,
such as individual initial viral decay rates, and long-term antiviral responses
such as times to viral rebound later in the study (or times to death). For ex-
ample, an important question is whether patients with faster initial viral decay
rates have earlier viral rebounds later in the study. Thus, we need to jointly
model HIV viral dynamics and times to viral rebound, i.e., a joint model of lon-
gitudinal data and survival data. Since missing data are very common in these
studies, we also need to address missing data problems in the joint model.

Following Wu et al. (2008), we consider the following NLME model for mod-
eling HIV viral dynamics in the early period during an anti-HIV treatment

yij = log10(P1ie
−λ1itij + P2ie

−λ2itij ) + eij , (8.16)
log(P1i) = β1 + b1i, λ1i = β2 + β3zi + b2i,

log(P2i) = β4 + b3i, λ2i = β5 + b4i, (8.17)
i = 1, 2, · · · , n; j = 1, 2, · · · , ni,

where yij is the log10-transformation of the viral load measurement for the
i-th patient at j-th time point, zi is the baseline CD4 value for patient i, λ1i

and λ2i represent individual-specific first and second phases of viral decay
rates respectively, P1i and P2i are individual-specific baseline values, β =
(β1, · · · , β5)T are fixed effects, eij represents the within individual random
error, and bki’s are random effects. We assume that eij i.i.d. ∼ N(0, σ2I) and
bi ∼ N(0, D), and eij and bi are independent.

One of the objectives is to test if the time to viral rebound depends on base-
line CD4 values and the random effects which characterize individual-specific
viral load trajectories in the early period. For the time Ti to viral rebound, we
consider the following Cox proportional hazards model, which links the hazard
function of Ti to baseline CD4 values and the random effects,

λ(ti|zi,bi) = λ0(ti) exp(γ1zi + γ2bi1 + γ3bi2 + γ4bi3), (8.18)

where λ0(ti) is a unspecified baseline hazard function and γj’s are unknown
parameters. Thus, the viral dynamic (NLME) model (8.16) – (8.17) for the



JOINT MODELING LONGITUDINAL AND SURVIVAL DATA 279

longitudinal viral load data and the survival model (8.18) for the time to viral
rebound data are linked together through the shared random effects and covari-
ates. Note that the NLME model (8.16) – (8.17) is fitted to viral load data in
the early period while the survival model (8.18) is fitted to viral rebound data
in the late period of the study.

Since the baseline CD4 values zi contain missing data, we need to make a
distributional assumption for zi in likelihood inference: we assume that zi ∼
N(α1, α2). We also assume that the missing CD4 values are missing at random
for simplicity. There are also some dropouts in the dataset, which lead to miss-
ing values in the longitudinal responses yi. The missingness due to dropouts
may be informative or non-ignorable, so a missing data model for the miss-
ing responses needs to be assumed and incorporated in likelihood inference to
avoid possible biased results. Let dij be a missing data indicator for the miss-
ing responses yij . We assume the following simple missing data model for
possibly non-ignorable missing data in the responses

f(di|yi,bi, zi,φ) =
m∏

j=1

P (dij = 1|φ,bi)dij

×(1− P (dij = 1|φ,bi))1−dij ,

log
(

P (dij = 1|φ,bi)
1− P (dij = 1|φ,bi)

)
= φ0 + φ1b1i + φ2b2i + φ3b3i + φ4b4i,

where the parameters φj’s may be viewed as nuisance parameters. In the above
missing data model, we assume that the missingness of the response depends
on the unobservable random effects which characterize individual-specific vi-
ral load trajectories.

We use the joint likelihood method described in this section, implemented by a
Monte Carlo EM algorithm, to obtain the parameter estimates. Table 8.1 shows
the resulting parameter estimates and the associated standard errors (from Wu
et al. 2008). The p-values are computed based on Wald-type tests. Note that
the estimate of the parameter β3 indicates that higher initial CD4 values are
associated with faster initial viral decay (p-value = 0.001). The estimate of
parameter β5 reflects viral rebounds at later stage of the study. Time to viral
rebound depends on initial CD4 values (p-value associated with γ̂1 is smaller
than 0.001): smaller baseline CD4 values are associated with earlier viral re-
bounds. However, the viral rebound time does not appear to be significantly
associated with initial viral decay rate.

8.5.2 Joint Models with Measurement Errors

In longitudinal studies many covariates are measured over time, along with the
response measurements. Some of these covariates may be measured with er-
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Table 8.1 Estimates of parameters in the NLME model and the survival model based
on the joint likelihood method

Estimates of the NLME model parameters
β1 β2 β3 β4 β5

Est. S.E. Est. S.E. Est. S.E. Est. S.E. Est. S.E.
10.32 0.15 53.98 9.17 14.01 4.37 6.02 0.22 –0.55 0.34

P-value < 0.001 < 0.001 0.001 < 0.001 0.10

Estimates of the survival model parameters
γ1 γ2 γ3 γ4

Est. S.E. Est. S.E. Est. S.E. Est. S.E.
–1.47 0.06 0.041 0.046 –0.012 4.20 0.001 3.81

P-value < 0.001 0.37 0.99 0.99

Est.: estimate, S.E.: standard error.

rors and may be missing at the response measurement times. In this section,
we consider joint modeling of longitudinal data and survival data with mea-
surement errors and missing data in time-dependent covariates, following Wu
et al. (2009). We consider a mixed effects model for the longitudinal process.
As discussed in previous sections, the random effects in the longitudinal model
may serve as “error-free covariates” for the survival model, i.e., the longitudi-
nal model and the survival model are linked through shared random effects. So
joint inference is desirable.

Let zik be the observed value of an error-prone covariate and z∗ik be the cor-
responding unobserved “true” covariate value for individual i at time uik,
i = 1, . . . , n, k = 1, . . . ,mi. Here we allow the covariate measurement
times uik to possibly differ from the response measurement times tij , so we
allow missing data in the time-dependent covariate where the missingness is
assumed to be missing at random. We suppress the accurately observed co-
variates in the models. Let zi = (zi1, . . . , zimi

)T and z∗i = (z∗i1, . . . , z
∗
imi

)T .
As in Section 8.5.1, we consider a mixed effects model with density function
f(yi|z∗i ,bi,β,σ) given the random effects bi, such as a LME or GLMM or
NLME model. The longitudinal response yi is assumed to depend on the un-
observed true covariate z∗i rather than the observed but mis-measured covariate
zi.

Let Ti be the time to an event of interest for individual i, and let ti be the
observed version, i = 1, 2, · · · , n. In this section we consider event times with
right censoring. For individual iwith censoring, let ci be the censoring time (so
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the unobserved true event time si > ci). The observed data are {(ti, δi), i =
1, · · · , n}, where

ti = min(si, ci), δi = I(si ≤ ci),

and I(·) is an indicator function. For the survival model, here we consider a
parametric accelerated failure time (AFT) model as described in Chapter 7.
We assume that the event time Ti depends on the unobserved true covariate
value z∗i and the random effects bi in the longitudinal model. Specifically, we
consider the following mixed-effects model for the time-to-event process Ti

log(Ti) = γ0 + γT
1 z∗i + γT

2 bi + εi, i = 1, 2, · · · , n, (8.19)

where γ = (γ0,γ
T
1 ,γ

T
2 )T are unknown parameters and εi are i.i.d. and follow

a parametric distribution with mean 0 and other parameters λ such as a normal
distribution.

The parametric AFT model (8.19) may be a good alternative to a Cox pro-
portional hazards model in that (i) the interpretation of model parameters in
model (8.19) may be easier (Klein et al. 1999), (ii) the fixed-effect estimates
in model (8.19) are robust against neglected covariates (Hougaard 1999), (iii)
model (8.19) is computationally more manageable; and finally (iv) AFT model
(8.19) does not require the proportional hazards assumption.

To address measurement errors and missing data in the covariates, we need
to model the covariate process. Since the covariate trajectories are often very
complex in many longitudinal studies, as an illustration, here we consider a
flexible nonparametric mixed effects model to empirically model the covariate
process zik = zi(uik) (see Section 2.5.2 in Chapter 2, page 76)

zi(t) = r(t) + hi(t) + ξi(t) ≡ z∗i (t) + ξi(t), i = 1, . . . , n, (8.20)

where z∗i (t) = r(t)+hi(t) is the true but unobserved covariate value at time t,
r(t) and hi(t) are unknown nonparametric smooth fixed-effects and random-
effects functions respectively, and ξi(t) ∼ N(0, σ2) is the measurement er-
ror. The random smooth function hi(t) is introduced to incorporate the inter-
individual variation in the covariate process, while the fixed smooth function
r(t) represents population average of the covariate process. We assume that
hi(t) is the realization of a zero-mean stochastic process.

As discussed in Chapter 2 (Section 2.5.2), we can approximate the nonparamet-
ric functions r(t) and hi(t) by linear combinations of some basis functions. Let
Ψp(t) = [ψ0(t), ψ1(t), . . . , ψp−1(t)]T and Φq(t) = [φ0(t), φ1(t), . . . , φq−1(t)]T

be the corresponding basis functions. Then, we can approximate the nonpara-
metric mixed effects covariate model (8.20) by the following parametric LME
model

zi(t) ≈ Ψp(t)T α+ Φq(t)T ai + ξi(t) = z∗i (t) + ξi(t), (8.21)
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where α = (α0, · · · , αp−1)T are fixed effects and ai = (ai0, · · · , ai,q−1)T

are random effects with ai ∼ N(0, A). We assume that ai,bi, ei, εi, ξi are
all independent of each other. Ye, Lin, and Taylor (2008) considered a flexible
semiparametric mixed effects model for the covariate process, which can also
be approximated by a parametric LME model.

When there are more than one error-prone covariates, we can model each co-
variate separately, or consider a multivariate version of the above model, such
as a multivariate LME model (Shah et al. 1997).

Likelihood Inference

We consider simultaneous likelihood inference for all model parameters based
on the joint likelihood of the observed data. Let θ = (α,β, σ, ν, A,B,γ, λ) be
the collection of all model parameters. The joint likelihood for all the observed
data can be written as

Lo(θ|y, z, t, δ) ≡
n∏

i=1

Lo(θ|yi, zi, ti, δi)

=
n∏

i=1

[∫ ∫
f(yi|ai,bi;θ)f(bi;B)f(zi|ai;θ)

×f(ai;A)f ∗(ti, δi|ai,bi;γ, λ) dai dbi

]
,

where

f ∗(ti, δi|ai,bi;γ, λ) = f(ti|ai,bi;γ, λ)δi [1− F (ti|ai,bi;γ, λ)]1−δi

and F (ti|ai,bi;γ, λ) is the cumulative distribution function corresponding to
the density function f(ti|ai,bi;γ, λ). If in the AFT model (8.19) we assume
that the error εi ∼ N(0, λ2), then we have

log f ∗(ti, δi|ai,bi,γ, λ) = −1
2
δi

{
log(2πλ2)

+
[
log(ti)− (γ0 + γT

1 z∗i + γT
2 bi)

λ

]2
+ 2 log(ti)

}

+(1− δi) log
[
1− Φ

(
log(ti)− (γ0 + γT

1 z∗i + γT
2 bi)

λ

)]
,

where Φ(·) is the cumulative distribution function for the standard normal dis-
tribution N(0, 1).

To get the MLE of θ, we may again consider an Monte Carlo EM algorithm,
similar to that in Section 8.5.1. However, such a method can be computation-
ally very demanding. The convergence of such a Monte Carlo EM algorithm
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depends on the dimension of the random effects (ai, bi). When the dimension
of the random effects (ai, bi) is not small, the Monte Carlo EM method can
be computationally extremely intensive. Thus, in the following we approximate
the observed-data joint log-likelihood logLo(θ|y, z,w, δ) using a first-order
Laplacian approximation, as in Wu et al. (2009). This approximate method is
computationally much more efficient than the Monte Carlo EM algorithm.

An Approximate Method

The idea of the approximate method is similar to the ones described in previous
chapters, but applied to the joint model of a longitudinal model and a survival
model. Specifically, let

lc(θ,a,b) ≡
n∑

i=1

l(i)c (θ,ai,bi)

=
n∑

i=1

[
log f(yi|ai, bi;θ) + log f(bi; B)

+ log f(zi|ai; θ) + log f(ai; A)

+ log f ∗(ti, δi|ai, bi; γ, λ)
]

be the “complete-data” log-likelihood or the h-likelihood as in Lee et al. (2006).
Let (ã, b̃) = {(ãi, b̃i), i = 1, 2, · · · , n} solve the following equations

∂l
(i)
c (θ,ai,bi)
∂(ai,bi)

= 0, i = 1, 2, · · · , n.

The first-order Laplacian approximation to the observed-data log-likelihood
lo(θ|y, z,w, δ) = logLo(θ|y, z,w, δ) is given by

l̃o(θ, ã, b̃) = lc(θ, ã, b̃)− 1
2

log

∣∣∣∣∣− 1
2π

∂2lc(θ,a,b)
∂(a,b)2

∣∣∣∣∣
(a,b)=(ã,b̃)

, (8.22)

i.e., l̃o(θ, ã, b̃) is a first-order Laplacian approximation to lo(θ|y, z,w, δ) by
integrating out the random effects (a,b). Thus, an approximate estimate of θ
can be obtained by solving the following equation

∂l̃o(θ, ã, b̃)
∂θ

= 0.

Given starting values (a(0),b(0)) and θ(0), iterating the above procedure un-
til convergence leads to an approximate estimate θ̃. REMLs of the variance-
covariance parameters can be obtained in a similar way. The procedure is sim-
ilar to that in Section 8.4.2.
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8.6 Joint Modeling of Several Longitudinal Processes

In the previous sections, we have discussed joint inference of a longitudinal
model and a survival model. Sometimes, we may also want to jointly model
two or more longitudinal processes, since these processes may be correlated.
The following two situations may arise in practice: (i) two or more longitudi-
nal processes may be associated, so joint inference may be more efficient than
separate analyses; and (ii) in a longitudinal model one or more time-dependent
covariates may be measured with errors or may have missing data, so joint
modeling of the response and covariate processes is required to address mea-
surement errors and missing data. For example, for the mental distress data in
Chapter 1, the repeated measurements of the GSI scores, depression scores,
anxiety scores, and some other variables are highly correlated, so a joint model
would be desirable, which can borrow information across different processes.

In this section, we briefly discuss statistical methods for joint modeling of sev-
eral longitudinal processes.

8.6.1 Multivariate Mixed Effects Models with Incomplete Data

When several longitudinal processes are of similar types, say all normally dis-
tributed, we may consider a multivariate mixed-effects model, which incorpo-
rates both the correlation between the longitudinal processes and the corre-
lation among the repeated measurements within each process. Such a multi-
variate mixed effects model may lead to more efficient inference than separate
analysis of each longitudinal process. Shah, Laird, and Schoenfeld (1997) con-
sidered a multivariate LME model and focus on bivariate case. In the follow-
ing, we follow Shah et al. (1997) and describe a multivariate LME model in
the general form.

For modeling several longitudinal processes, it is likely that the measurement
times and the measurement frequencies are different for different longitudinal
processes, which leads to missing data in the responses of a standard mul-
tivariate LME model. Sometimes the missing data may be non-ignorable or
informative. In the following, we first consider a complete-data multivariate
LME model and then consider missing data problems.

Suppose that there are n independent individuals, with individual i having
ni measurements on each of K response variables. Let yijk be the k-th re-
sponse value for individual i at time tij , and let eijk be the corresponding
random error, i = 1, . . . , n, j = 1, . . . , ni, k = 1, . . . ,K. Let yik =
(yi1k, . . . , yinik)T be the repeated measurements for individual i on response
k, and let yi = (yT

i1, . . . ,y
T
iK)T be all the response measurements for in-

dividual i. Define eik and ei in a similar way. Let zil = (zi1l, . . . , zinil)
T
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be the covariate repeated measurements of the l-th covariate for individual i,
l = 1, . . . , p, and let zi = (zT

i1, . . . , z
T
ip)

T . LetN =
∑n

i=1 ni be the total num-
ber of measurements. For the k-th response yik, we may consider the following
univariate LME model

yik = Xikβk + Tikbik + eik, i = 1, 2, · · · , n, k = 1, 2, · · · ,K, (8.23)

where βk are fixed effects, bik are random effects, and Xik and Tik are known
design matrices. We assume that the within-individual measurements are con-
ditionally independent given the random effects, i.e., we assume eik ∼ σ2

kI .
The univariate LME model (8.23) may be used if we model each response pro-
cess separately, but it fails to incorporate the correlation or association between
different processes.

To incorporate the correlation between different processes or to borrow infor-
mation across different processes, we consider a multivariate version of LME
model (8.23), following Shah et al. (1997). Let Σ be the K × K covariance
matrix for the K response variables, i.e.,

Cov(yij1, . . . , yijK) = Σ = (σij)K×K .

Let Xi = diag(Xi1, . . . ,XiK) be a block diagonal matrix with the k-th block
being matrix Xik, and let Ti = diag(Ti1, . . . ,TiK) be a block diagonal matrix
with the k-th block being matrix Tik. Then, we can combine the K univari-
ate LME models in (8.23) and obtain the following multivariate linear mixed
effects (LME) model

yi = Xiβ + Tibi + ei, i = 1, 2, · · · , n, (8.24)

where β = (βT
1 , . . . ,β

T
K)T are fixed effects, bi = (bT

i1, . . . ,b
T
iK)T are ran-

dom effects, bi ∼ N(0, D), and ei ∼ N(0,Σ⊗ Ii).

The multivariate LME model (8.24) is a joint model for all the K longitudinal
processes. It incorporates the between-process correlation via the covariance
matrix Σ and incorporates the within-process correlation via random effects bi.
The multivariate LME model (8.24) borrows information both across processes
and across individuals.

Missing Data Problems

For several longitudinal processes, the observed data may be available at dif-
ferent time points across processes. This leads to missing data. Sometimes the
missing data may be non-ignorable in the sense that the missingness may be
related to the missing values. Covariates may also be missing. For simplicity
we assume that the missing covariates are missing at random. In the following
we consider likelihood inference for the multivariate LME model (8.24) in the
presence of missing data. The method is similar to that for a univariate LME
model.
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Let rij be a missing response indicator such that rij = 1 if the j-th component
of yi is missing and 0 otherwise, and let ri = (ri1, . . . , ri,Kni

)T . We write
yi = (ymis,i,yobs,i), where ymis,i contains the missing components of yi and
yobs,i contains the observed components of yi, and write zi = (zmis,i, zobs,i)
similarly.

By treating the unobservable random effects bi as additional “missing data”,
we have “missing data” {(ymis,i, zmis,i,bi)}. The “complete data” are {(yi, zi,bi, ri), i =
1, . . . , n}, and the “complete-data” log-likelihood can be written as

lc(ψ) =
n∑

i=1

lc(ψ|yi, zi, ri,bi)

=
n∑

i=1

{
log f(yi|zi,bi;β,Σ) + log f(zi;α)

+ log f(bi;D) + log f(ri|yi, zi;φ)
}
,

where ψ = (α,β,Σ, D,φ) denotes the collection of all parameters. We con-
sider an EM algorithm for likelihood estimation. Let ψ(t) be the parameter
estimates from the t-th EM iteration. The E-step at the (t+ 1)-th EM iteration
can be written as

Q(ψ|ψ(t)) =
n∑

i=1

Qi(ψ|ψ(t))

=
n∑

i=1

E
[
lc(ψ|yi, zi, ri,bi)|yobs,i, zobs,i, ri;ψ(t)

]
=

n∑
i=1

∫ ∫ ∫ {
log f(yi|zi,bi;β,Σ) + log f(zi;α)

+ log f(bi;D) + log f(ri|yi, zi;φ)
}

×f(ymis,i, zmis,i,bi|yobs,i, zobs,i, ri;ψ(t))
dbi dymis,id zmis,i.

Thus Q(ψ|ψ(t)) involves a high dimensional integral. For multivariate LME
models, however, we can integrate out the random effects bi from Q(ψ|ψ(t))
in the E-step. This greatly simplifies the computation. We briefly outline the
derivation below.

Note that

f(ymis,i, zmis,i,bi|yobs,i, zobs,i, ri;ψ(t))

= f(bi|yi, zi, ri;ψ(t))f(ymis,i, zmis,i|yobs,i, zobs,i, ri;ψ(t)).
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It can be shown that

[bi|yi, zi, ri;ψ(t)] ∼ N(b̃i, D̃i),

where

b̃i = D(t)TT
i

(
TiD

(t)TT
i + Σ(t) ⊗ Ii

)−1

(yi −Xiβ
(t)),

D̃i = D(t) −D(t)TT
i

(
TiD

(t)TT
i + Σ(t) ⊗ Ii

)−1

TiD
(t).

Then, after some algebra, we can obtain the following result

Qi(ψ|ψ(t)) =

{
− 1

2
log |2πΣ⊗ Ii| −

1
2

∫ ∫ [
tr(TT

i (Σ⊗ Ii)−1TiD̃i)

+
(
yi −Xiβ − Tib̃i

)T

(Σ⊗ Ii)−1
(
yi −Xiβ − Tib̃i

) ]
×f(ymis,i, zmis,i|yobs,i, zobs,i, ri;ψ(t)) dymis,idzmis,i

}

+
∫ ∫

log f(zi;α)f(wmis,i|wobs,i, ri;ψ(t)) dymis,idzmis,i

−

{
1
2

log |2πD|+ 1
2

∫ ∫ [
tr(D−1D̃i) +

(
b̃′iD

−1b̃i

) ]
×f(ymis,i, zmis,i|yobs,i, zobs,i, ri;ψ(t)) dymis,idzmis,i

}

+
∫ ∫

log f(ri|yi, zi;φ)f(wmis,i|wobs,i, ri;ψ(t)) dymis,idzmis,i.

where wmis,i = (ymis,i, zmis,i) and wobs,i = (yobs,i, zobs,i).

Since the above integrals do not involve the random effects bi, in the E-step we
only need to simulate samples from f(ymis,i, zmis,i|yobs,i, zobs,i, ri;ψ(t)),
which has a lower dimension so is easier to sample from. The Monte Carlo
sampling in the E-step can again be accomplished by Gibbs sampler combined
with rejection sampling methods, in a way similar to that in earlier chapters.
The computational advantage of integrating out the random effects in the E-
step can be substantial, especially when the dimension of the random effects is
high, since it is often the sampling of random effects in the E-step that causes
much of the convergence problems.

When the covariates zi are categorical or discrete, the above integration with
respect to zmis,i reduces to a summation, which further simplifies the compu-
tation.

For multivariate longitudinal categorical data, Zeng and Cook (2007) proposed
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a joint transitional model using generalized estimating equations that allow
modeling of covariate effects on marginal transition probabilities as well as
the association parameters. Their model simultaneously incorporates a Markov
structure in each longitudinal process and an association structure between dif-
ferent processes. They demonstrated via simulation that a substantial efficiency
can be gained using a multivariate model rather than separate univariate mod-
els. Similarly, Wu, Liu, and Liu (2009) considered a multivariate transitional
mixed effects model for multivariate continuous responses.

8.6.2 Other Joint Modeling Approaches

There are other approaches for joint modeling of several longitudinal pro-
cesses. In the following, we briefly describe two of them: one is based on a
factorization of the joint distribution and the other one uses random effects to
incorporate the correlation between processes.

Factorization of Joint Distributions

The multivariate LME model in Section 8.6.1 is useful when the responses are
all normally distributed. In practice, however, the longitudinal responses may
be of different types. For example, one response may be a continuous variable
while the other response may be a binary variable. In this case, a multivariate
LME model is clearly inappropriate, and it may even be hard to define the
correlation between the two processes. In the following, we consider a joint
modeling approach which factors the joint distribution of the two responses
into a product of univariate regression models.

Suppose that y(1)
i = (y(1)

i1 , · · · , y
(1)
ini

)T and y(2)
i = (y(2)

i1 , · · · , y
(2)
ini

)T are two

different longitudinal response processes, say y(1)
ij is a continuous variable and

y
(2)
ij is a binary variable. Let θ contains all parameters and let zi be covariates.

Then we can write the joint likelihood as follows

L(θ) =
n∏

i=1

f(y(1)
i ,y(2)

i |zi,θ)

=
n∏

i=1

∫ ∫
f(y(1)

i |zi,b
(1)
i ,θ)f(y(2)

i |y(1)
i , zi,b

(2)
i ,θ) db(1)

i db(2)
i ,

where b(1)
i and b(2)

i are random effects in each model respectively. We can then
assume standard mixed effects models for f(y(1)

i |zi,b
(1)
i ,θ) and f(y(2)

i |y(1)
i , zi,

b(2)
i ,θ) respectively, such as a LME model for f(y(1)

i |zi,b
(1)
i ,θ) and a logis-

tic mixed model for f(y(2)
i |y(1)

i , zi,b
(2)
i ,θ).

This factorization approach can be extended to more than two processes in
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a straightforward way. However, one should perform sensitivity analysis to
check if the final results are sensitive to the order of the factorization.

Random Effects Approach

In a mixed effects model, we use random effects to incorporate the correlation
among the repeated measurements within each individual. This idea can be
extended to modeling several longitudinal processes by using random effects
to incorporate the correlation between different processes. That is, we can use
random effects to combine several correlated processes. We describe such an
approach as follows.

Let yijk be the response measurement for individual i, process j, at time tijk,
i = 1, · · · , n; j = 1, · · · , J ; k = 1, · · · , ni. The response yijk can either be
a continuous or discrete variable. We can incorporate the correlation among
the repeated measurements within each individual via a transitional (Markov)
structure, and incorporate the correlation between different processes via ran-
dom effects. Specifically, we may consider the following mixed effects transi-
tional joint model

E(yijk) = g(yij,k−1, zijk,βj ,σj ,bik), (8.25)
bik ∼ N(0, D), i = 1, · · · , n; j = 1, · · · , J ; k = 1, · · · , ni,

where g(·) is a known function such as a link function or a nonlinear function,
zijk are covariates, bik are random effects, βj is a vector of fixed parameters
for process j,σj contains variance-covariance parameters for within individual
measurements of process j, and D is a unknown variance-covariance matrix.

In the mixed effects transitional model (8.25), the between-process correlation
is incorporated by the random effects bik and the within-process correlation
is incorporated by a first-order transition (Markov) model. The random effects
bik also account for individual-time-specific deviations from the population
trajectories of the longitudinal processes. The first-order Markov dependence
in model (8.25) can easily be extended to more general Markov structures, such
as a second- or third-order Markov structure. We may assume that yijk’s are
conditionally independent given the random effects bik, i.e., at each time point
the processes are assumed to be conditionally independent given the random
effects.

Let θ be the collection of all unknown parameters. The observed-data likeli-
hood function can be written as

Lo(θ) =
n∏

i=1

ni∏
k=1

∫  J∏
j=1

f(yijk|yij,k−1, zijk,bik,β, σ)

 f(bik|D) d bik.

The EM algorithm can be used to obtain MLE of θ. The “complete-data” log-
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likelihood function is given by

lc(θ) =
n∑

i=1

ni∑
k=1

{ J∑
j=1

log f(yijk|yij,k−1, zijk,bik,β, σ) + log f(bik|D)
}
.

The E-step at the t-th EM iteration can then be written as

Q(θ|θ(t)) = E(lc(θ)|yik, zik, rik; θ(t))

=
n∑

i=1

ni∑
k=1

∫ [ J∑
j=1

log f(yijk|yij,k−1, zijk,bik,β, σ)

+ log f(bik|D)

]
f(bik|yik, zik, rik; θ(t)) dbi.

The M-step is to maximize Q(θ|θ(t)) to produce an updated estimate of θ.

Cook et al. (2004a) proposed a conditional Markov model for clustered pro-
gressive multi-state processes where multiplicative random effects for each
transition intensity were used to address the clustering in processes within each
subject. They considered a multi-state Markov model and applied their method
to clustered progressive chronic disease processes.

Carroll, Midthune, Freedman, and Kipnis (2006) proposed a multivariate mea-
surement error model which combines linear mixed measurement error models
and linear seemingly unrelated regression models. They considered separate
marginal mixed measurement error models for different nutrients which seem-
ingly unrelated but aspects of each model are highly correlated. They showed
a substantial efficiency gain from joint modeling over separate modeling.

Example 8.2 Joint transitional models

Suppose that we observe J continuous longitudinal processes where each pro-
cess may be modeled by a linear or nonlinear model. We may then consider
the following joint transitional model in which the within process longitudi-
nal correlation is modeled by a transitional structure and the between process
correlation is incorporated by individual-time specific random effects:

yijk = g(yij,k−1, tijk,βijk) + eijk,

βijk = Aijk βj + bik,

eijk i.i.d. ∼ N(0, σ2
j ), bik ∼ N(0, D),

i = 1, · · · , n; j = 1, · · · , J ; k = 1, · · · , ni,

where g(·) is a known linear or nonlinear function, βj is a vector of fixed
parameters for process j, and Aijk is a design matrix containing covariates.
Different processes are linked through the shared random effects in the model.
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If we observe J binary longitudinal processes, we may consider the following
joint transitional model

logit(P (yijk = 1)) = β1ijk + β2ijktijk + β3ijkyij,k−1 + βT
4ijkzijk

β1ijk = β1j + b1ik, β2ijk = β2j + b2ik,

β3ijk = β3j + b3ik, β4ijk = β4j + b4ik,

bik = (b1ik, b2ik, b3ik, b4ik)T ∼ N(0, D),
i = 1, · · · , n; j = 1, · · · , J ; k = 1, · · · , ni,

where covariates may also be used to partially explain variations in the individual-
specific parameters βlijk’s. Different processes are again linked through shared
random effects.

8.6.3 Joint Longitudinal Models with Incomplete Data: A Summary

In modeling longitudinal data, some time-dependent covariates may be mea-
sured with errors or may be missing. In this case, additional longitudinal mod-
els for the time-dependent covariates are required to address measurement er-
rors or missing data in likelihood inference. This leads to joint models of two
(or more) longitudinal processes in which one is a covariate process and the
other is a response process. When missing data in either the response or the
covariates are non-ignorable, the missing data indicators are longitudinal bi-
nary processes, and these missing data processes must also be incorporated in
the joint likelihood. This is an example of joint models of several longitudinal
processes.

In the above example, the covariate models and the missing data models are
secondary, so the parameters in these models may be viewed as nuisance pa-
rameters and are usually not of primary interest. To increase the precision or
efficiency of the main parameter estimates, and to avoid potential identifiabil-
ity problems, we should simplify the secondary models to reduce the number
of nuisance parameters. Examples of joint modeling for longitudinal response
process, longitudinal covariate process, and missing data process can be found
in Chapters 4 – 6. In the following we give a brief summary of the basic ap-
proaches.

Let yi = (yi1, · · · , yini
)T be the response process and zi = (zi1, · · · , zini

)T

be the covariate process. Suppose that we model the response process by a
mixed effects model with density function f(yi|zi,bi,β,σ) given the random
effects bi, such as a GLMM or NLME model. If the covariates zi are measured
with errors or have missing values, we can model the covariate process by
another mixed effects model f(zi|ai,α) to address the measurement errors or
missing data:

zi = z∗i + εi = h(ti,α,ai) + εi, i = 1, 2, · · · , n,
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where ti = (ti1, · · · , tini
) are measurement times for individual i, zi’s are

observed but mis-measured covariate values and z∗i = h(ti,α,ai) are the cor-
responding unobserved true covariate values, h(·) is a known function (often
linear), α contains fixed parameters, ai contains random effects, and εi =
(εi1, · · · , εini

)T represents measurement errors in the data for individual i. We
assume that zi is a surrogate of z∗i and that f(yi|zi, z∗i ,bi,β,σ) = f(yi|z∗i ,bi,β,σ).

The joint likelihood of the two longitudinal processes for the observed data can
be written as

Lo(θ) =
n∏

i=1

∫ ∫
f(yi|z∗i ,bi,β,σ)f(zi|ai,α) dai dbi.

Maximizing the joint likelihood Lo(θ) gives the MLEs of all model parameters
simultaneously. Standard errors of the MLEs can be obtained from the joint
observed information matrix. The joint likelihood estimation incorporates the
uncertainty in estimating all parameters. For two-step methods or regression
calibration methods, a third step is required to address the uncertainty of the
estimation in the first step.

If both the response and the covariate processes are LME models, we can in-
tegrate out the random effects (ai,bi) in the joint likelihood Lo(θ) and derive
an analytic expression for Lo(θ). Wang, Wang, and Wang (2000) discussed
such an approach. For LME models, however, parameter or model identifia-
bility is more likely an issue than GLMM or NLME models. Wang and Heck-
man (2009) discussed parameter identifiability in LME models. For GLMM or
NLME or frailty models, however, the integral in the joint likelihoodLo(θ) can
be highly intractable, so Monte Carlo EM algorithms or its variations are often
used but these algorithms are often computationally very demanding. There-
fore, computationally more efficient approximate methods based on Taylor or
Laplace approximations are highly valuable for joint model inference.

When missing data are non-ignorable, a model for the missing data process
is typically assumed and incorporated in joint likelihood inference. In other
words, one jointly models the response process, the covariate process, and the
missing data process for joint likelihood inference. In this case, the association
between these models is clear, and a joint inference is necessary for valid anal-
ysis. Specifically, let rij be a missing data indicator such that rij = 1 if zij is
missing and rij = 0 if zij is observed. One then assumes a model for the longi-
tudinal binary process ri = (ri1, · · · , rini

)T to mimic a possible non-ignorable
missing data mechanism, i.e., how the missingness may be related to the miss-
ing and observed data. Two commonly assumed non-ignorable missing data
models are:

• missing probabilities depend on the observed and missing values, i.e., a
missing data model f(ri|yi, zi,φ),
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• missing probabilities depend on the unobserved random effects in the mod-
els, i.e., a missing data model f(ri|ai,bi,φ).

In both models, the missing probabilities depend on unobserved quantities, so
the missing data mechanism is non-ignorable.

The choice of missing data models can be based on scientific considerations
or subject-area knowledge. For example, the above second missing data model
may be more reasonable if the responses and covariates are measured with er-
rors and one believes that the missingness depends on the true but unobserved
response and covariate values or some underlying latent processes that gov-
ern the response and covariate processes. Since a non-ignorable missing data
model is not testable based on the observed data, it is a good strategy to con-
sider different missing data models and then perform sensitivity analysis.

For missing data model f(ri|yi, zi,φ), the joint likelihood for all three longi-
tudinal models can be written as

L(1)
o (θ) =

n∏
i=1

∫ ∫ ∫
f(yi|z∗i ,bi,β,σ)f(zi|ai,α)

×f(ri|yi, zi,φ) dzmis,i dai dbi.

For missing data model f(ri|ai,bi,φ), assuming that the within individual co-
variate measurements are conditionally independent given the random effects,
the joint likelihood for all three longitudinal models can be written as

L(2)
o (θ) =

n∏
i=1

∫ ∫
f(yi|z∗i ,bi,β,σ)f(zobs,i|ai,α)f(ri|ai,bi,φ) dai dbi.

The joint likelihood L
(2)
o (θ) has a lower dimension and is computationally

easier to manage. In both cases, the main parameters of interest are usually β,
and the parameters α and φ are often viewed as nuisance parameters. MLEs
of all the parameters are then obtained simultaneously by maximizing the joint
likelihoods. When the responses also have nonignorable missing data, the joint
likelihood inference is similar.

In the context of missing data and measurement errors described in this sec-
tion, the associations among the longitudinal models are clear and joint infer-
ence is desirable. Likelihood methods provide a unified framework for such
joint inference, with desirable asymptotic properties of the resulting estimates.
However, likelihood methods are based on distributional assumptions, which
may be restrictive in some cases, and the asymptotic optimality and normality
of the resulting MLEs rely on certain regularity conditions. Alternative joint
modeling approaches are available, such as the two-step methods or regression
calibration methods discussed earlier and GEE methods (see Chapter 10).





CHAPTER 9

Robust Mixed Effects Models

9.1 Introduction

In previous chapters, we have mostly focused on parametric mixed effects
models. In these models, the random effects are typically assumed to follow
(multivariate) normal distributions and the within individual (cluster) random
errors are assumed to follow parametric distributions in the exponential fam-
ily. For example, in LME and NLME models we assume that both the random
effects and the responses (or the within individual errors) follow normal dis-
tributions, and in GLMMs we assume that the random effects follow normal
distributions and the responses (or the within individual errors) follow paramet-
ric distributions in the exponential family. Likelihood inference is then based
on the assumed distributions.

In practice, however, the assumed parametric distributions may not hold. More-
over, outliers may be present. Sometimes, outliers may not be easily detected,
especially for multi-dimensional data. Likelihood inference for standard (para-
metric) mixed effects models are typically sensitive to the assumed parametric
distributions and to outliers. For example, a few outliers in a dataset can have
a large influence on the parameter estimation and inference. Therefore, likeli-
hood inference ignoring outliers is unreliable and misleading.

In a broad sense, outliers may be viewed as incompletely observed data. Some-
times outliers may be data measured with errors. If the outliers can be detected
or screened manually in advance, one may remove these outliers in the analysis
or check their sources since sometimes outliers may contain valuable informa-
tion. For multi-dimensional (or multivariate) data, however, it may be difficult
to detect outliers in advance. Therefore, robust methods which are less sensitive
to outliers are highly valuable. Robust methods usually outperform classical
methods in the presence of outliers. Good robust estimates can be reasonably
efficient when the assumed distributions hold and more efficient than standard
estimates when the assumed distributions do not hold.

An outlier can be defined as an observation which appears to be inconsistent

295
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with the remainder of the data. For longitudinal data, there are two types of
outliers:

• outliers can occur at individual level, sometimes called e-outliers, which
arise among the repeated measurements within a given individual, and

• outliers can also occur at population level, sometimes called b-outliers,
which are unusual individuals or clusters in the sample.

The terms e-outliers and b-outliers have appeared in the literature and are based
on the standard notation for a LME model. Specifically, for LME model (9.4)
(page 304), the within individual errors are usually denoted by ei and the ran-
dom effects are denoted by bi, so outliers in the repeated measurements within
each individual are called e-outliers while outlying clusters or individuals (cor-
responding large random effects) are called b-outliers. Since different notation
may be used for a LME model, it may be a good idea to avoid using the terms
e-outliers and b-outliers. Figure 9.1 shows these two types of outliers in a lon-
gitudinal AIDS study. Sometimes it may not be possible to distinguish between
the two cases. In either cases, likelihood inference based on standard mixed ef-
fects models are sensitive to these outliers and thus may lead to misleading
results if the outliers are not addressed.

In this chapter, we consider some commonly used robust methods for mixed
effects models. We focus on the following two common approaches for robust
inference:

• one approach is to replace standard distributions assumed for a mixed ef-
fects model by more robust distributions. For example, the usual normal
distributions assumed in mixed effects models can be replaced by heavier
tail t-distributions;

• the other approach is to bound or downweight the influence of outliers in
estimating equations, i.e., estimation and inference are based on estimating
equations which bound or downweight the influence of outliers. A well-
known example is the so-called M -estimators.

Note that a t-distribution with small degrees of freedom has heavier tails than
a corresponding normal distribution with the same mean, so a t-distribution
can accommodate some outliers. A t-distribution approaches to a normal dis-
tribution as its degrees of freedom increase, so one can choose the degree of
freedom in a t-distribution to either increase or decrease its robustness to out-
liers. ForM -estimators, their robustness can be adjusted by choosing appropri-
ate turning points. Both approaches provide robust inference for mixed effects
models.

For a robust method, we need some measures of robustness. There are two
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Figure 9.1 Two types of possible outliers in a longitudinal AIDS study.

commonly used measures of robustness: breakdown point and influence func-
tion. The breakdown point of an estimator is the proportion of outliers an esti-
mator can handle before giving an arbitrarily large or small result. For example,
the sample mean has a breakdown point of 0 since the mean can become arbi-
trarily large by increasing any one value in the sample. On the other hand, the
median has a breakdown point of 0.5 (the maximum breakdown point) since
the median remains unchanged even if we change near half of the values in the
sample. So the median is a robust statistic while the mean is not, although both
are commonly used to summarize the data in a sample. An influence function
shows what happens to an estimator when we change the assumed distribution
of the data slightly.

Detailed discussions of basic ideas and theories for robust methods can be
found in Huber (1981), Rousseeuw and Leroy (1987), and Maronna et al.
(2006), among others.



298 MIXED EFFECTS MODELS FOR COMPLEX DATA

9.2 Robust Methods

There is an extensive literature for robust methods. Maronna, Martin, and Yohai
(2006) provided a recent review. In this section, we briefly review the basic
ideas of the two commonly used robust methods: robust distributions and M -
estimators.

9.2.1 Robust Distributions

In a standard mixed effects model, typically the random effects are assumed to
follow a (multivariate) normal distribution and the response is assumed to fol-
low a distribution in the exponential family, including the normal distribution.
It is well known that normal distributions do not accommodate outliers well,
i.e., they are sensitive to outliers, and a t-distribution is more robust to out-
liers. A t-distribution is similar to a corresponding normal distribution (with
the same mean) in shape, i.e., they are both bell shaped and symmetric, but
a t-distribution has heavier tails than the corresponding normal distribution,
especially when the degree of freedom of the t-distribution is small. Thus, a t-
distribution can better accommodate outliers. Therefore, we can use a t distri-
bution to replace the corresponding normal distribution assumed in the model
for robust inference.

As the number of degrees of freedom increases, the standard t-distribution ap-
proaches to the standard normal distribution. The number of degrees of free-
dom in a t-distribution controls how heavy the tails of the distribution are.
For robust inference, we may fix the degrees of freedom of a t-distribution and
choose a value between 3 to 9, but the degrees of freedom can also be estimated
from the data.

The probability density function of the standard t-distribution with k degrees
of freedom, denoted by t(k), can be written as

f(x) =
Γ
(

k+1
2

)
√
kπ Γ

(
k
2

) (1 +
x2

k

)− k+1
2

, −∞ < x <∞,

where Γ(x) is the Gamma function

Γ(x) =
∫ ∞

0

ux−1e−udu.

For the standard t-distribution with k degrees of freedom, the mean is 0 and
variance is k/(k − 2) for k > 2. Since a t-distribution is symmetric, its mean
and its median are the same. When the degree of freedom k = 1, the corre-
sponding standard t-distribution becomes the Cauchy distribution. Figure 9.2
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Figure 9.2 Density functions for the standard normal distribution and the t distribu-
tions with degrees of freedom being 1 and 4 respectively.

shows the density functions of standard t-distributions, with degrees of free-
dom being 1 and 4 respectively, and the standard normal distribution N(0, 1).
We see that the three distributions are similar in shape but the t-distributions
have heavier tails than the normal distribution.

A multivariate t-distribution is a multivariate generalization of the univariate t-
distribution. The probability density function of a p-dimension random vector
x = (x1, x2, · · · , xp)T following a general multivariate t-distribution with k
degrees of freedom and parameters µ and Σ, denoted by tp(µ,Σ, k), is given
by

f(x) =
Γ
(

k+p
2

)
Γ(k/2)kp/2πp/2|Σ|1/2

[
1 + 1

k (x− µ)T Σ−1(x− µ)
](k+p)/2

,

x ∈ Rp,

where µ is a p × 1 vector and Σ is a p × p matrix. The mean vector and the
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variance-covariance matrix of x are given respectively by

E(x) = µ, Cov(x) =
(

k

k − 2

)
Σ for k > 2.

Note that the variance-covariance matrix of x exists only for k > 2.

For robust inference, we can replace the multivariate normal distributions typi-
cally assumed in a standard regression model by the corresponding multivariate
t-distributions. For example, for a LME model, we can assume that the random
effects or the within-individual random errors or both follow t-distributions.
Such robust approaches can be found in Lange et al. (1989), Pinheiro et al.
(2001), and Song et al. (2007).

There are other robust methods. For example, one may replace a normal distri-
bution assumed in a model by a mixture of two or more normal distributions.
One may also replace a parametric distribution assumed in a model by a non-
parametric distribution. Lai and Shih (2003) considered such a nonparametric
method for NLME models.

9.2.2 M-Estimators

A widely used class of robust methods is to bound or downweight the influ-
ence of outlying observations in a set of estimating equations for parameter
estimation. The set of estimating equations is typically motivated from like-
lihood equations for maximum likelihood estimation. Specifically, consider a
distribution with density function f(y,θ). The MLEs of parameters in θ based
on data {y1, y2, · · · , yn} can be obtained by solving the following estimating
equation

n∑
i=1

ψ(yi,θ) = 0, (9.1)

where

ψ(yi,θ) =
∂ log f(yi,θ)

∂θ
.

This is equivalent to minimize the quantity
∑n

i=1 ρ(yi,θ), where

ρ(yi,θ) = − log f(yi,θ), ψ(yi,θ) = −∂ρ(yi,θ)
∂θ

.

For example, if y1, y2, · · · , yn i.i.d. ∼ N(µ, 1), then ψ(yi, µ) = yi − µ and
ρ(yi, µ) = (yi − µ)2/2 (see Example 9.1 for details). This motivates the fol-
lowing M-estimators.

M-estimators, or maximum likelihood type estimators, are generalizations of
MLEs in which the functions ρ(yi,θ) or ψ(yi,θ) in (9.1) are not necessarily
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Figure 9.3 Huber’s ψ-function with turning point c = 2.

related to a probability density function. Instead, function ψ(yi,θ) can be cho-
sen to downweight outliers in such a way that ψ(x) is close to |x| when |x| is
small and ψ(x) remains small when |x| is large. For example, Huber suggested
the following well-known function (Huber 1981)

ψ(x) =

 x if |x| ≤ c
c if x > c

−c if x < −c
(9.2)

where the constant c > 0 is a turning point. Figure 9.3 shows the ψ-function
with turning point c = 2. The corresponding Huber’s ρ-function is given by

ρ(x) =
{

x2/2, for |x| ≤ c,
c|x| − x2/2, for |x| > c.

(9.3)

So Huber replaces the quadratic function in the normal likelihood by a function
with a bounded derivative.

When the turning point c goes to∞, the M-estimator approaches to the sample
mean. When the turning point c goes to 0, the M-estimator approaches to the
sample median. Thus, the value of the turning point c is important: the larger
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Figure 9.4 The ψ-functions of standard t distributions with degrees of freedom being 1,
4, and 9 respectively.

the value of c, the closer the M-estimator to MLE. In other words, the smaller
the value of c, the more robust the M-estimator. In practice, we can choose the
turning point c which achieves a balance between robustness and efficiency,
such as c = 2.

Note that, for a standard t-distribution with k degrees of freedom, it can be
shown that

ψ(x) =
x

x2 + k
, −∞ < x <∞.

Figure 9.4 shows the ψ-functions for t distributions with degrees of freedom
being 1, 4, and 9 respectively. We see that large or small values of x are down-
weighted in a way similar to the Huber’s φ-function.

It can be shown that M-estimators are asymptotically normally distributed. M-
estimators are popular in robust inference due to their generality, efficiency, and
high breakdown point. Note that, however, M-estimators are not necessarily
unique, i.e., there may be more than one solution to the equations (9.1). In
practice, the choice of the ψ function may not be critical, and many choices
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may lead to similar results. M-estimators have good large-sample properties.
For small samples, an alternative approach is the bootstrap method.

There are many other robust methods such as R-estimators and L-estimators,
but M-estimators may be the most popular (Richardson 1997; Preisser and
Qaqish 1999; Cantoni and Ronchetti 2001; Yeap and Davidian, 2001; Sinha
2004; Copt and Victoria-Feser 2006; Noh and Lee 2007).

Example 9.1 Robust estimation for normal distributions.

Suppose that {y1, y2, · · · , yn} is an i.i.d. sample from normal distributionN(µ, 1),
where the mean parameter µ needs to be estimated. The log-likelihood function
for estimating parameter µ is given by

l(µ) = −n
2

log(2π)− 1
2

n∑
i=1

(yi − µ)2.

So the likelihood equation is given by
n∑

i=1

ψ(yi, µ) =
n∑

i=1

(yi − µ) = 0,

where ψ(yi, µ) = yi − µ. The solution (MLE) of the above estimating equa-
tion has a unbounded influence function, i.e., the influence of an outlier on the
MLE is unbounded. In other words, an outlier can have a large influence on
the resulting MLE µ̂. Note that maximizing l(µ) is equivalent to minimizing∑n

i=1 ρ(yi, µ), where ρ(yi, µ) = (yi − µ)2/2.

For a robust estimator of µ, we can replace the above ψ(yi, µ) by the Huber’s
function ψc(yi, µ) given in (9.2). Then, one solves the following robust esti-
mating equation

n∑
i=1

ψc(yi, µ) = 0,

which bounds or downweights influences of large or small values of yi’s. The
solution of the above robust estimating equation, µ̃c, is a robust estimator of µ.
With an appropriate choice of the turning point c, the robust estimator µ̃c will
be less sensitive to outliers.

9.3 Mixed Effects Models with Robust Distributions

9.3.1 LME Models with Multivariate t-Distributions

In a standard LME model, the random effects and the within-individual errors
are assumed to follow multivariate normal distributions. Thus, likelihood in-
ference for standard LME model is sensitive to outliers. For robust inference,
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one approach is to replace the multivariate normal distributions in the LME
models by the corresponding multivariate t-distributions with the same means
and variance-covariance matrices. Since t-distributions have heavier tails than
normal distributions, they can accommodate some outliers. Thus, LME models
with t-distributions for the random effects and/or the within-individual errors
are more robust to outliers than standard LME models with normal distribu-
tions.

As noted in Section 9.2, in longitudinal studies outliers may occur at popula-
tion level, suggesting a t-distribution for the random effects to accommodate
these outliers, and/or at the individual level, suggesting a t-distribution for the
within-individual error to accommodate these outliers. In other words, for ro-
bust LME models, we may consider t-distributions for the random effects or
for the within-individual errors or for both. In the following, we focus on LME
models where t-distributions are assumed for both the random effects and the
within-individual errors.

LME models with t-distributions

Let yi = (yi1, yi2, · · · , yini
)T be the ni response measurements on individual

i, i = 1, 2, · · · , n. A standard LME model is given by

yi = Xiβ + Zibi + ei, i = 1, 2, · · · , n, (9.4)
bi ∼ N(0, D), ei ∼ N(0, Ri),

where β = (β0, β1, · · · , βp)T are fixed effects, bi = (bi1, · · · , biq)T are ran-
dom effects, Xi and Zi are known design matrices, ei = (ei1, ei2, · · · , eini

)T

are within-individual errors,Ri is the covariance matrix for the within-individual
errors, and D is the covariance matrix of the random effects.

Since normal distributions are sensitive to outliers, we can assume multivari-
ate t-distributions for the random effects bi and the within-individual errors
ei in the LME model (9.4). This leads to the following LME model with t-
distributions (Lange et al. 1989; Pinheiro et al. 2001):

yi = Xiβ + Zibi + ei, i = 1, 2, · · · , n, (9.5)
bi ∼ tq(0, D, ν), ei ∼ tni

(0, Ri, ν),

where ν is the degrees of freedom of the multivariate t distributions. See Sec-
tion 9.2.1 for definition and properties of multivariate t distributions.

For the multivariate t LME model (9.5), it can be shown that the marginal
distribution of the response yi is given by (Johnson and Kotz 1972)

yi ∼ tni
(Xiβ, ZiDZ

T
i +Ri, ν),

i.e., the marginal distribution of the response yi is a multivariate t-distribution
with mean Xiβ and variance-covariance (ν/(ν − 2))(ZiDZ

T
i + Ri). The
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variance-covariance matrices of the random effects and the within-individual
errors in the multivariate t LME model (9.5) are given respectively by

V ar(bi) =
ν

ν − 2
D, V ar(ei) =

ν

ν − 2
Ri, for ν > 2, i = 1, 2, · · · , n.

In both the standard LME model (9.4) and the robust LME model (9.5), the
marginal means of the response are the same:

E(yi) = Xiβ.

Thus, in both models the fixed effectsβ have the same interpretation and can be
interpreted as the population averages, as in standard linear regression models.
However, the interpretations of the variance-covariance matrices D and Ri are
different in the two models. Moreover, the marginal variance-covariance matrix
of the response in the robust LME model (9.5) is given by

V ar(yi) =
ν

ν − 2
(ZiDZ

T
i +Ri),

while marginal variance-covariance matrix of the response in the standard
LME model (9.4) is given by

V ar(yi) = ZiDZ
T
i +Ri.

So the variance-covariance matrices in the two models differ by a factor of
ν/(ν − 2).

To facilitate likelihood inference, we can re-write the multivariate t LME model
(9.5) in a gamma-normal hierarchical form as follows (Kotz and Nadarajah
2004)

yi | bi, τi ∼ N(Xiβ + Zibi, τ
−1
i Ri), (9.6)

bi | τi ∼ N(0, τ−1
i D),

τi ∼ Gamma
(ν

2
,
ν

2

)
, i = 1, 2, · · · , n,

where the gamma distribution Gamma(α, β) has the following probability
density function:

f(x) =
βαxα−1

Γ(α)
exp(−βx), x > 0, α > 0, β > 0.

This gamma-normal hierarchical representation is an alternative formulation of
the multivariate t LME model (9.5) and is convenient for maximum likelihood
estimation of the parameters using the EM algorithm, as described next.

Likelihood Inference

For maximum likelihood estimation of the parameters in the multivariate t
LME model (9.5), we consider the EM algorithm based on the gamma-normal
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hierarchical model (9.6), following Pinheiro et al. (2001). Let Ri = σ2Ini
for

simplicity. For the gamma-normal hierarchical model (9.6), we can treat the
random variables bi and τi as “missing data”, so the “complete data” are

{(yi,bi, τi), i = 1, 2, · · · , n}.

Let θ = (β, D, σ2) denote all parameters. Let y = (yT
i , · · · ,yT

n )T and b =
(bT

i , · · · ,bT
n )T .

The “complete data” log-likelihood based on the gamma-normal hierarchical
model (9.6) is given by

lc(θ) =
n∑

i=1

[
− ni

2
log(σ2)− τi

2σ2
(yi −Xiβ − Zibi)T ( · )

]
+

[
− n

2
log |D| − 1

2
tr

(
D−1

n∑
i=1

τibibT
i

)]

+
n∑

i=1

[
ν

2

{
log
(ν

2

)
+ log(τi)− τi

}
− log(τi)− log

(
Γ
(ν

2

))]
+c

= l(1)c (β, σ2) + l(2)c (D) + l(3)c (ν) + c.

The E-step of the EM algorithm computes the conditional expectation of the
complete-data log-likelihood given the observed data and current parameter
estimate θ̂, i.e.,

Q(θ|θ̂) = E(lc(θ) |y, θ̂).
It can be shown that the E-step reduces to the computation of the following
quantities:

Ω̂i = τi cov(bi|θ̂,y) =
(
D̂−1 +

1
σ̂2
ZT

i Zi

)−1

,

b̂i = E(bi|θ̂,y) = D̂ZT
i (ZiD̂Z

T
i + σ2I)−1(yi −Xiβ̂),

τ̂i = E(τi|θ̂,y) =
ν̂ + ni

ν̂ + δ2i (β̂, D̂, σ̂2)
,

where

δ2i (β, D, σ2) = (yi −Xiβ)T (ZiDZ
T
i + σ2I)−1(yi −Xiβ).

We consider the ECM algorithm (Meng and Rubin 1993) in which the M-step
is replaced by a sequence of constrained maximization (CM) steps, with each
step being a maximization over a subset of parameters while holding others
fixed. Specifically, the CM-step consists of the following sequence:

• updates β̂ by maximizing E(l(1)c (β, σ̂2) |y, θ̂) over β, holding σ̂2 fixed;
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• updates σ̂2 by maximizing E(l(1)c (β̂, σ2) |y, θ̂) over σ2, holding β̂ fixed;

• updates D̂ by maximizing E(l(2)c (D) |y, θ̂) over D;

• updates ν̂ by maximizing E(l(3)c (ν) |y, θ̂) over ν.

These lead to the following updated parameter estimates:

β̂ =

(
n∑

i=1

τ̂i
σ̂2
XT

i Xi

)−1 n∑
i=1

τ̂i
σ̂2
XT

i (yi − Zib̂i),

σ̂2 =

∑n
i=1

[
τ̂i(yi −Xiβ̂ − Zib̂i)T (yi −Xiβ̂ − Zib̂i) + tr(Ω̂iZ

T
i Zi)

]
∑n

i=1 ni
,

D̂ =
1
n

n∑
i=1

(τ̂ib̂ib̂T
i + Ω̂i),

ν̂ = arg maxν

n∑
i=1

{
ν

2

[
log
(ν

2

)
+ E(log(τi) |y, θ̂)− τ̂i

]
− log

(
Γ
(ν

2

))}
.

Iterating between the above E- and CM-steps until convergence, we obtain the
MLEs (or local maximums) of the parameters in the multivariate t LME model
(9.5).

The MLEs from the multivariate t LME model (9.5) are more robust against
outliers than those based on the standard LME model (9.4). In a simulation
study, Pinheiro et al. (2001) showed that the multivariate t LME model sub-
stantially outperforms the normal or standard LME model when outliers are
present in the data. The gains in efficiency in estimating the parameters is
particularly high for the variance-covariance parameters (Pinheiro et al. 2001;
Song et al. 2007).

9.3.2 GLMM and NLME Models with Multivariate t-Distributions

The multivariate t LME model in Section 9.3.1 can be extended to other mixed
effects models such as GLMM, NLME, and frailty models for robust inference.
The idea is to replace the normal distributions typically assumed in the models
by the corresponding t-distributions to accommodate outliers in the data. For
LME and NLME models, we may consider t-distributions for both the random
effects and the within-individual errors, which accommodate outliers at both
the individual levels and population levels. For GLMM and frailty models, we
may consider a t-distribution only for the random effects, which accommodate
outliers at the population level.
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The ideas of multivariate t GLMM and NLME models are similar to the multi-
variate t LME models in Section 9.3.1. However, when the models are non-
linear in the random effects, we are unable to obtain closed-form or ana-
lytic expressions similar to those in Section 9.3.1. Therefore, numerical or
Monte Carlo methods may be needed for likelihood estimation for multivariate
t GLMM and NLME models. In the following, we focus on NLME models
with multivariate t-distributions. The idea also applies to GLMM and frailty
models.

Suppose that we only consider outliers in the population level, not in the indi-
vidual level, for illustration. Then we can assume a multivariate t-distribution
for the random effects, with the within individual errors still assumed to follow
normal distributions. Thus, a robust NLME model can be written as

yi = g(xi,bi,β) + ei, i = 1, 2, · · · , n, (9.7)
bi ∼ tq(0, D, ν), ei ∼ N(0, Ri),

where g(·) is a known vector-value nonlinear function. For simplicity, assume
that Ri = σ2Ini

. Let θ denote a collection of all unknown parameters. The
likelihood function can be written as

L(θ) =
n∏

i=1

Li(θ) =
n∏

i=1

∫
f(yi|bi,β, σ

2)f(bi|D, ν) dbi, (9.8)

where

f(yi|bi,β, σ
2) = (2πσ2)−ni exp

[
− (yi − g(xi,bi,β))T ( · )

2σ2

]
,

f(bi|D, ν) =
Γ
(

ν+q
2

)
Γ(ν/2)νq/2πq/2|D|1/2

[
1 + 1

ν bT
i D

−1bi

](ν+q)/2
.

Similarly, for a GLMM the likelihood has the same form as (9.8) but with yi|bi

follows a distribution in the exponential family.

If there are outliers in both the population level and the individual level, we
can consider multivariate t-distributions for both the random effects and the
within-individual errors in the NLME model. The likelihood has the same form
as (9.8) but with yi|bi follows a multivariate t-distribution. If outliers only
occur at the individual level but not the population level, we may consider
a multivariate t-distribution for the within individual error ei but not for the
random effects in the NLME model.

When the dimension of the random effects bi is small, we may consider the
Gauss-Hermit quadrature method to numerically evaluate the integral in the
likelihood L(θ). When the dimension of the random effects bi is not small,
we may consider a Monte Carlo EM algorithm for likelihood estimation, as in
previous chapters.
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9.3.3 Robust Models with Incomplete Data

In the presence of missing data and/or measurement errors, for likelihood infer-
ence we need to assume models for the incompletely observed variables and,
in the case of nonignorable missing data, we also need to assume models for
the missing data mechanisms, as in previous chapters. For robust inference,
we can replace the normal distributions assumed in the models by multivariate
t-distributions with the same means and variance-covariances, which accom-
modate some outliers in the data. Likelihood inference then proceeds in the
usual way. As an illustration, in the following we consider robust methods for
missing covariates in a mixed effects model.

Consider a mixed effects model with conditional density f(y|zi,bi,β,σ) given
the random effects bi, where zi contains p covariates with missing data or mea-
surement errors. If the covariates zi are time-independent and continuous, we
can assume a multivariate t-distribution tp(α, A, k) to accommodate outliers
in the covariates. For random effects bi, we can also assume a multivariate
t-distribution tq(0, B, k) to accommodate outliers in the response (population
level). The likelihood function can be written as

L(θ) =
n∏

i=1

∫ ∫
f(yi|zi,bi,β,σ)f(bi|B, k)f(zi|α, A, k) dbi dzi,mis,

where f(yi|zi,bi,β,σ) may also be assumed to follow a multivariate t distri-
bution tni

(g(zi,bi,β,σ), Ri, k) for LME or NLME models.

If the covariates zi are time-dependent and continuous, we can assume a mul-
tivariate t LME model to model the covariate process and to accommodate
outliers in the covariates. The likelihood function can then be written as

L(θ) =
n∏

i=1

∫ ∫ ∫
f(yi|zi,bi,β,σ)f(bi|B, k)

×f(zi|α,ai, k)f(ai|A, k) dai dbi dzi,mis,

where a multivariate t distribution td(0, A, k) is assumed for the random ef-
fects ai in the covariate LME model to accommodate outliers in the covariate
population level.

If the missing data are nonignorable, we only need to add a model for the miss-
ing data mechanism in the above likelihoods. Likelihood inference then pro-
ceeds as in previous chapters, but the computation may become more tedious.
The above procedures can be extended to missing responses in a straightfor-
ward way.
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9.4 M-Estimators for Mixed Effects Models

In the previous sections we used multivariate t-distributions to replace multi-
variate normal distributions in mixed effects models for robust inference, since
t-distributions have heavier tails than normal distributions so they can accom-
modate some outliers in the data. Inference is then based on the usual likeli-
hood methods, so standard likelihood theories, such as asymptotic normality
and asymptotic optimality, apply to the resulting MLEs if usual regularity con-
ditions hold. However, a t-distribution is a parametric distribution, so it is still
not very flexible in modeling real data in some cases, i.e., the parametric dis-
tributional assumption is still restrictive and may not hold in some cases.

In this section, we consider the M-estimator approach which bounds or down-
weights outliers in a set of estimating equations motivated from likelihood
equations. The resulting M-estimators are robust against outliers. The M-estimators
are also asymptotically normally distributed. This approach is quite general,
and the M-estimators are often reasonably efficient and have high breakdown
points. In the following, we first consider M-estimators for GLMs to illustrate
the basic ideas, and then we extend the methods to mixed effects models.

9.4.1 M-Estimators for GLM

In this section we consider robust estimating equations for generalized linear
models (GLMs) for cross-sectional data to illustrate the ideas, and then in next
section we extend the idea to mixed effects models for longitudinal data. Note
that a GLM may be viewed as a special nonlinear model, so the idea in this
section also applies to nonlinear regression models. Note also that an outlier
may occur in either the response or the covariates or both, so a robust method
for regression models should address these cases simultaneously.

Let {y1, y2, · · · , yn} be an i.i.d. sample from a distribution in the exponential
family, with mean E(yi) = µi and variance V ar(yi) = V (µi). Consider the
following GLM

g(µi) = xT
i β ≡ ηi, (9.9)

where xi contains covariates, β contains unknown parameters, g(·) is a link
function, and ηi = xT

i β is the linear predictor. The MLE for β is a solution of
the following estimating equation (score equation):

n∑
i=1

∂ log f(yi|xi,β)
∂β

=
n∑

i=1

[(
∂µi

∂ηi

)
V (µi)−1(yi − µi)xi

]
= 0, (9.10)

where f(yi|xi,β) is the probability density function of the response yi.
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Note that the solution of the estimating equation (9.10) has an unbounded in-
fluence function. This can be seen from the score function for β:

∂ log f(yi|xi,β)
∂β

=
(
∂µi

∂ηi

)
V (µi)−1(yi − µi)xi.

Thus, the influence of an outlier on the MLE is unbounded, i.e., an outlier in the
response or covariates can have a large influence on the resulting estimators.
In other words, the MLE from estimating equation (9.10) is very sensitive to
outliers so is not robust.

To address outliers in the response yi and covariates xi simultaneously, we con-
sider a general class of M-estimators of Mallows’s type (Mallow 1975), where
the influence of outliers in the response and covariates are bounded separately
(e.g., Cantoni and Ronchetti 2001). Specifically, let

ri = V (µi)−1/2(yi − µi), ψc(ri) = max(−c, min(ri, c)),

where ψc(·) is the Huber function (see (9.2) on page 301) which controls devi-
ations in the response yi. For covariates xi, we may consider a weight function
w(xi) to down-weight the leverage points, e.g., we may choose

w(xi) =
√

1− hi

where hi the i-th diagonal element of the usual hat matrixH = X(XTX)−1XT

in regression models. Then, a robust M-estimator can be obtained from the fol-
lowing estimating equation (Hampel et al. 1986; Cantoni and Ronchetti 2001)

n∑
i=1

[(
∂µi

∂ηi

)
w(xi)V (µi)−1/2ψc(ri)− a(β)

]
= 0, (9.11)

where

a(β) =
1
n

n∑
i=1

(
∂µi

∂ηi

)
w(xi)V (µi)−1/2E(ψc(ri))

is a bias correction term to ensure the Fisher consistency of the resulting esti-
mator and the expectation is taken with respect to the conditional distribution
of yi given xi. The turning point c in ψc(ri) can be chosen to ensure a given
level of asymptotic efficiency. Thus, Mallows’s method downweights outliers
in all the covariates by the same amount, regardless of the response values.

When ψc(ri) = ri (i.e., when c → ∞) and w(xi) = 1 (i.e., no weighting) for
all i, the M-estimator from the estimating equation (9.11) is the usual MLE,
which is fully efficient (asymptotically) but is sensitive to outliers.

9.4.2 M-Estimators for Mixed Effects Models

The M-estimators for GLM for cross-sectional data based on robust estimating
equation (9.11) in Section 9.4.1 can be extended to mixed effects models for
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longitudinal data or clustered data. Such extensions have been considered in
the literature (Richardson 1997; Sinha 2004; Noh and Lee 2007). In this sec-
tion, we consider a class of M -estimators of Mallows’s type for general mixed
effects models, including LME, GLMM, and NLME models.

Let yij and xij be the response and covariates for individual (or cluster) i
at measurement j respectively, i = 1, 2, · · · , n, j = 1, 2, · · · , ni. We write
yi = (yi1, yi2, · · · , yini

)T and write xi similarly. Suppose that there may be
outliers in both the response and the covariates. We consider a mixed effects
model with conditional density function f(yi|xi,bi,β,σ) given the random
effects bi, where β contains fixed mean parameters and σ contains variance-
covariance parameters (for some GLMMs, parameters σ may not be distinct
from parameters β). Assume that the random effects bi are i.i.d. ∼ N(0, B),
where B is a covariance matrix. Let θ = (β, B,σ) be the collection of all
unknown parameters.

The likelihood for the observed data {(yi,xi), i = 1, . . . , n} is

L(θ) =
n∏

i=1

∫
f(yi|xi,bi,β,σ)f(bi|B) dbi.

Usual MLE of θ may be obtained by solving equation

∂ logL(θ)
∂θ

= 0.

Thus, for example, the ML estimating equation for the mean parameters β can
be written as

n∑
i=1

E

(
∂ log f(yi|xi,bi,β,σ)

∂β

∣∣∣yi,xi,θ

)
= 0,

where the conditional expectation is taken with respect to the conditional dis-
tribution f(bi|yi,xi,θ). Estimating equations for other parameters in θ can
be written similarly. For standard maximum likelihood methods, it is known
that statistical inference can be very sensitive to outliers in either the responses
or the covariates, as noted in Section 9.4.1. Similar to the robust approach de-
scribed in Section 9.4.1, in the following we can consider a robust version of
the above estimating equations.

Let

µi = gi(β,bi) = E(yi|xi,bi,β),
Ri = Cov(yi|xi,bi,σ),

ri = ri(β,bi) = R
− 1

2
i (yi − µi) ,

Di = Di(β,bi) =
∂gi(β,bi)

∂β
.
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For a robust estimator of the mean parameters β, we can bound the influence of
any outlying response values and down-weight leverage points in the covariates
separately by the following robust estimating equation

n∑
i=1

E
[{
DT

i Wi(xi)R
− 1

2
i ψi(ri)− a(β)

} ∣∣∣yi,xi,θ
]

= 0, (9.12)

where

a(β) =
1
n

n∑
i=1

E
(
DT

i Wi(xi)R
−1/2
i ψi(ri)

∣∣∣bi

)
is a bias correction term to ensure the Fisher consistency of the robust esti-
mator, the function ψi : Rni → Rni is a monotone function which bounds
the influence of outlying observations in the response yi such as the Huber’s
function ψc(ri) = max(−c, min(ri, c)), the function Wi(·) is a weight func-
tion which downweights leverage points in covariates xi, and the conditional
expectation is taken with respect to the conditional distribution f(bi|yi, zi).
Estimating equations for other parameters can be written similarly.

A simple choice of the weight function isWi(xi) =
√

1− hi where hi the i-th
diagonal element of the usual hat matrix H in regression models. Sometimes it
may be more appropriate to choose a more complex weight function, such as a
function of the Mahalanobis distance (e.g., in Sinha 2004)

Wi(xi) = min

[
1,
(

d0

(xi −mi)TS−1
i (xi −mi)

)γ/2
]
,

where γ ≥ 1, d0 may be chosen as the 95th percentile of the χ2(p) distribu-
tion with p = dim(xi), and mi and Si are respectively robust estimates of
E(xi) and Cov(xi) such as the minimum volume ellipsoid (MVE) estimates
of Rousseeuw and van Zomeren (Maronna et al. 2006).

Note that, when the weight function Wi(xi) = 1 and ψi(ri) = ri (or ρ(u) =
u2/2), robust estimating equation (9.12) reduces to the standard likelihood
equation, and the resulting estimate reduces to the standard MLE.

Robust estimating equation (9.12) for β can be solved using the Newton-
Raphson method as follows. Taking a first-order Taylor expansion about β,
after some algebra, the k-th iteration of the Newton-Raphson method for the
parameter β is given by

β(k+1)
n = β(k)

n −

{
n∑

i=1

E

[(
D

(k)T
i Wi(xi)R

− 1
2

i

∂∆(k)
i

∂β

)∣∣∣∣∣yi,xi,θ

]}−1

×
n∑

i=1

E

[(
D

(k)T
i Wi(xi)R

−1/2
i ∆(k)

i

) ∣∣∣∣∣yi,xi,θ

]
, (9.13)
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k = 1, 2, 3, · · · ,

where

D
(k)
i = Di(β(k)

n ,bi) =
∂gi(β(k)

n ,bi)
∂β

,

∆(k)
i = ∆i(β(k)

n ,bi) = ψi

(
ri(β(k)

n ,bi)
)
− E

[
ψi(ri(β(k)

n ,bi))|bi

]
.

At convergence, we have the robust estimator β̂n. We will discuss how to eval-
uate the conditional expectations in the above expressions in the next section.
In the following, we show some asymptotic results of the robust estimators.

Asymptotics

Under the regularity conditions A1 – A7 given below, we can show that the
above robust estimators are consistent and asymptotically follow a multivariate
normal distribution when the sample size n→∞ (Wu, 2009). Let

φ(β,yi,xi) = E
(
DT

i (β,bi)R
−1/2
i Wi(xi)∆i(β,bi)

∣∣∣yi,xi,θ
)
,

and let Φ(β,yi,xi) be a function such that its derivative with respect to β is
φ(β,yi,xi). Let Qn(β) =

∑n
i=1 Φ(β,yi,xi) and

β̂n = argmaxβ∈Γ
Qn(β).

We denote convergence in probability and convergence in distribution by
p→

and d→ respectively.

The following regularity conditions are similar to those appeared in the liter-
ature (e.g., Amemiya 1985; Domowitz and White 1982; Vonesh et al. 2002).
They are mostly used to ensure the compactness of the parameter space, suf-
ficient smoothness of appropriate functions, and parameter identifiability. In
most applications, these conditions are satisfied. Note that in a real data appli-
cation the parameter space may be viewed as compact. The regularity condi-
tions are as follows:

R1. The parameter space Γ of β is compact. The true parameter β0 is in the
interior of Γ.
R2. The function Φ(β,yi,xi) is a continuous function of β and a mea-
surable function of (yi,xi), and is twice continuously differentiable with
respect to β and is dominated by a uniformly integrable function.
R3. The appropriate functions appeared in the proofs (in the Appendix)
satisfy the necessary regularity conditions needed for change of the order of
integration and differentiation.
R4. The function φ2(β,yi,xi) is dominated by a uniformly integrable func-
tion.
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R5. The true parameter value β0 is the unique minimizer of Qn(β).
R6. The function ∂φ(β,yi,xi)/∂β is dominated by a uniformly integrable
function.
R7. The following limits exist and the matrices are positive definite

Ω(β) = limitn→∞
1
n

n∑
i=1

E
(
φ(β,yi,xi)φ(β,yi,xi)T

)
,

Λ(β) = limitn→∞
1
n

n∑
i=1

E

(
∂φ(β,yi,xi)

∂β

)
.

Theorem 9.1 Under the regularity conditions R1 – R7, we have the following
results:
(a) the robust estimator β̂n is consistent, i.e.,

β̂n
p−→ β0, as n→∞.

(b) the robust estimator β̂n asymptotically follows a normal distribution, i.e.,
√
n(β̂n − β0)

d−→ N(0,Λ−1(β0)Ω(β0)Λ
−1(β0)), as n→∞,

where β0 is the true parameter value.

The proof is given in the Appendix (Section 9.4.5).

Therefore, the robust estimator β̂n is consistent and asymptotically normally
distributed. This asymptotic result can be used for approximate inference. For
example, the asymptotic variance-covariance matrix of β̂n can be used to com-
pute approximate standard error of the robust estimator β̂n, i.e., we have the
following estimate for the variance-covariance of β̂n

V̂ ar(β̂n) =
1
n

Λ−1(β̂n)Ω(β̂n)Λ−1(β̂n).

Then the approximate standard errors of the components of β̂n are the square
roots of the diagonal elements of matrix V̂ ar(β̂n). These approximate stan-
dard errors can then be used to construct approximate confidence intervals of
β and conduct hypothesis testing about β, such as Wald-type tests.

9.4.3 A Monte Carlo Newton-Raphson Method

For the robust method in the previous section, we need to evaluate condi-
tional expectations of some nonlinear functions with respect to the distribu-
tion f(bi|yi, zi,θ), as can be seen in (9.13) (page 313). Since the dimension
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of the random effects bi may be large, evaluations of these conditional ex-
pectations can be computationally challenging. Here we consider approximat-
ing these conditional expectations using Monte Carlo methods, as in previous
chapters. That is, we can approximate the conditional expectations by their
empirical means based on large samples simulated from the conditional dis-
tribution f(bi|yi,xi,θ). Random samples from the conditional distribution
f(bi|yi,xi,θ) can be generated using the Gibbs sampler along with rejection
sampling methods by noting that

f(bi|yi,xi,θ) ∝ f(yi|xi,bi,θ)f(bi|B).

The procedure is similar to those in previous chapters, so we omit the details
here.

Suppose that {b(1)
i ,b(2)

i , · · · ,b(mk)
i } is an i.i.d. sample of sizemk (large) sim-

ulated from distribution f(bi|yi,xi,θ) at the k-th iteration of the Newton-
Raphson method. Then the robust estimating equation (9.12) can be approxi-
mated as

n∑
i=1

1
mk

mk∑
j=1

[
DT

i (β,b(j)
i )R−1/2

i Wi(xi)ψi(ri(β,b
(j)
i ))− a(β)

]
= 0. (9.14)

Thus, a robust estimate for β can be obtained by solving equation (9.14) using
the Newton-Raphson method, without evaluations of intractable integrals. For
example, the k-th iteration of the Newton-Raphson method for parameters β
can be written as

β(k+1)
n = β(k)

n −


n∑

i=1

1
mk

mk∑
j=1

[(
D

(k,j)T
i Wi(xi)R

− 1
2

i

∂∆(k,j)
i

∂β

)]
−1

×
n∑

i=1

1
mk

mk∑
j=1

[(
D

(k,j)T
i Wi(xi)R

−1/2
i ∆(k,j)

i

)]
,

where

D
(k,j)
i = Di(β(k)

n ,b(j)
i ) =

∂gi(β(k)
n ,b(j)

i )
∂β

,

∆(k,j)
i = ∆i(β(k)

n ,b(j)
i )

= ψi

(
ri(β(k)

n ,b(j)
i )
)
− 1
mk

mk∑
j=1

[
ψi(ri(β(k)

n ,b(j)
i ))

]
.

We can increase the number of Monte Carlo samples mk as the number of
iteration k increases. The accuracy of the Monte Carlo approximation increases
as mk increases. We can show that equation (9.14) approaches to equation
(9.12) as the number of Monte Carlo samplesmk increases. A major advantage
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of the Monte Carlo method is to avoid intractable integrations. Such a Monte
Carlo approach is especially useful in the presence of missing data or covariate
measurement errors, as will be discussed later.

The following theorem shows that the approximate robust estimating equations
will converge to the exact robust estimating equations as the number of Monte
Carlo samples goes to infinite.

Theorem 9.2 As m→∞, we have
n∑

i=1

1

m

m∑
j=1

[
DT

i (β,b
(j)
i )R

−1/2
i Wi(xi)ψi(ri(β,b

(j)
i ))− a(β)

]
p−→

n∑
i=1

E

{[
DT

i (β,bi)R
−1/2
i Wi(xi)ψi(ri(β,bi))− a(β)

] ∣∣∣∣∣yi,xi,θ

}
.

The proof is given in the Appendix (Section 9.4.5).

The following theorem shows that the Monte Carlo robust estimators are con-
sistent and asymptotically normal as the sample size n goes to infinite.

Theorem 9.3 Let

φm(β,yi,xi) =
1
m

m∑
j=1

[
DT

i (β,b(j)
i )R−1/2

i Wi∆i(β,b
(j)
i )
]
.

Let Φm(β,yi,xi) be a function such that its derivative with respect to β is
φm(β,yi,xi), Qn,m(β) =

∑n
i=1 Φm(β,yi,xi), and

β̂n,m = argmaxβ∈Γ
Qn,m(β).

Under regularity conditions R1 – R7, we have
(a) Consistency:

β̂n,m
p−→ β0, as n→∞.

(b) Normality:
√
n(β̂n,m − β0)

d−→ N(0,Λ−1
m (β0)Ωm(β0)Λ

−1
m (β0)), as n→∞,

where

Ωm(β) = limitn→∞
1
n

n∑
i=1

E
(
φm(β,yi,xi)φm(β,yi,xi)T

)
,

Λm(β) = limitn→∞
1
n

n∑
i=1

E

(
∂φm(β,yi,xi)

∂β

)
.
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Matrix Λm(β) can be consistently estimated by

Λ̂m(β̂n,m) = n−1
n∑

i=1

E(∂φm(β̂n,m,yi,xi)/∂β | yi,xi, θ̂),

matrix Ωm(β) can be consistently estimated by

Ω̂m(β̂n,m) = n−1
n∑

i=1

E(φm(β̂n,m,yi,xi)φm(β̂n,m,yi,xi)T | yi,xi, θ̂),

and the conditional expectations can also be approximated by Monte Carlo
methods.

The proof is given in the Appendix (Section 9.4.5).

9.4.4 A Robust Approximate Method

The Monte Carlo Newton-Raphson method in the previous section can be com-
putationally very intensive if the dimension of the random effects bi is not
small. Following the ideas of the approximate methods in previous chapters, in
this section we follow Wu (2009) and consider an approximate method based
on a first-order Taylor approximation, which avoids sampling the random ef-
fects so it is computationally more efficient than the Monte Carlo method. Here
is the idea: at each iteration, take a first-order Taylor expansion of gi(β,bi) =
E(yi|xi,bi,β) about the current estimates of the random effects bi and the
parameters β to linearize the model, and then we iteratively solve the resulting
“working” LME model and estimate the parameters in the LME model using
a robust method. At convergence, approximate robust estimates are obtained
from the LME model at the last iteration.

Specifically, at each iteration, let the current estimate of (θ, bi) be (θ̃, b̃i),
suppressing the iteration number. Taking a first-order Taylor expansion of gi =
(gi1, · · · , gini

)T around the current parameter estimate β̃ and current random
effects estimate b̃i, we obtain the following “working” LME model

ỹi = Pi β +Hi bi + ei, i = 1, 2, · · · , n, (9.15)

wherePi = (pi1, . . . ,pini
)T , pij = ∂gij(β,bi)/∂β, Hi = (hi1, . . . ,hini

)T ,
hij = ∂gij(β,bi)/∂bi,

ỹi = yi − gi(β̃, b̃i) + Piβ̃ +Hi b̃i,

b̃i = E(bi|yi, xi, θ̃) = B̃HT
i L

−1
i (ỹi − Piβ̃),

Li = δ̃2I +HiB̃H
T
i ,

and all the partial derivatives in the foregoing expressions are evaluated at the
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current estimates (α̃, β̃, b̃i). Let η = (δ2, B) be the variance-covariance pa-
rameters. We can iteratively solve LME model (9.15). At each iteration, esti-
mates of the parameters in model (9.15) can be obtained by solving the follow-
ing estimating equations (Richardson 1997):

n∑
i=1

PT
i L

−1
i (ỹi − Piβ) = 0, (9.16)

n∑
i=1

[
(ỹi − Piβ)TAi(ỹi − Piβ)− tr

(
L−1

i

∂Li

∂η

)]
= 0, (9.17)

where Ai = L−1
i (∂Li/∂η)L−1

i .

Estimates from estimating equations (9.16) and (9.17) are sensitive to outliers
in either the response or the covariates. So we consider a robust version of
these estimating equations. Let A∗i = L

−1/2
i (∂Li/∂η)L−1/2

i . We consider the
following robust versions of estimating equations (9.16) and (9.17):

n∑
i=1

PT
i Wi(xi)L

−1/2
i ψi

(
L
−1/2
i (ỹi − Piβ)

)
= 0, (9.18)

n∑
i=1

[
ψi

(
L
−1/2
i (ỹi − Piβ)

)T

W
−1/2
i (xi)A∗iW

−1/2
i (xi)

×ψi

(
L
−1/2
i (ỹi − Piβ)

)
− tr

(
L−1

i

∂Li

∂η

)]
= 0. (9.19)

Estimating equations (9.18) and (9.19) can again be solved using the Newton-
Raphson method. For example, the k-th iteration for parameter β can be writ-
ten as

β(k+1) = β(k) −

[
n∑

i=1

PT
i Wi(xi)L

−1/2
i

∂ψi(r̃i(β(k)))
∂β

]−1

×

[
n∑

i=1

PT
i Wi(xi)L

−1/2
i ψi(r̃i(β(k)))

]
, (9.20)

where r̃i(β) = L
−1/2
i (ỹi − Piβ). Equations for other parameters can be writ-

ten similarly. Thus, we obtain robust estimates of the parameters by solving
equations (9.18) and (9.19) at each iteration. Then, at convergence a final ro-
bust estimate is obtained at the last iteration. In equations (9.18) – (9.19), we
do not need to evaluate intractable integrals, so the approximate robust method
is computationally more efficient than the Monte Carlo method in the previous
section.

Next we study the asymptotic properties of the above robust approximate esti-
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mates. Let

φ∗i (β) = E(PT
i Wi(xi)L

−1/2
i ψi(L

−1/2
i (ỹi − Piβ)),

Ω∗(β) = limitn→∞
1
n

n∑
i=1

φ∗i (β)φ∗i (β)T ,

Λ∗(β) = limitn→∞
1
n

n∑
i=1

∂φ∗i (β)
∂β

.

For the regularity conditions R1 – R7 in section 9.4.2, we replace φ2(β,yi,xi)
in R4 by φ∗2i (β), replace ∂φ(β,yi,xi)/∂β in R6 by ∂φ∗(β)/∂β, and replace
Ω(β) and Λ(β) in R7 by Ω∗(β) and Λ∗(β) respectively, and call the resulting
regularity conditions R1∗ – R7∗. Moreover, we add the following two addi-
tional regularity conditions

R8∗ . The numbers of within individual measurements ni = O(mini(ni))
uniformly for i = 1, 2, · · · , n,
R9∗ . The density function f(yij |xi,bi,θ) satisfies the necessary regularity
conditions such that, for fixed θ, the MLE of bi is

√
ni – consistent for bi

as ni →∞.

The following theorem shows that the approximate robust estimates are con-
sistent and asymptotically normal when both the sample size and the number
of measurements per individual go to infinite, i.e., when both n → ∞ and
mini(ni) →∞.

Theorem 9.4 Let β̃n be the approximate robust estimate of the true param-
eter value β0 obtained by solving (9.20). Under regularity conditions R1∗ –
R9∗, we have
(a) the approximate robust estimate is consistent when both the sample size
and the number of within-individual measurements go to infinite, i.e.,

β̃n
p−→ β0, as n→∞, min

i
(ni) →∞.

(b) the approximate robust estimate is asymptotically normal, i.e.,

√
n(β̃n − β0)

d−→ N(0,Λ∗(β0)
−1Ω∗(β0)Λ

∗(β0)
−1),

as n→∞, min
i

(ni) →∞.

We defer the proof to Section 9.5 where a similar result holds.
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9.4.5 Appendix

A0: Some Lemmas

The following three lemmas will be needed in the proofs of the Theorems (see,
e.g., Amemiya 1985; Vonesh and Chinchilli 1997). Here we let f(·) denote a
generic function and let X,Xi, i = 1, 2, · · · , be random variables.

Lemma 1. Let Xn be a random variable satisfying Xn = c + Op(an) where
an = o(1) and c is a constant. If f(x) is a continuously differentiable function
at x = c, then

f(Xn) = f(c) +Op(an).
The result holds whenOp(·) is replaced by op(·) or whenXn and c are replaced
by vectors.

Lemma 2. Suppose that function f(x, θ) is dominated by a uniformly inte-
grable function. Then 1

n

∑n
i=1 f(Xi, θ) converges in probability to Ef(X, θ)

uniformly in θ.

Lemma 3. Suppose that fn(X, θ)
p→ f(θ) and f(θ) attains a unique minimum

at θ0. Then
θ̂n ≡ argminθfn(X, θ)

p→ θ0, as n→∞.

Lemma 4. Suppose that f(·) is a continuous function and Xn
p→ c. Then

f(Xn)
p→ f(c).

A1. Proof of Theorem 9.1

Let Q(β) = E(Φ(β,yi,xi)). By Lemma 2 and condition R2, we have

1
n
Qn(β)

p→ Q(β), as n→∞,

where Qn(β) is defined in Section 9.4. Then, by Lemma 3, we have

β̂n
p→ β0, as n→∞.

This proves part (a) of Theorem 9.1.

To prove part (b), let

φ̃(β,y,x) =
n∑

i=1

φ(β,yi,xi).

Since φ̃(β̂n,y,x) = 0 and β̂n
p→ β0, by first-order Taylor expansion of

φ̃(β,y,x) around β0 and the mean-value theorem, we have

0 = φ̃(β0,y,x) +
∂φ̃(β∗,y,x)

∂β
(β̂n − β0),
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where ||β∗−β0|| ≤ ||β̂n−β0||, and ∂φ̃(β∗,y,x)/∂β = ∂φ̃(β,y,x)/∂β
∣∣
β=β

∗ .
So

√
n(β̂n − β0) =

[
− 1
n

∂φ̃(β∗,y,x)
∂β

]−1(
1√
n
φ̃(β0,y,x)

)
.

By the Lindeberg’s Central Limit Theorem, we have

1√
n
φ̃(β0,y,x) =

1√
n

n∑
i=1

φ(β0,yi,xi)
d→ N(0,Ω(β0)), as n→∞.

By Lemma 2, result in part (a), and conditions R4 and R7, we have

1
n

∂φ̃(β∗,y,x))
∂β

=
1
n

n∑
i=1

∂φ(β∗,yi,xi)
∂β

p−→ limn→∞
1
n

n∑
i=1

E

(
∂φ(β0,yi,xi)

∂β

)
= Λ(β0),

as n→∞.

Therefore, by Slutsky’s Theorem, we have

√
n(β̂n − β0)

d−→ N(0,Λ−1(β0)Ω(β0)Λ
−1(β0)), as n→∞.

This proves Theorem 9.1.

A2. Proof of Theorem 9.2

By Lemma 2, we have

n∑
i=1

1
m

m∑
j=1

[
DT

i (β,d(j)
i )R−1/2

i Wi(xi)ψi(ri(β,d
(j)
i ))− a(β)

]
p−→

n∑
i=1

E
[
DT

i (β,di)R
−1/2
i Wi(xi)ψi(ri(β,di))− a(β)

]
=

n∑
i=1

E
{
E
[
DT

i (β,di)R
−1/2
i Wi(xi)ψi(ri(β,d))− a(β)

] ∣∣∣yi,xi,θ)
}

=
n∑

i=1

E
{[
DT

i (β,di)R
−1/2
i Wi(xi)ψi(ri(β,di))− a(β)

] ∣∣∣yi,xi,θ
}
.

This proves Theorem 9.2.
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A3. Proof of Theorem 9.3

This proof is analogous to that for Theorem 9.1. By Lemma 2 and R2, we have

1
n
Qn,m(β) =

1
n

n∑
i=1

Φm(β,yi,xi)

p−→ E(Φm(β,y1,x1))
= E (E(Φm(β,y1,x1)|y1,x1))
= E (Φ(β,y1,x1)) = Q(β), as n→∞.

Thus, by Lemma 3, we have β̂n,m
p−→ β0. This completes the proof of part

(a).

Next, we prove part (b). Let φ̃m(β,y,x) =
∑n

i=1 φm(β,yi,xi). Then

φ̃m(β̂n,m,y,x) = 0.

By the result in (a), we have β̂n,m
p−→ β0. Taking a first-order Taylor expan-

sion of φ̃m(β,y,x) around β0 and the mean-value theorem, we have

0 = φ̃m(β0,y,x) +
∂φ̃m(β∗m,y,x)

∂β
(β̂n,m − β0),

where ||β∗m − β0|| ≤ ||β̂n,m − β0||. So

√
n(β̂n,m − β0) =

[
− 1
n

∂φ̃(β∗m,y,x)
∂β

]−1(
1√
n
φ̃m(β0,y,x)

)
.

By the Central Limit Theorem, we have

1√
n
φ̃m(β0,y,x) =

1√
n

n∑
i=1

φm(β0,yi,xi)
d→ N(0,Ωm(β0))

as n→∞,

where

Ωm(β0) = limitn→∞
1
n

n∑
i=1

E
(
φm(β0,yi,xi)φm(β0,yi,xi)T

)
.

By Lemma 2, we have

1
n

∂φ̃m(β∗m,y,x))
∂β

p−→ limn→∞
1
n

n∑
i=1

E

(
∂φm(β0,yi,xi)

∂β

)

= limn→∞
1
n

n∑
i=1

 1
m

m∑
j=1

E
[
E(DT

ijR
−1/2
i Wi∆ij |yi,xi)

]
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= limn→∞
1
n

n∑
i=1

E

(
∂φ(β0,yi,xi)

∂β

)
= Λ(β0),

as n→∞,

where Dij = DT
i (β,d(j)

i ) and ∆ij = ∆i(β,d
(j)
i ). Therefore, by Slutsky’s

Theorem, we have
√
n(β̂n,m − β0)

d−→ N(0,Λ−1(β0)Ωm(β0)Λ
−1(β0)), as n→∞.

By result (a) and Lemma 4, we have

Λ̂(β̂n,m)
p→ Λ(β0) and Ω̂m(β̂n,m)

p→ Ωm(β0), as n→∞.

This proves Theorem 9.3.

9.5 Robust Inference for Mixed Effects Models with Incomplete Data

In many studies, in addition to possible outliers, there may also be measure-
ment errors and missing values in the data. Ignoring any one of these problems
may lead to biased analyses. Thus, it is important to addressed outliers, mea-
surement errors, and missing data simultaneously. In this section, we consider
robust inference for mixed effects models in the presence of outliers, measure-
ment errors, and missing data.

9.5.1 Robust Inference with Covariate Measurement Errors

We first consider mixed effects models in the presence of outliers in the re-
sponse and covariates, as well as measurement errors in time-dependent co-
variates. Let zij be an error-prone time-varying covariate for individual i at
measurement time tij , i = 1, 2, · · · , n, j = 1, 2, · · · , ni. For simplicity of
presentation, we focus on one error-prone covariate zij , but the method can be
easily extended to more than one error-prone covariates. Let z∗ij be the true but
unobserved covariate value, whose observed but possibly mis-measured value
is zij . We write zi = (zi1, zi2, · · · , zini

)T and write z∗i similarly. We assume
that the response depends on z∗ij rather than zij , as in previous chapters. That
is, we assume a response model with density f(yi|z∗i ,xi,bi,β,σ) given the
random effects bi, where xi contains covariates without measurement errors
and bi ∼ N(0, B).

We consider the following classical measurement error model for the error-
prone covariate zi:

zi = Uiα+ Viai + εi = z∗i + εi, (9.21)
ai ∼ N(0, A), εi ∼ N(0, δ2I), i = 1, 2, · · · , n,



ROBUST MIXED EFFECTS MODELS 325

where Ui and Vi are design matrices, and A is a unknown covariance matrix.
The true but unobserved covariate values for individual i are

z∗i = Uiα+ Viai, i = 1, 2, · · · , n.

The covariate model (9.21) can also be used to incorporate missing covariates
when the missing data mechanism is ignorable.

Let γ = (α,β) and di = (ai,bi) be the fixed mean parameters and the
random effects in the response and covariate models respectively. Let θ =
(α,β, A,B, δ, σ) be the collection of all unknown parameters in the response
and covariate models. Let

gi(γ,di) = E(yi|z∗i ,xi,bi,θ) = gi(α,β,ai,bi),

where gi = (gi1, · · · , gini
)T . The joint likelihood for the observed data {(yi, zi,xi),

i = 1, . . . , n} is given by

L(θ) =
n∏

i=1

∫ ∫
f(yi|xi,di,γ,σ)f(zi|ai,α, δ)f(ai|A)f(bi|B) dai dbi.

Let si = (yT
i , z

T
i )T , Ri = diag(V ar(yi|bi), V ar(zi|ai)), and let

ri(γ,di) = R
−1/2
i (si − g∗i (γ,di)), e∗i = (eT

i , ε
T
i )T ,

g∗i (γ,di) = E(yi|di),
E(zi|ai) = (gi(γ,di)T , (Uiα+ Viai)T )T = (gT

i , z
∗T
i )T .

For robust inference, we can bound the influence of any outlying responses
and error-prone covariates and down-weight leverage points in the error-free
covariates separately. Thus, we consider the following estimating equation for
robust estimate of the mean parameters in γ:

n∑
i=1

E
{[
DT

i R
− 1

2
i Wi(xi)ψi(ri(γ,di))− a(γ)

] ∣∣∣yi, zi,xi,θ
}

= 0, (9.22)

where

Di = Di(γ,di) = ∂g∗i (γ,di)/∂γ,

a(γ) =
1
n

n∑
i=1

E
(
DT

i (γ,di)R
−1/2
i Wi(xi)ψi(ri(γ,di))

∣∣∣di,yi, zi,xi

)
,

ψi : Rni → Rni is a monotone function which bounds the influence of outly-
ing data in the response yi and in the error-prone covariate zi such as the Hu-
ber’s function, Wi(·) is a weight function which downweights leverage points
in the error-free covariates xi. When Wi(xi) = 1 and ψi(ri) = ri, the result-
ing estimate from equation (9.22) reduces to the standard MLE.

Robust estimating equation (9.22) for estimating the mean parameters γ can
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be solved using the Newton-Raphson method as follows. Taking a first-order
Taylor expansion about γ, after some algebra, the k-th iteration of the Newton-
Raphson method for the parameters γ is given by

γ(k+1)
n = γ(k)

n −

{
n∑

i=1

E

[(
DT

ikR
−1/2
i Wi(xi)

∂∆ik

∂γ

) ∣∣∣∣∣yi, zi,xi,θ

]}−1

×
n∑

i=1

E
[(
DT

ikR
−1/2
i Wi(xi)∆ik

) ∣∣∣yi, zi,xi,θ
]
,

where

Dik = Di(γ(k)
n ,di),

∆ik = ∆i(γ(k)
n ,di) = ψi(ri(γ(k)

n ,di))− E(ψi(ri(γ(k)
n ,di))|di).

After the Newton-Raphson iterations converge, we obtain a robust estimate γ̂n

for parameters γ.

Asymptotic results similar to that in Section 9.4 can also be obtained. Specif-
ically, under some regularity conditions similar to R1 – R7, we can prove the
consistency of the robust estimates:

γ̂n
p−→ γ0, as n→∞,

and the asymptotic normality of the robust estimates:
√
n(γ̂n − γ0)

d−→ N(0,Λ−1(γ0)Ω(γ0)Λ
−1(γ0)), as n→∞,

where

Ω(γ) = limitn→∞
1
n

n∑
i=1

E
(
φ(γ, si,xi)φ(γ, si,xi)T

)
,

Λ(γ) = limitn→∞
1
n

n∑
i=1

E

(
∂φ(γ, si,xi)

∂γ

)
.

The proof is similar to that for Theorem 9.1.

To evaluate the conditional expectations in the above expressions, we can again
use a Monte Carlo approach. That is, we generate random samples from the
conditional distribution f(di|yi, zi,xi,θ) ≡ f(ai,bi|yi, zi,xi,θ) using the
Gibbs sampler along with rejection sampling methods by iteratively sampling
from the full conditionals f(ai|bi,yi, zi,xi,θ) and f(bi|ai,yi, zi,xi,θ) re-
spectively until convergence. Suppose that {d(1)

i ,d(2)
i , · · · ,d(m)

i } is a large
independent sample generated from f(di|yi, zi,xi,θ). Then, estimating equa-
tion (9.22) can be approximated as follows:

n∑
i=1

1
m

m∑
j=1

[
DT

i (γ,d(j)
i )R−1/2

i Wi(xi)ψi(ri(γ,d
(j)
i ))− a(γ)

]
= 0.
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Similar to Theorem 9.2, we can show that the above Monte Carlo approxima-
tion can be made arbitrary accurate by increasing m. That is, we have

n∑
i=1

1
m

m∑
j=1

[
DT

i (γ,d(j)
i )R−1/2

i Wi(xi)ψi(ri(γ,d
(j)
i ))− a(γ)

]
p−→

n∑
i=1

E
{[
DT

i (γ,di)R
−1/2
i Wi(xi)ψi(ri(γ,di))− a(γ)

] ∣∣∣ui,θ
}
,

as m→∞, where ui = (yi, zi,xi).

Let

φm(γ,yi, zi,xi) =
1
m

m∑
j=1

[
DT

i (γ,d(j)
i )R−1/2

i Wi∆i(γ,d
(j)
i )
]
,

and let Φm(γ,yi, zi,xi) be a function such that its derivative with respect to
γ is φm(γ,yi, zi,xi), Qn,m(γ) =

∑n
i=1 Φm(γ,yi, zi,xi), and

γ̂n,m = argmaxγ∈ΓQn,m(γ).

Under regularity conditions similar to R1 – R7 in section 9.4.2, we have
(a) consistency:

γ̂n,m
p−→ γ0, as n→∞,

(b) asymptotic normality:
√
n(γ̂n,m − γ0)

d−→ N(0,Λ−1
m (γ0)Ωm(γ0)Λ

−1
m (γ0)), as n→∞,

where

Ωm(γ) = limitn→∞
1
n

n∑
i=1

E
(
φm(γ,yi, zi,xi)φm(γ,yi, zi,xi)T

)
,

Λm(γ) = limitn→∞
1
n

n∑
i=1

E

(
∂φm(γ,yi, zi,xi)

∂γ

)
.

Matrix Λm(γ) can be consistently estimated by

Λ̂m(γ̂n,m) =
1
n

n∑
i=1

E

(
∂φm(γ̂n,m,yi, zi,xi)

∂γ

∣∣∣ yi, zi,xi, θ̂

)
,

matrix Ωm(γ) can be consistently estimated by

Ω̂m(γ̂n,m) =
1
n

n∑
i=1

E(φm(γ̂n,m,yi, zi,xi)φm( · )T
∣∣ yi, zi,xi, θ̂),

and the conditional expectations can again be approximated by Monte Carlo
methods.
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9.5.2 A Robust Approximate Method

The Monte Carlo Newton-Raphson method in the previous section can be com-
putationally very intensive if the dimension of the random effects di ≡ (ai,bi)
is not small. In this section, we follow Wu (2009) and briefly describe an ap-
proximate method similar to that in Section 9.4.4. The method is computation-
ally more efficient than the Monte Carlo Newton-Raphson method.

We iterate the following procedure. At each iteration, let the current estimate
of (θ, ai, bi) be (θ̃, ãi, b̃i), where (ãi, b̃i) are empirical Bayes estimates of
the random effects. We suppress the iteration number to simplify the notation.
Taking a first-order Taylor expansion of gi(γ,di) = gi(α,β,ai,bi) around
the current estimate of the mean parameters γ, γ̃ = (α̃, β̃), and the current
random effects estimate d̃i = (ãi, b̃i), we obtain the following “working” LME
model

ỹi = P1iα+ P2i β +H1i ai +H2i bi + ei, (9.23)

whereP1i = (p1i1, . . . ,p1ini
)T , P2i = (p2i1, . . . ,p2ini

)T , H1i = (h1i1, . . . ,
h1ini

)T , H2i = (h2i1, . . . ,h2ini
)T ,

p1ij = ∂gij(γ,di)/∂α, p2ij = ∂gij(γ,di)/∂β,
h1ij = ∂gij(γ,di)/∂ai, h2ij = ∂gij(γ,di)/∂bi,

ỹi = yi − gi(α̃, β̃, ãi, b̃i) + P1iα̃+ P2iβ̃ +H1iãi +H2i b̃i,

ãi = E(ai|zi, yi, θ̃) = ÃV T
i L

−1
2i (zi − Uiα̃),

b̃i = E(bi|zi, yi, θ̃) = B̃HT
2iL

−1
1i (ỹi − P1iα̃− P2iβ̃ −H1iãi),

L1i = δ̃2I + (H1i,H2i)C̃(H1i,H2i)T ,

L2i = σ̃2I + ViÃV
T
i ,

C is defined next, and all the partial derivatives in the foregoing expressions
are evaluated at (α̃, β̃, ãi, b̃i).

Let s̃i = (ỹi, zi), and let

Qi =
(
P1i P2i

Ui 0

)
, Ti =

(
H1i H2i

Vi 0

)
, C =

(
B 0
0 A

)
.

We obtain the following joint “working” LME model

s̃i = Qiγ + Tidi + ẽi, (9.24)
di ∼ N(0, C), ẽi ∼ N(0, Ri).

Let Li = Ri + TiCT
T
i and let η = (δ2, σ2, C) be the variance-covariance

parameters. We can iteratively solve the LME model (9.24). At each iteration,
following Richardson (1997), estimates of the parameters in model (9.24) can
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be obtained by solving the following estimating equations:
n∑

i=1

QT
i L

−1
i (s̃i −Qiγ) = 0, (9.25)

n∑
i=1

[
(s̃i −Qiγ)TAi(s̃i −Qiγ)− tr

(
L−1

i

∂Li

∂η

)]
= 0, (9.26)

where Ai = L−1
i (∂Li/∂η)L−1

i .

Let A∗i = L
−1/2
i (∂Li/∂η)L−1/2

i . We consider the following robust versions
of estimating equations (9.25) and (9.26):

n∑
i=1

QT
i Wi(xi)L

−1/2
i ψi

(
L
−1/2
i (s̃i −Qiγ)

)
= 0, (9.27)

n∑
i=1

[
ψi

(
L
−1/2
i (s̃i −Qiγ)

)T

W
−1/2
i A∗iW

−1/2
i ψi

(
L
−1/2
i (s̃i −Qiγ)

)
−tr

(
L−1

i

∂Li

∂η

)]
= 0. (9.28)

Estimating equations (9.27) and (9.28) can again be solved using the Newton-
Raphson method. For example, the k-th iteration for parameter γ can be written
as

γ(k+1) = γ(k) −

[
n∑

i=1

QT
i Wi(xi)L

−1/2
i

∂ψi(r̃i(γ(k)))
∂γ

]−1

×

[
n∑

i=1

QT
i Wi(xi)L

−1/2
i ψi(r̃i(γ(k)))

]
,

where r̃i(γ) = L
−1/2
i (s̃i−Qiγ). Equations for other parameters can be written

similarly.

Next, consider the asymptotic properties of the robust approximate estimates
from the robust estimating equations (9.27) and (9.28). Let

φ∗i (γ) = E
(
QT

i Wi(xi)L
−1/2
i ψi(L

−1/2
i (s̃i −Qiγ)

)
,

Ω∗(γ) = limitn→∞
1
n

n∑
i=1

φ∗i (γ)φ∗i (γ)T , and

Λ∗(γ) = limitn→∞
1
n

n∑
i=1

∂φ∗i (γ)
∂γ

.

Under regularity conditions similar to R1∗ – R9∗, the following theorem shows
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that the approximate robust estimates are consistent and asymptotically normal
when both the sample size and the number of measurements per individual go
to infinite, i.e., when both n→∞ and mini(ni) →∞.

Theorem 9.5 Let γ̃n be the approximate robust estimate of the true parame-
ter value γ0. Under suitable regularity conditions, we have
(a) consistency:

γ̃n
p−→ γ0, as n→∞, min

i
(ni) →∞,

(b) asymptotic normality:
√
n(γ̃n − γ0)

d−→ N(0,Λ∗(γ0)
−1Ω∗(γ0)Λ

∗(γ0)
−1),

as n→∞, min
i

(ni) →∞.

The proof is given in the Appendix (Section 9.5.4).

9.5.3 Robust Inference with Non-Ignorable Missing Data

For non-ignorable missing covariates, we need to incorporate a missing data
model to avoid biased inference. In the following, we focus on a non-ignorable
missing data model which links the missing probability to the unobserved ran-
dom effects. Let δij be a missing covariate indicator such that δij is 0 if zij

is missing and δij is 1 if zij is observed, and let δi = (δi1, . . . , δini
). Let

zmis,i be a collection of missing components in zi and zobs,i be a collection
of observed components in zi. Let f(δi|ai,bi, ξ) be a non-ignorable missing
data model which links the missingness of the covariates to the random effects,
where ξ are unknown parameters.

We can assume the following missing data model:

f(δi|ai,bi, ξ) = f(δi1|ai,bi, ξ1)
ni∏

k=2

f(δik|δi,k−1,ai,bi, ξk).

Since each δik is a binary variable, a series of logistic regression models may
be assumed for f(δik|δi,k−1,ai,bi, ξk), k = 1, . . . , ni. The observed data are
{(yi, zobs,i,xi, δi), i = 1, . . . , n}. An estimating equation for robust infer-
ence of γ is given by

n∑
i=1

E
{[
DT

i R
− 1

2
i Wi(xi)ψi(ri)− a(γ)

] ∣∣∣yi, zobs,i, δi,θ
}

= 0, (9.29)

where Di = Di(γ,di) and ri = ri(γ,di), and the expectation is taken with
respect to the conditional distribution f(zmis,i,ai,bi|yi, zobs,i, δi,θ).
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A Monte Carlo Newton Raphson method for solving equation (9.29) then in-
volves sampling the unobserved values (zmis,i,ai,bi) from the predictive dis-
tribution f(zmis,i,ai,bi|yi, zobs,i, δi,θ), which can again be accomplished
using the Gibbs sampler along with rejection sampling methods, as in previ-
ous chapters. We can also consider computationally more efficient approximate
methods, similar to that in previous sections.

There may also be missing data in the error-free covariate xi and non-ignorable
missing data in the response yi. For simplicity of presentation, assume that
missing data in xi are ignorable. Define xmis,i,xobs,i, ymis,i,yobs,i in a simi-
lar way as for zmis,i and zobs,i. Let wi = (yi,xi, zi) and wobs,i = (yobs,i, zobs,i,
xobs,i). Let the missing response indicator be ωi = (ωi1, · · · , ωini

) such that
ωij is 0 if yij is missing and ωij is 1 if yij is observed. Then, an estimating
equation for robust inference of γ is given by

n∑
i=1

E
{[
DT

i (γ,di)R
−1/2
i Wi(xobs,i)ψi(ri(γ,di))

−a(γ)
]∣∣∣wobs,i, δi,ωi,θ

}
= 0.

A Monte Carlo Newton Raphson method for solving the above equation in-
volves sampling from f(ymis,i, zmis,i,xmis,i,ai,bi|wobs,i, δi,ωi,θ). This can
again be done using the Gibbs sampler combined with rejection sampling
methods in principle, but the computation can be extremely intensive and some-
times may even be practically infeasible. In this case, a computationally much
more efficient approximate method, similar to the ones in previous sections,
can offer huge computational advantages and may be the only realistic ap-
proach in many cases. Therefore, approximate methods are particularly valu-
able for such missing data problems.

Similar asymptotic results of the robust estimates from the above estimating
equations can be obtained. Specifically, let γ̂∗∗n be the solution of the above
estimating equations. Under suitable regularity conditions, we have
√
n(γ̂∗∗n − γ0)

d−→ N(0,Λ∗∗(γ0)
−1Ω∗∗(γ0)Λ

∗∗(γ0)
−1), as n→∞.

The matrices Λ∗∗ and Ω∗∗ can be consistently estimated by

Ω̂∗∗(γ) = n−1
n∑

i=1

E
(
φ∗∗(γ,wi)φ∗∗(γ,wi)T

∣∣∣wobs,i, δi,ωi,θ
)
,

Λ̂∗∗(γ) = n−1
n∑

i=1

E

(
∂φ∗∗(γ,wi)

∂γ

∣∣∣wobs,i, δi,ωi,θ

)
,

where

φ∗∗(γ,wi) = E
(
DT

i (γ,di)R
−1/2
i Wi∆i(γ,di)

∣∣∣wobs,i, δi,ωi,θ
)
,
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and the conditional expectations can be approximated by their Monte Carlo
estimates and the unknown parameters can be replaced by their consistent es-
timates. The proof is similar to Theorem 9.1, with some straightforward mod-
ifications.

9.5.4 Appendix

The following proof follows Wu (2009). Let

φn(γ) =
n∑

i=1

φi(γ) =
n∑

i=1

QT
i WiL

−1/2
i ψi

(
L
−1/2
i (s̃i −Qiγ)

)
.

Let γ̃n be the approximate robust estimate of γ, satisfying φn(γ̃n) = 0. Taking
Taylor expansion of φn(γ) about the true value γ0, and by the mean value
theorem, we have

0 = φn(γ̃n) = φn(γ0) +
∂φn(γ∗)
∂γ

(γ̃n − γ0),

where ||γ∗ − γ0|| ≤ ||γ̃n − γ0||. Thus we have

√
n(γ̃n − γ0) =

[
− 1
n

∂φn(γ∗)
∂γ

]−1( 1√
n
φn(γ0)

)
.

Let

φ∗i (γ) = E
(
QT

i WiL
−1/2
i ψi(L

−1/2
i (s̃i −Qiγ))

)
,

Ω∗(γ) = limn→∞
1
n

n∑
i=1

φ∗i (γ)φ∗i (γ)T ,

Λ∗(γ) = limn→∞
1
n

n∑
i=1

∂φ∗i (γ)
∂γ

.

Following Richardson (1997) and by Lindeberg’s Central Limit Theorem, we
have

1√
n
φn(γ0)

d→ N(0,Ω∗(γ0)), as n→∞.

Let op(1ni,n) denote convergence in probability when both ni and n go to ∞.
Let

d̃i(γ̃n) = CTT
i (TiCT

T
i +Ri)−1(s̃i −Qir̃n)

be an estimate of the random effects di. Following Vonesh et al. (2002), it can
be shown that

d̃i(γ) = di +Op(n
−1/2
i ), and γ̃n = γ0 + op(1mini(ni),n

). (9.30)
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Therefore, γ̃n
P→ γ0, as n→∞, and mini(ni) →∞. This proves part (a).

By Lemma 1 and condition R8, we have

d̃i(γ̃n) = d̃i(γ0) + op(1mini(ni),n
)

= di +Op(mini(ni)−1/2) + op(1mini(ni),n
)

= di + op(1mini(ni),n
).

Therefore, it follows by the Law of Large Numbers

1
n

∂φn(γ∗)
∂γ

p−→ Λ∗(γ0), as n→∞, mini(ni) →∞.

Finally, by Slutsky’s theorem, we have
√
n(γ̃n − γ0)

d−→ N(0,Λ∗−1(γ0)Ω
∗(γ0)Λ

∗−1(γ0)),
as n→∞, mini(ni) →∞.

This proves Theorem 9.5.





CHAPTER 10

Generalized Estimating Equations
(GEEs)

10.1 Introduction

In previous chapters, we have mostly focused on likelihood methods for esti-
mation and inference. The likelihood methods are based on distributional as-
sumptions for the data. For example, given the random effects, in GLMMs we
assume that the responses in the models follow distributions in the exponen-
tial family, and in LME and NLME models we assume that the responses in
the models follow normal distributions. If the distributional assumptions hold,
the likelihood methods are very attractive since the MLEs are asymptotically
most efficient and asymptotically normal under some regularity conditions (see
Chapter 12).

In practice, however, the distributional assumptions for regression models may
not hold, especially for GLMs or GLMMs. For example, in a binomial GLM
or a Poisson GLM the variance is completely determined by the mean, but this
may not be consistent with the observed data. If the observed variation in the
data is larger than the variance determined by the distribution assumed in the
model, we have an over-dispersion problem and the distributional assumptions
for the model do not hold. Thus, in this case the likelihood method, which is
based on the distributional assumptions, may not perform well.

When the observed variation in the data is inconsistent with the theoretical
variation determined by the assumed model, one approach is to introduce ad-
ditional dispersion parameters to account for the extra variation in the data.
In this case, one can still obtain parameter estimates by solving the result-
ing “score” equations, but the corresponding “likelihood” is no longer a true
likelihood but rather a quasi-likelihood, and these “score” equations are called
generalized estimating equations (GEEs). For longitudinal or clustered data,
Liang and Zeger (1986) introduced the idea of using a working correlation ma-
trix in the GEEs. That is, GEEs keep the same assumptions about the mean and
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covariance structures as in quasi-likelihood methods but introduce the working
covariance matrix which may depend on fewer nuisance parameters to simplify
the correlation structure.

In quasi-likelihood and GEE methods, we assume a mean structure and a
variance-covariance structure based on the observed data without distribu-
tional assumptions, and we can still construct a “likelihood” and “score” equa-
tions for parameter estimation in forms similar to standard likelihood equa-
tions. These “likelihood” and “score” equations with working correlation ma-
trices are quasi-likelihoods and GEEs respectively. It can be shown that the
parameter estimates based on GEEs are still consistent and asymptotically nor-
mally distributed, if the mean structure is correctly specified, but the GEE es-
timates are not necessarily most efficient, unlike MLE when the distributional
assumptions hold.

In the analysis of longitudinal data or clustered data, often we are mainly in-
terested in the relationship between the (marginal) mean of the response and
covariates, i.e., we are mainly interested in correct specification of the mean
structure (or the first moment). The association between response values in the
same clusters or same individuals is usually of secondary interest. Thus, the
mean structure and the covariance structure can be modeled separately, with
the primary scientific objective being modeling the mean of the response. The
association between responses may be specified based on the nature of the data
and based on simplicity, not necessarily based on any parametric distributions.
Such models are often called marginal models or GEE models (Diggle et al.
2002). Statistical inference for marginal models is usually based on the corre-
sponding GEEs, which have similar forms as score equations from likelihoods
even though no distributional assumptions are made. Therefore, in GEE mod-
els or marginal models we only need to specify the first two moments, without
distributional assumptions.

In a marginal model or GEE model, the parameters are fixed across clusters
or individuals, so marginal models are appropriate for analyzing population-
average effects. GEE models are different from mixed effects models in which
random effects are introduced to allow for cluster-specific or individual-specific
inference. GEE models are also different from transitional models in which
Markov structures are introduced to account for the dependence within individ-
uals. In both mixed effects models and transitional models, distributional as-
sumptions are typically made, so likelihood methods are standard for inference.
GEE models or marginal models, on the other hand, are perhaps more useful
for non-normal data such as binary data or count data, since over-dispersion or
under-dispersion problems are more common for these data.

In summary, GEE models or marginal models have the following advantages
in data analysis:
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• GEE models do not require distributional assumptions but only specifica-
tions of the first two moments;

• GEE estimates are consistent even if the variance-covariance structure (i.e.,
the second moments) is mis-specified, as long as the mean structure is cor-
rectly specified;

• GEE estimates are asymptotically normal under suitable conditions.

For these reasons, GEE methods are widely used in the analysis of clustered
data or longitudinal data. However, GEE models also have some limitations as
follows:

• GEE estimates may not be fully efficient, i.e., there may be a loss of effi-
ciency if distributional assumptions hold or if the variance-covariance struc-
ture is mis-specified;

• GEE models do not allow for cluster-specific or individual-specific infer-
ence, so they may not be the best choices when there are large variations
between clusters or individuals;

• in the presence of missing data, especially non-ignorable missing data, in-
ference based on GEE models is often less straightforward than likelihood
methods.

In the analyses of longitudinal data or clustered data, both mixed effects models
and GEE models are widely used. In practice, it may be a good strategy to
analyze a dataset using different approaches to gain additional insights.

In the presence of missing data, likelihood methods and multiple imputation
methods described in previous chapters are typically based on assumed distri-
butions for the missing data given the observed data: for likelihood methods,
the observed-data likelihoods are obtained by integrating (or averaging) over
the assumed distribution of the missing data, and for multiple imputation meth-
ods, imputations are usually generated from the conditional distributions of the
missing data given the observed data. A disadvantage of these methods is that
the final results may be sensitive to the distributional assumptions, especially
when the missing rate is high. For a GEE model with missing data, however, we
do not need to assume a distribution for the missing data. Instead, we appropri-
ately weight complete observations in GEE equations using inverse probability
weighting. So GEE methods for missing data are robust against distributional
assumptions, but they may be less efficient than the likelihood or multiple im-
putation methods if distributional assumptions hold.

In this chapter, we focus on GEE or marginal models for non-normal responses
for which generalized linear models (GLMs) are usually used. Since over-
dispersion or under-dispersion problems often arise in GLMs in practice, quasi-
likelihood models or GEE models are particularly useful for non-normal data.
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Thus, we first consider quasi-likelihood models for cross-sectional data which
motivate more general GEE methods. We then extend GEE models to longitu-
dinal data or clustered data. In the presence of missing data, we describe the
inverse probability weighting methods for GEE models. GEE approaches are
very general, and the ideas can be applied to normal models such as NLME
models, even if the normality assumptions in these models do not hold. There
are also various extensions to standard GEE models, such as GEE2 methods
and quadratic inference methods.

10.2 Marginal Models

Marginal or GEE models may be viewed as models motivated from quasi-
likelihood methods. Quasi-likelihood methods are useful in situations where
the assumed models are inconsistent with the observed data but likelihood-
type methods can still be considered based on the first two moments. Such
approaches are particularly useful for GLMs in which the theoretical variances
based on the assumed models may be inconsistent with the variations in the
observed data. Thus, we begin with quasi-likelihood methods in the following
section.

10.2.1 Quasi-Likelihood and GEE

Quasi-likelihood models are perhaps most useful for non-normal data for which
one often attempts to fit a GLM. For example, for binary data one usually
chooses logistic regression models to fit the data, and for count data one usu-
ally chooses Poisson regression models for the data. A common problem for
GLMs, such as a logistic regression model or a Poisson regression model, is
that the variance function is often closely related to (or completely determined
by) the mean function. For example, in a Poisson distribution the theoretical
variance is equal to the mean. In practice, such a relationship between the mean
and variance may be too restrictive, since the variation in the observed data may
not agree with the theoretical variance determined by the assumed GLM. Note
that this problem does not exist for normal regression models since the mean
parameters and variance parameters in a normal distribution are distinct and
can vary freely.

The idea of a quasi-likelihood method for a GLM is to specify a variance func-
tion based on the data or scientific considerations or simplicity, rather than on
the parametric distribution assumed for the model. In other words, the variance
function is determined independent of the mean function. Thus, the resulting
model is no longer a GLM and the mean and variance functions may not cor-
respond to any parametric distributions. However, one can still mimic a score
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equation which has a similar form as that from a true likelihood equation based
on the assumed mean and variance functions. The corresponding “likelihood”
is called quasi-likelihood, as it may not be a true likelihood from any paramet-
ric distributions. Moreover, one can show that the resulting estimates are still
consistent and asymptotically normal, as long as the mean structure is correctly
specified. The specification of the variance structure only affects the efficiency
of the estimates. These estimating equations are also called generalized esti-
mating equations (GEE). We describe the approach for cross-sectional data as
follows.

Let {y1, y2, · · · , yn} be an independent sample from a cross-sectional study.
For a GLM, the response is assumed to follow a distribution in the exponential
family, with the density function given by

f(yi|θi, φ, wi) = exp
{
yiθi − b(θi)

a(φ)
+ c(yi, φ)

}
, (10.1)

where a(·), b(·) and c(·) are known functions, θi is the natural parameter
corresponding to the location of the distribution, and φ is the dispersion pa-
rameter representing the scale of the distribution. In regression settings, we
model the effects of covariates xi on the response yi by a link function. Let
µi = E(yi|xi) be the mean of the response for individual i. A GLM for cross-
sectional data can be written as

g(µi) = xT
i β, or µi = h(xT

i β), i = 1, 2, · · · , n, (10.2)

where g(·) is a monotone link function, h(·) = g−1(·), and

xT
i β = ηi = xi1β1 + xi2β2 + · · ·+ xipβp

is the linear predictor.

The mean and variance functions for the GLM (10.2) are

µi = µi(β) = h(xT
i β), σ2

i (β) ≡ var(yi|xi) = φ v(µi),

where v(µi) is the variance function uniquely determined by the specific ex-
ponential family through the relation

v(µi) = ∂2b(θi)/∂θ2i ,

and θi is a function of µi.

For some GLMs, the variance functions are completely determined by the
mean functions. For example, in a logistic regression model for binary re-
sponse, we have

var(yi) = µi(1− µi),
where µi = P (yi = 1), and for a Poisson regression model for count response,
we have

var(yi) = µi.
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In practice, such relationships can be too restrictive since the variance func-
tions determined from the parametric distributions assumed for the GLMs may
be inconsistent with the variation observed in the real data, leading to over-
dispersion or under-dispersion problems.

Example 10.1 Over-dispersion problems

As an example, consider the Copenhagen Housing Conditions Survey dataset
(e.g., Cox and Snell 1984). In this dataset, 1681 householders in Copenhagen
were surveyed on the type of rental accommodation they occupied (Type), the
degree of contact they had with other residents (Cont), their feeling of influ-
ence on apartment management (Infl), and their level of satisfaction with their
housing conditions (Sat). The response variable yi is the number of residents
in each class. Since the response is a count, the following Poisson GLM is a
natural choice and is fitted to the data

log(yi) = β0 + β1Sati + β2Infli + β3Typei + β4Conti,

where yi is assumed to follow a Poisson distribution. Figure 10.1 shows the
data and estimated means and variances based on the above GLM.

In a Poisson GLM, the mean and the variance should be the same, if the as-
sumed Poisson distribution holds. However, from Figure 10.1, one can see that
the estimated values of the mean and variance are clearly not the same: the
variance seems much larger than the mean, indicating an over-dispersion prob-
lem. In fact, the estimated dispersion parameter is 4.85, which is much larger
than 1. Therefore, one should take the over-dispersion problem into account
and fit a model which adjusts the over-dispersion. A quasi-likelihood or a GEE
model can be fitted to the data.

Over-dispersion or under-dispersion problems do not exist for normal regres-
sion models since in a normal regression model the variance is unrelated to the
mean, which provides much flexibility in modeling real data. Thus, in practice
a limitation of standard GLMs for non-normal data is the restriction on the
variance function. This motivates the following quasi-likelihood models.

For a GLM, the log-likelihood for individual i is given by

li(θi) = log f(yi|θi, φ) =
yiθi − b(θi)

a(φ)
+ c(yi, φ).

Likelihood inference can be based on the score functions. For example, the
score function for the mean parameters β is given by

s(β) =
n∑

i=1

∂li(θi)
∂β

=
n∑

i=1

[
∆i(β)σ−2

i (β)(yi − µi(β))
]
, (10.3)
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Figure 10.1 Estimates of the mean and variance for the Copenhagen Housing Condi-
tions Survey data.

where

∆i(β) =
∂µi(β)
∂β

.

Then, the MLE of β can be obtained by solving the following score equation

s(β) =
n∑

i=1

[
∆i(β)σ−2

i (β)(yi − µi(β))
]

= 0. (10.4)

Score functions and score equations for other parameters can be written simi-
larly.

In practice, the variance function may be inconsistent with the variation in the
observed data, so we may consider modeling the mean and variance structures
separately. That is, the variance function σi(β) is not necessarily chosen to
be the same as that determined by a parametric distribution in the exponential
family. Instead, we can specify a variance function freely based on the data or
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based on scientific considerations or based on simplicity. The resulting “score
equation” for estimating β still has the same form as (10.4), i.e.,

n∑
i=1

[
∆i(β)σ−2

i (β)(yi − µi(β))
]

= 0, (10.5)

but with the variance function σ2
i (β) not necessarily equal to the theoretical

variance φv(µi) = φ ∂2b(θ)/∂θ2. In this case, equation (10.5) is not a true
score equation since it is not from a true likelihood of a parametric distribu-
tion. However, we can still construct a “likelihood” based on (10.5), which
is called a quasi-likelihood (Wedderburn 1974; McCullagh 1983; McCullagh
and Nelder 1989).

Estimating equation (10.5), with the second moment σ2
i (β) specified sepa-

rately from the first moment µi(β), is called a generalized estimating equa-
tion (GEE). Therefore, quasi-likelihood models and GEE models do not re-
quire distributional assumptions. They are only based on the specifications of
the first and second moments. This gives us much flexibility in modeling real
data. Moreover, under appropriate conditions, estimates based on the quasi-
likelihood or GEE are still consistent and asymptotically normal, as shown
below.

In quasi-likelihood models, if the mean function µi = h(xT
i β) is correctly

specified, the estimates from GEE (10.5) will be consistent even if the vari-
ance function σ2

i (β) is mis-specified. Thus, we should focus more attention
on correct specification of the mean structure. The variance function can be
treated as a working variance function, which is often chosen to be close to
the true variance based on the data. Usually, the closer the working variance
function to the true variance, the more efficient the resulting GEE estimates.
On the other hand, we should avoid a complex variance structure in order to
reduce the number of nuisance parameters. In practice, choice of the variance
function is typically a compromise between simplicity and efficiency.

Let

U(β) = −E
(
∂s(β)
∂β

)
, V (β) = Cov(s(β)),

where the expectations are taken with respect to the true (but possibly incor-
rectly specified) data-generating probability distribution. Let β̂ be a solution of
GEE (10.5). Under appropriate conditions, it can be shown that

β̂
d−→ N(β, U(β)−1V (β)U(β)−1), as n→∞.

Note that, in general U(β) 6= V (β), but when the variance structure is cor-
rectly specified, we have U(β) = V (β) and so have an efficient estimate. In
practice, the variance of the GEE estimate β̂ can be estimated by

V̂ ar(β̂) = U(β̂)−1V (β̂)U(β̂)−1,
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which is called the sandwich estimate of the covariance matrix of β̂. The sand-
wich estimate adjusts the loss of efficiency due to possible misspecification of
the variance function. To get efficient estimates, we should try to specify a
working variance function that is as close as possible to the true variance struc-
ture.

10.2.2 Marginal Models for Longitudinal Data or Cluster Data

The ideas of quasi-likelihood methods in the previous section can be extended
to longitudinal data or clustered data. In the analysis of longitudinal data,
the primary scientific objective is often to model the regression relationship,
i.e., the mean structure or the effects of covariates on the mean of the re-
sponse, while the correlation between the responses within each cluster is usu-
ally of secondary interest. Therefore, we can model the mean structure and the
variance-covariance structure separately, without distributional assumptions,
and pay more attention to the correct specification of the mean structure or the
regression relationship. This leads to marginal or GEE models for longitudinal
data or clustered data, which was first proposed by Liang and Zeger (1986)
and Zeger and Liang (1986). A detailed discussion of marginal models can be
found in Diggle, Heagerty, Liang, and Zeger (2002). Fahrmeir and Tutz (2001)
provided a overview for multivariate marginal models.

For marginal models, we only need to specify the first two moments, i.e.,
the mean structure and the variance-covariance structure. No distributional as-
sumption is needed. The mean and variance-covariance structures are specified
separately without any restrictions on their relationship, i.e., they do not need
to be consistent with any parametric distributions, although the variance func-
tion may depend on the mean function. The parameters in marginal models
are fixed or common across individuals or clusters, so marginal models are
appropriate for analyzing population average effects and for longitudinal data
with relatively small between-individual variations. Mixed effects models, on
the other hand, are often more appropriate for analyzing longitudinal data with
moderate or large between-individual variations, and mixed effects models al-
low both population average inference and subject-specific inference.

Parameter estimation for marginal models is based on a set of GEEs, as in
Section 10.2.1. Much of the ideas and results in Section 10.2.1 for quasi-
likelihood models carry over to marginal models for longitudinal data or clus-
tered data with relatively minor modification. For example, for marginal mod-
els the GEE estimates are consistent even if the variance-covariance structure
is mis-specified, as long as the mean structure is correctly specified. The choice
of the variance-covariance structure only affects the efficiency of the estimates:
the closer the variance-covariance structure to the true one, the more efficient
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the resulting GEE estimates. Marginal models for longitudinal data or clustered
data are described in more details as follows.

Let yi = (yi1, · · · , yini
)T be the response values on individual i or cluster i,

and let xi contains covariates, i = 1, 2, · · · , n. In marginal models, the de-
pendence of the response on the covariates and the association between re-
sponses within each cluster are modeled separately, i.e., the mean structure
and the variance-covariance structure are modeled separately, without distribu-
tional assumptions. Specifically, a marginal model for longitudinal data can be
defined as follows:

• the marginal mean of the response yij is correctly specified by

µij(β) = E(yij |xi,β) = h(xT
i β),

where h(·) is a known function.
• the variance-covariance structure of yi is separately specified by a working

covariance matrix
Cov(yi) = Σi(β,α),

where α contains parameters for the variance-covariance structure.

The working covariance matrix Σi(β,α) can be written as follows (Liang and
Zeger 1986; Prentice 1988):

Σi(β,α) = V
1/2
i (β)Ri(α)V 1/2

i (β),

where Vi(β) = diag(σ2
i1, · · · , σ2

ini
), with σ2

ik = var(yik|xi,β), are the vari-
ances of the responses in cluster i, and the matrix Ri(α) is called the working
correlation matrix which measures the correlation between the responses in
cluster i.

We should choose the working correlation matrix Ri(α) to be close to the true
correlation structure in the data, and in the meantime choose a simple structure
to avoid too many nuisance parameters, especially if the observed data are not
rich enough to estimate all parameters well. The following are common choices
of the working correlation matrix Ri(α):

• independence model:
Ri(α) = Ini

,

where Ini
is the ni × ni identity matrix, for which we assume that the

responses in cluster i are independent of each other;
• equicorrelation model:

(Ri(α))jk = corr(yij , yik) = α, for j 6= k,

where corr(yij , yik) is the correlation between yij and yik, for which we
assume that the correlation between each pair of the responses in cluster i
is the same;
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• stationary correlation model:

(Ri(α))jk = corr(yij , yik) = α|tij − tik|, for j 6= k,

for which we assume that the correlation between two response values in
cluster i is proportional to the time distance between them;

• unstructured model:

(Ri(α))jk = corr(yij , yik) = αjk, for j 6= k,

which is the most general correlation structure and may be considered when the
data is rich. In data analysis, one may try more than one correlation structures
and check whether analysis results are sensitive to the choices of correlation
structure.

For continuous responses, we use correlation as a measure of association be-
tween the responses. For binary responses, however, an alternative and proba-
bly more appropriate measure of association is the odds ratio (Lipsitz, Laird,
and Harrington 1991; Fahrmeir and Tutz 2001). Suppose that the binary re-
sponse yij takes two possible values: 0 or 1. Let pij = P (yij = 1) =
E(yij |xi). The odds ratio between yij and yik is defined as

γijk =
P (yij = 1, yik = 1) P (yij = 0, yik = 0)
P (yij = 1, yik = 0) P (yij = 0, yik = 1)

,

i = 1, 2, · · · , n; j, k = 1, 2, · · · , ni,

which measures the association between two binary responses yij and yik.

To reduce the number of nuisance parameters, we can write γijk = γijk(α)
so that the odds ratios depend on a common set of parameters α. For example,
we may consider a log-linear model

log(γijk) = xT
i α,

or we may consider the following simple structure

γijk = α,

for all i, j, k.

Note that the usual covariance matrix of yi can be expressed as a function of the
odds ratios based on the following relationship (Lipsitz, Laird, and Harrington
1991; Fahrmeir and Tutz 2001):

E(yijyik) =

{
1−(pij+pik)(1−γijk)−a(pij ,pik,γijk)

2(γijk−1) , γijk 6= 1
pijpik, γijk = 1,

where

a(pij , pik, γijk) =
[
(1− (pij + pik)(1− γijk))2 − 4(γijk − 1)γijkpijpik

]1/2
,
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so there is a relationship between odds ratio and correlation.

Example 10.2 Marginal models

Suppose that one wishes to consider a marginal model for a regression be-
tween a longitudinal response yi and covariates xi. If the response is a con-
tinuous variable, a marginal linear regression model with constant variance but
unstructured correlations can be specified as follows:

E(yi|xi) = xT
i β, i = 1, · · · , n,

var(yi|xi) = σ2,

corr(yij , yik) = αjk, j 6= k, j, k = 1, · · · , ni,

where {(β, σ, αjk), j 6= k, j, k = 1, · · · ,maxi{ni}} are unknown parame-
ters. Here no distributional assumption is made for the response.

If the response is a binary variable, a marginal model with a simple association
structure can be specified as follows:

E(yi|xi) =
exp(xT

i β)
1 + exp(xT

i β)
, or log

pij

1− pij
= xT

i β,

var(yi|xi) = φ pij(1− pij),
γijk = α, i = 1, · · · , n; j, k = 1, · · · , ni,

where pij = E(yij |xi), γijk is the odds ratio between yij and yik, and (β, φ, α)
are unknown parameters. This model has a similar form as a logistic regres-
sion model but it contains a dispersion parameter φ and it incorporates the
correlation between the responses within each cluster via a common odds ratio
α. Here the response yij does not follow any parametric distribution since no
parametric distribution has the above mean and variance-covariance structures.

10.2.3 GEE for Marginal Models

As in Section 10.2.1, parameters in marginal models for longitudinal data or
clustered data can be estimated based on the GEE method. Specifically, given
estimates of the association parameters α and the dispersion parameter φ, the
generalized estimating equation (GEE) for estimating the mean parameters β
in a marginal model is given by

Sβ(β,α) =
n∑

i=1

[
∆i(β)Σ−1

i (β,α)(yi − µi(β))
]

= 0, (10.6)

where µi(β) = E(yi|xi,β), ∆i(β) = ∂µi(β)/∂β, and Σi(β,α) is a work-
ing covariance matrix.
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Note that GEE (10.6) has the same form as a standard likelihood equation,
but no distributional assumption is made for the response. Moreover, the use
of the working covariance matrix Σi(β,α), which often has a simple struc-
ture, avoids potential difficulties of a singular estimated covariance matrix or
too many nuisance parameters. The solutions of GEE (10.6), called GEE es-
timates, have similar properties as MLEs, such as consistency and asymptotic
normality, but they are usually not fully (asymptotically) efficient unless the
covariance matrix is correctly specified.

GEE (10.6) can be solved by the following iterative algorithm. At iteration k,

given estimates α̂(k) and β̂
(k)

, an updated estimate of β is given by

β̂
(k+1)

= β̂
(k)

+ (Â(k))−1Sβ(β̂
(k)
, α̂(k)), k = 0, 1, 2, · · · ,

where

Â(k) =
n∑

i=1

[
∆T

i (β̂
(k)

)Σ−1
i (β̂

(k)
, α̂(k))∆i(β̂

(k)
)
]
.

Iterating the above procedure until convergence, we obtain a GEE estimate β̂,
which may not be unique.

Estimation of the association parameters α (and the dispersion parameters φ if
present) can be based on Pearson residuals:

r̂
(k)
ij = v(µ̂(k)

ij )−1/2(yij − µ̂
(k)
ij ),

where µ̂(k)
ij = E(yij |xi, β̂

(k)
) and v(µ̂(k)

ij ) = var(yij |xi, β̂
(k)

). For example,
if Σ is unstructured, we have

Σ̂(k) =
n∑

i=1

(yi − µ̂(k)
i )(yi − µ̂(k)

i )T
/

(nφ̂(k)),

φ̂(k) =
n∑

i=1

ni∑
j=1

r̂
2(k)
ij

/
(

n∑
i=1

ni − p).

Prentice (1988) suggested that estimation of the association parametersα (and
the dispersion parameters φ if present) can be based on a second GEE for α.
Specifically, let

wijk = (yij − µij)(yik − µik),

and wi = (wi12, wi13, · · · , wini−1ni
)T . Then, the second GEE for α is given

by

Sα(β,α) =
n∑

i=1

(
∂vi

∂α

)
W−1

i (wi − E(wi)) = 0,

where Wi is a working covariance matrix for wi.
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Let β̂ be the GEE estimate at convergence. Under some regularity conditions,
β̂ is consistent and asymptotically normal:

β̂
d−→ N(β, U−1V U−1), as n→∞,

where

U =
n∑

i=1

∆iΣ−1
i ∆i, V =

n∑
i=1

∆iΣ−1
i (Cov(yi))Σ−1

i ∆i.

This result can be used to obtain approximate standard error of β̂, to construct
confidence interval for β, and to conduct hypothesis testing such as a Wald-
type test for β.

We note again that, if the mean structure µi(β) is correctly specified, the GEE
estimate β̂ is consistent and asymptotically normal even if the covariance ma-
trix Σi = Σi(β,α) is mis-specified. The choice of the working covariance
matrix Σi(β,α) will only affect the efficiency of the GEE estimates. Note also
that no distributional assumptions are required for the GEE estimates and their
asymptotic results.

For either continuous responses or discrete responses, the forms of the GEE
are the same. When choosing the working correlation structures, however, one
should be careful with discrete responses since some parameter values in the
working covariance matrices may be restricted. Chaganty and Joe (2004) dis-
cussed the efficiency of GEE for binary responses and noted that the ranges for
admissible correlations can be narrow. Zeng and Cook (2007) used odds ratio
to measure association for multivariate longitudinal binary data, which may
allow more flexibility.

Example 10.3 Analyses of mental distress data

For the mental distress data described in Section 1.3.1 of Chapter 1, one may
consider either a mixed effects model or a GEE model for data analyses. A
mixed effects model makes distributional assumptions, while a GEE model
only assumes the first two moments. In the following, we analyze the data
using both approaches and compare the results. For simplicity, we delete all
incomplete data here. We focus on modeling the GSI scores over time for il-
lustration.

For a GEE model, we assume the following simple mean structure

E(yij) = β0 + β1tij , i = 1, · · · , n; j = 1, · · · , ni, (10.7)

where yij is the GSI score for subject imeasured at time tij . We consider three
working correlation structures for the GEE model: independence, exchange-
able correlation, and unstructured correlation structures. For a mixed effects
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Table 10.1 Parameter estimates based on the GEE model and the LME model

Model Par. Est. S.E. Par. Est. S.E.

GEE Model I β0 1.01 0.041 β1 –0.27 0.045
GEE Model II β0 1.02 0.041 β1 –0.21 0.038
GEE Model III β0 1.02 0.041 β1 –0.25 0.041

LME Model (10.8) β0 1.02 0.041 β1 –0.22 0.038

The three GEE models are all based on model (10.7) but with different covariance
structures. GEE model I: independent correlation structure, GEE model II: exchange-
able correlation structure, GEE model III: unstructured correlation. Par.: parameter,
Est.: estimate, S.E.: standard error.

model, we consider the following LME model

yij = β0 + b0i + (β1 + b1i)tij + eij ,

eij i.i.d. ∼ N(0, σ2), (b0i, b1i)T ∼ N(0, D), (10.8)

where (b0i, b1i) are random effects. Note that the GEE model (10.7) and the
LME model (10.8) have the same marginal mean

E(yij) = β0 + β1tij .

In the following data analysis, we standardize the time (in month) to avoid very
large or small estimates.

Table 10.1 shows the parameter estimates and their standard errors based on the
four models. One can see that the parameter estimates are quite close, although
the estimates based on the LME model may be slightly more efficient (smaller
standard errors), possibly due to distributional assumptions. An advantage of a
mixed effects model is that it allows for individual-specific inference, while an
advantage of a GEE model is that it is robust against distributional assumptions.
Note that the choices of correlation structures seem to only have minor effects
on the parameter estimates in this example. The GEE model with unstructured
correlation is the least restrictive among the models. Overall, the four models
give similar results. A significant decreasing trend of the GSI scores is observed
and confirmed by this analysis, i.e., the GSI scores decrease over time.

10.3 Estimating Equations with Incomplete Data

10.3.1 Weighted GEE for Missing Data

In the presence of missing data, GEE models can be modified to incorporate
the missing data. The idea is to appropriately weight the complete observations
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so that the resulting estimates are still consistent even if the missing data are
not missing completely at random (MCAR). Note that a major advantage of
GEE models is that there are no distributional assumptions. To incorporate
missing data in GEE models, we again make no distributional assumptions
for the missing data, but we need to assume a missing data model and then
weight the complete-data estimating equations by the inverse probability of the
missingness. It can then be shown that the weighted GEE models are unbiased
if the missing data model is correctly specified. These weighted GEE methods
were first developed in a series of papers by Robins and his colleagues (e.g.,
Robins et al. 1994, 1995; Robins and Rotnitzky 1995).

In the following, we briefly describe the basic idea of weighted GEE for cross-
sectional data with missing values. We focus on missing covariates problems
in regression models and assume that the missing data are missing at random
(MAR).

Suppose that xi is a vector of covariates with missing data. We write xi =
(xmis,i,xobs,i), where xmis,i contains the missing components of xi and xobs,i

contains the observed components of xi, i = 1, 2, · · · , n. Let ri be a missing-
ness indicator of observation i such that ri = 1 if xi is completely observed
and ri = 0 if xi has missing components. As in previous sections, let µi =
µi(β) = E(yi|xi,β), σ2

i (β) = var(yi|xi,β), and ∆i(β) = ∂µi(β)/∂β.
Then, the GEE for β based on the complete cases, i.e., cases with ri = 1, can
be written as

n∑
i=1

ri
[
∆i(β)σ−2

i (β)(yi − µi(β))
]

= 0. (10.9)

The above equation leads to unbiased estimates when the missing data are
MCAR, but may lead to biased estimates when the missing data are MAR or
MNAR (missing not at random or non-ignorably missing).

To incorporate missing data in GEE when the missingness is MAR, Robins et
al. (1994) suggested the following weighted GEE (WGEE)

n∑
i=1

ri
πi

[
∆i(β)σ−2

i (β)(yi − µi(β))
]

= 0, (10.10)

where

πi = P (ri = 1|yi,xobs,i, ψ) (10.11)

is the probability of missingness. Thus, the complete cases in weighted GEE
(10.10) are weighted by the inverse probability of missingness, i.e., the com-
plete cases have weights greater than 1.

Note that, in weighted GEE (10.10), only complete observations contribute to
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the estimating equations, and these complete cases are weighted by the prob-
ability of missingness πi. We may allow the missingness probability πi to de-
pend on the observed data (yi,xobs,i), i.e., we allow the missing data to be
MAR. If the missing data model (10.11) is known and correctly specified, the
resulting GEE estimates are consistent and asymptotically normal. If the miss-
ingness probability πi is unknown, we can substitute πi in (10.10) by a con-
sistent estimate of πi. Since ri is a binary variable, we may consider a logistic
regression model to estimate πi.

The weighted GEE methods are only based on complete observations. That
is, incompletely observed data or observations with partially missing data are
not used. This may lead to some loss of information and thus some loss of
efficiency. However, the weighted GEE methods do not require distributional
assumptions, so they are robust. On the other hand, the likelihood methods
in previous chapters use all observed data, so the resulting MLEs are usually
more efficient than weighted GEE estimators if the distributional assumptions
hold.

10.3.2 Weighted GEE for Measurement Errors and Missing Data

The weighted GEE method for missing data in Section 10.3.1 can be extended
to models for incomplete longitudinal data or clustered data. It can also be ex-
tended to models with measurement errors in covariates. One approach is to
introduce additional estimating equations to incorporate missing data mech-
anisms and address associations within clusters. Yi (2008) proposed a unified
approach to address both measurement errors and missing data simultaneously.
This approach is briefly described as follows.

Let yi = (yi1, · · · , yim)T be m response measurements on individual or clus-
ter i, i = 1, · · · , n. Let zij be a vector of error-prone covariates for individual i
at measurement j, zi = (zT

i1, · · · , zT
im)T , z∗i be the corresponding true but un-

observed covariate values, and xi = (xT
i1, · · · ,xT

im)T be a vector of error-free
covariates. Let

µij = µij(β) = E(yij |z∗i ,xi,β)

be the mean response given covariates for individual i at measurement j, with
β being the regression parameters, µi = (µi1, · · · , µim)T , and Σi = Σi(β) =
Cov(yi|z∗i ,xi,β) being the variance-covariance matrix of the response vector.
We consider the following marginal model

g(µij) = βT
z z∗ij + βT

x xij , i = 1, · · · , n; j = 1, · · · ,m, (10.12)

where β = (βT
z ,β

T
x )T is a vector of regression parameters and g(·) is a known

monotone function.
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To address measurement errors in covariates zi, we consider the following clas-
sical measurement error model

zij = z∗ij + εij , i = 1, · · · , n; j = 1, · · · ,m, (10.13)
εij ∼ N(0, A), (10.14)

where A is an unknown covariance matrix. Validation data or repeated mea-
surements of the covariates are needed to address measurement errors and to
identify model parameters, or one may conduct sensitivity analysis based on
background information (Yi 2008).

Suppose that the responses yi contain missing data, with a MAR missing
mechanism and a monotone missing data pattern. Let rij = 1 if yij is ob-
served and rij = 0 if yij is missing, and let ri = (ri1, · · · , rim)T . Write
yi = (ymis,i,yobs,i), where ymis,i contains the missing components of yi

and yobs,i contains the observed components of yi. Let

λij = P (rij = 1|ri,j−1 = 1,yobs,i, z∗i ,xi,ψ),

and let
πij = P (rij = 1|yobs,i, z∗i ,xi,ψ).

We may assume that the missingness of response yij may depend on its previ-
ous missing status and the observed data, i.e., one may consider the following
logistic regression model

log(λij/(1− λij)) = αT ui,

where ui = (yobs,i, z∗i ,xi) and α is a vector of regression parameters.

In the following, we let tmi
be the dropout time for individual i, and let

f(ri,α) = (1− λimi
)

mi−1∏
j=2

λij .

Let ∆i(β) = ∂µi(β)/∂β, and let Wi = diag(I(rij = 1)/πij) be a diagonal
weight matrix whose (j, j)-th element is I(rij = 1)/πij , where I(·) is the
indicator function. In the absence of measurement errors in zi (i.e., when z∗i =
zi), Yi (2008) proposed to solve the following estimating equations

n∑
i=1

∆iΣ−1
i Wi(yi − µi) = 0, (10.15)

n∑
i=1

log(∂f(ri,α)/∂α) = 0, (10.16)

which lead to consistent estimators of the parameters. In the presence of mea-
surement errors in zi, bias may arise in the above estimating equations if
one still substitutes z∗ij by zij in the estimating equations. To adjust the bias,
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Yi (2008) proposed a simulation extrapolation (SIMEX) method, which is a
simulation-based approach, and established the asymptotic normality of the
SIMEX estimators.

In practice, longitudinal data may also arise in clusters. For example, in family
studies if observations are repeatedly measured over time, the data are clustered
longitudinal data where each family may be viewed as a cluster. Similarly, for
a longitudinal school-based study or a longitudinal hospital-based study, each
school or hospital may be viewed as a cluster. In clustered longitudinal studies,
two types of correlation arise: the correlation between the repeated measure-
ments over time and the correlation within each cluster. Although in marginal
GEE models, the association parameters are often viewed as nuisance, in some
situations interest may lies in the strength of both types of association. Yi and
Cook (2002) proposed a GEE method for incomplete longitudinal binary data
arising in clusters. They proposed a second set of estimating equations for the
association parameters, and used odds ratio to measure the association in bi-
nary data.

10.4 Discussion

GEE models are often used for modeling non-normal data, without distribu-
tional assumptions, but the general approach is more widely applicable. In
GEE models, working correlation matrices are used to incorporate the corre-
lation within clusters, and these working correlation matrices typically contain
only a small set of nuisance parameters. An advantage of using a working
correlation matrix rather than an empirical unstructured correlation matrix is
that a unstructured covariance matrix may contain too many nuisance param-
eters, especially for large clusters, and thus its estimate sometimes may not
be positive definite and may be singular or nearly singular, which may cause
computational difficulties.

GEE estimators are consistent even if the working correlation matrix is mis-
specified, as long as the mean structure is correctly specified. GEE estimators
are also efficient when the working correlation is correctly specified. However,
when the working correlation is mis-specified, the GEE estimators are not opti-
mal. In some cases, estimates of the parameters in working correlation matrices
even may not exist. For binary data, Chaganty and Joe (2004) argued that usual
working correlation matrices cannot in general be the true correlation matrices
of the data. They showed that the parameters in correlation matrices for binary
data are bounded, which is often ignored in current softwares, and these bounds
can be quite narrow in some cases. Chaganty and Joe (2004) suggested that it
may be more appropriate to view working correlation matrices as weight ma-
trices. For binary data, odds ratios can be used to measure association within
clusters (e.g., Yi and Cook 2002).
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Qu, Lindsay, and Li (2000) introduced the idea of quadratic inference func-
tions. They argued that their approach produces optimal estimates of regression
parameters within an assumed family even if the working correlation is mis-
specified. Their approach may be viewed as to minimize the empirical asymp-
totic variances of regression parameters to obtain estimates of the parameters
in working correlation matrices. The idea is to express the inverse of a work-
ing correlation matrix by a linear combination of some basis matrices. They
showed that the quadratic inference function estimators are more efficient than
standard GEE estimators.

For GEE methods, the focus is usually on inference for the mean parame-
ters, with the variance-covariance (association) parameters being viewed as
nuisance parameters. In some cases, however, the association parameters may
also be of great interest, as one may wish to understand the strength of the as-
sociation within clusters. In these cases, a second set of estimating equations
may be specified in a way similar to the estimating equations for the mean pa-
rameters (e.g., Prentice 1988; Yi and Cook 2002). One then proceeds to jointly
solve the estimating equations. This approach, however, requires specifications
of higher order moments.

The idea of GEE methods can be applied to a wide variety of problems. There is
an extensive literature on GEE-type methods. Consistency and asymptotic nor-
mality of GEE-type estimators can usually be established. For mixed effects
models, one can also consider GEE-type methods in which one only needs to
specify the first two moments without distributional assumptions for the data
and then solves a set of estimating equations. However, GEE-type estimators
are usually less efficient than maximum likelihood estimators if the distribu-
tional assumptions hold.

Missing data problems, especially non-ignorable missing data problems, are
usually more conveniently handled by likelihood methods. Likelihood meth-
ods for missing data or measurement error problems are often conceptually
straightforward, although the computation can be tedious. GEE methods for
missing data or measurement error problems, on the other hand, have the ad-
vantage of avoiding distributional assumptions.

A main advantage of GEE-type estimators is the robustness against distribu-
tional assumptions, while a main advantage of likelihood-based estimators is
the asymptotic optimality. Both types of estimators are asymptotically normal.
In real data analyses, one may wish to consider both approaches to gain addi-
tional insights.



CHAPTER 11

Bayesian Mixed Effects Models

11.1 Introduction

For the mixed effects models considered in previous chapters, parametric mod-
els are often assumed for the response, for the random effects, for the incom-
pletely observed covariates, and for the missing data or measurement error
models. So the joint models often contain too many parameters, and this may
lead to poor estimation of the main parameters or may lead to identifiability
problems, especially if the observed data are not rich. Bayesian methods offer
the advantage of borrowing information from similar studies or from experts,
which are then incorporated in the current analysis in the forms of prior distri-
butions for the parameters. Such prior information helps estimating parameters
that may be poorly identified by the current observed data alone.

Typically computation is a main challenge for Bayesian inference. Due to the
availability of modern computers and computational tools such as the Markov
chain Monte Carlo (MCMC) methods, however, Bayesian inference for many
problems become feasible and even straightforward. In Bayesian inference, we
can still get maximum likelihood type estimates with non-informative priors.
That is, when the prior distributions are non-informative, Bayesian methods
are equivalent to likelihood methods. Thus, Bayesian methods are closely re-
lated to likelihood methods. In fact, they share some similar computational
challenges and use similar computational tools.

For a Bayesian approach, model parameters are treated as random variables,
which is a major difference with likelihood methods. The assumed distribu-
tions for the parameters are called prior distributions. Bayesian inference is
based on the posterior distribution, which is the conditional distribution of un-
observed quantities, such as the parameters or unobserved covariates, given the
observed data. The posterior distribution summarizes all the information about
the unobservables. For example, we can use the mean, or the median, or the
mode of the posterior distribution as point estimators. A Bayesian analog to a
confidence interval is the credit set, which is a region with probability 1 − α

355
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under the posterior distribution. Choices of prior distributions are important. In
fact, much of the controversy regarding Bayesian methods revolves around the
prior distributions.

Computation of posterior distributions is often non-trivial and computer inten-
sive. We can use MCMC methods, especially the Gibbs sampler, to approxi-
mate posterior distributions. The Gibbs sampler (see Chapter 12) generates a
Markov chain whose stationary distribution is the target posterior distribution.
In many cases, Bayesian computation becomes relatively straightforward with
availability of Bayesian softwares such as WinBUGS, which is based on the
BUGS (Bayesian inference Using Gibbs Sampling) project.

There have been extensive developments of Bayesian methods in the last few
decades, mainly due to the availability of modern computers and the break-
through in computational tools such as the MCMC methods, which make te-
dious Bayesian computation feasible. The basic idea of Bayesian inference is
as follows:

• assume some prior distributions for the unknown parameters in the models;
• make inference based on the posterior distributions of the parameters given

the data.

Computation of the posterior distributions is often challenging but it is now
feasible using MCMC methods such as the Gibbs sampler method. Gelman et
al. (2003) provided a comprehensive overview of modern Bayesian methods.

In the following sections, we give a brief review of the general ideas of Bayesian
methods.

11.2 Bayesian Methods

11.2.1 General Concepts

In this section, we describe some general concepts and approaches for Bayesian
inference. These general concepts and approaches can be easily extended to
more specific models, such as mixed effects models.

Let y be the data following an assumed parametric distribution with probability
density function f(y|θ), where θ contains unknown parameters. A Bayesian
method assumes that the unknown parameters θ are random variables follow-
ing a distribution with probability density function f(θ) = f(θ|θ0), called a
prior distribution. The parameters θ0 in the prior distribution are called hyper-
parameters and are often assumed to be known, which can be chosen based on
similar studies or expert opinion or even non-informative.
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Bayesian inference for the unknown parameters θ is based on the posterior
distribution f(θ|y) given the data y. Specifically, given the prior distribution
f(θ), the posterior distribution f(θ|y) can be obtained via the Bayes’s theo-
rem:

f(θ|y) =
f(y|θ)f(θ)

f(y)
=

f(y|θ)f(θ)∫
f(y|θ)f(θ)dθ

∝ f(y|θ)f(θ). (11.1)

Bayesian inference for θ is then based on the posterior distribution f(θ|y). For
example, a Bayesian estimator of θ is the posterior mean:

θ̂B = E(θ|y) =
∫
θf(θ|y)dθ,

with its precision being measured by the posterior variance:

Cov(θ̂B) = Cov(θ|y) =
∫

(θ − E(θ|y))(θ − E(θ|y))T f(θ|y) dθ.

The posterior mean is an optimal estimator of θ under the quadratic loss.

When the hyper-parameters are unknown, one approach is to estimate them
from the data, and the resulting Bayesian estimates are called empirical Bayesian
estimates.

The choice of prior distribution f(θ) may affect Bayesian estimation. In other
words, Bayesian inference may be influenced by a strong prior. In practice, we
can try different prior distributions or different values of the hyper-parameters
for sensitivity analysis. In the absence of any prior information, we may choose
a non-informative prior: f(θ) ∝ 1. Note that the likelihood L(θ|y) = f(y|θ),
so we have

f(θ|y) ∝ L(θ|y)f(θ).

Therefore, Bayesian methods and likelihood methods are linked. In particular,
if we choose a non-informative prior distribution for f(θ), Bayesian inference
is equivalent to likelihood inference.

Although the Bayesian paradigm seems conceptually straightforward, imple-
mentation of a Bayesian method is often non-trivial since the integrations in-
volved in Bayesian computation, such as that in (11.1), are often of high dimen-
sions and intractable, and these integrals usually do not have closed-form or
analytic expressions, except in some special cases. Computational challenges
are partially due to possible high dimensionality of the parameters θ. The de-
velopments of MCMC methods, such as the Gibbs sampler, make such tedious
computation feasible. A detailed description of MCMC methods is given in
Chapter 12.

MCMC methods are often used to generate large samples from the posterior
distribution f(θ|y), and these samples are then used for Bayesian inference.
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For example, the widely used Gibbs sampler method breaks down the dimen-
sionality of θ by iteratively sampling from lower dimensional distributions
which are easier to sample. These MCMC methods are often combined with
rejection sampling methods or importance sampling methods. Note that, how-
ever, although modern computers are increasingly fast, these MCMC methods
can still be computationally very intensive and it is not always easy to check
the convergence of these iterative algorithms.

To avoid numerical integrations or simulation methods, which may be compu-
tationally intensive, alternatively we can consider Bayesian estimation based
on posterior mode rather than posterior mean (e.g., Santner and Duffy 1989).
The idea is to find an estimator θ̃B , called posterior mode estimator, which
maximizes the posterior density f(θ|y) or maximizes the log posterior likeli-
hood:

lp(θ|y) = logL(θ|y) + log f(θ).

If a non-informative prior is chosen for θ, the posterior mode estimator coin-
cides with the MLE. Note that the posterior mode estimation is also closely
related to the Laplace approximation method (Breslow and Clayton 1993).

It can be shown that, under similar regularity conditions as that for asymptotic
normality of MLE, the posterior mode estimator θ̃B is asymptotically normal:

θ̃B
d−→ N(θ, I−1

p (θ)), as n→∞,

where

Ip(θ) = −E
(
∂2lp(θ|y)
∂θ∂θT

)
.

The posterior mode θ̃B and the curvature I−1
p (θ̃B) can be used to approximate

the posterior mean and covariance matrix when they are difficult to compute.

11.2.2 Prior Distributions

In Bayesian inference, the choice of prior distributions is important since it
may affect the final results. In choosing the prior distributions, if there is no in-
herent reason to prefer one prior distribution over another, a conjugate prior is
sometimes chosen for simplicity. A conjugate prior is a (parametric) prior dis-
tribution for which the resulting posterior distribution also belongs to the same
family of distributions. This is important since Bayesian inference is based on
the posterior distribution. Specifically, the prior distribution f(θ) is conjugate
to f(y|θ) if the posterior distribution f(θ|y) is in the same family as the prior
distribution f(θ).

For example, the normal distribution (Gaussian family) is conjugate to itself,
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i.e., if a prior distribution is normal then the posterior distribution is also nor-
mal. In fact, all members of the exponential family have conjugate priors (Gel-
man et al. 2003). In regression models, we typically choose a multivariate nor-
mal distribution as a prior distribution for the mean parameters β, i.e., we typi-
cally assume that β ∼ N(β0,Σ0), where β0 and Σ0 are hyper-parameters. For
a non-informative prior, we can choose Σ−1

0 = 0 or β ∼ uniform(−∞,∞).
For variance-covariance matrices, we typically choose Wishart distributions as
prior distributions, which are described as follows.

The Wishart distribution is a generalization of the χ2 distribution to multiple
dimensions or a generalization of the gamma distribution. It is useful for esti-
mation of covariance matrices. Suppose that Z is an n×pmatrix, with i-th row
zi ∼ Np(0, V ) independently, where the p× p covariance matrix V is positive
definite. Then, the probability distribution of

W = ZTZ

has a Wishart distribution with degrees of freedom n, denoted by Wp(V, n) or
W (V, n), and a density function given by

f(W ) =
|W |(n−p−1)/2

2np/2|V |n/2Γp(n
2 )

exp
(
−1

2
tr(V −1W )

)
,

where W > 0 (positive definite), and Γp(·) is the multivariate gamma function
defined as

Γp(n/2) = πp(p−1)/4

p∏
j=1

Γ((n+ 1− j)/2).

The Wishart distributionWp(V, n) has the mean nV and the mode (n−p−1)V
for n ≥ p+ 1. When p = 1 and V = 1, the Wishart distribution Wp(V, n) re-
duces to a χ2

n-distribution. Note that the Wishart distribution is the distribution
of the MLE for the covariance matrix in a multivariate normal distribution.

In Bayesian inference, a conjugate prior for the covariance matrix of a multi-
variate normal distribution is the inverse Wishart distribution, defined as fol-
lows. If a p × p random matrix A ∼ Wp(V, n), then B = A−1 has an
inverse Wishart distribution (or inverted Wishart distribution), denoted by
W−1

p (V −1, n) or W−1(V −1, n), with probability density function

f(B) =
|V |−n/2|B|−(n+p+1)/2 exp(−tr(V −1B−1)/2)

2np/2Γp(n/2)
.

The mean of B ∼W−1
p (V −1, n) is given by

E(B) = V −1/(n− p− 1).

Let X = (x1, · · · ,xn), with xi ∼ Np(0,Σ). If we assume a prior distribution
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Σ ∼W−1
p (Φ,m), then the posterior distribution is given by

Σ|X ∼W−1
p (XXT + Φ, m+ n).

When p = 1, the inverse Wishart distribution becomes a inverse gamma distri-
bution.

11.3 Bayesian Mixed Effects Models

The general Bayesian approach described in Section 11.1 can be applied to
mixed effects models. In the following sections, we follow Searle et al. (1992)
and Davidian and Giltinan (1995), and consider Bayesian inference for mixed
effects models.

As noted in Section 11.1, in Bayesian estimation analytic expressions are often
unavailable, so Monte Carlo methods are often used, which can be compu-
tationally intensive. For some special cases such as linear models, however,
some analytic expressions can be obtained. These analytic expressions may of-
fer some insights about Bayesian estimators. Therefore, in the following we
first focus on Bayesian LME models in which some analytic expressions are
presented. We then discuss Bayesian methods for GLMM and NLME models
in which estimation is typically based on MCMC methods.

11.3.1 Bayesian LME Models

We first consider Bayesian LME models in which prior distributions are as-
sumed for the mean parameters, but the variance components are assumed to
be known. Then, we consider estimation of the variance components.

Let yi = (yi1, · · · , yini
)T be the responses in cluster i or individual i, i =

1, 2, · · · , n. We first consider the following Bayesian LME model

yi = Xiβ + Zibi + ei, i = 1, · · · , n, (11.2)
bi ∼ N(0, D), ei ∼ N(0, Ri),
β ∼ N(β0,Σ0), (11.3)

whereXi(ni×p) andZi(ni×q) are known design matrices, bi = (bi1, · · · , biq)T

are random effects, ei = (ei1, · · · , eini
)T are within-individual errors, and

(11.3) specifies a prior distribution for the mean fixed parametersβ = (β1, · · · , βp)T .
We assume that the hyper-parameters β0 and Σ0 are known, and we also as-
sume that Ri = σ2Ini

for simplicity, where Ini
is an ni × ni identity matrix.

For convenience of presentation, we write the Bayesian LME model (11.2) –



BAYESIAN MIXED EFFECTS MODELS 361

(11.3) in a more compact form as follows. Let N =
∑n

i=1 ni, and let

y =

 y1

...
yn


N×1

, b =

 b1

...
bn


nq×1

, X =

 X1

...
Xn


N×p

,

D∗ = diag(D, · · · , D) (nq × nq), Z = diag(Z1, · · · , Zn) (N × nq), and
R = diag(R1, · · · , Rn) (N ×N). Then, Bayesian LME model (11.2) – (11.3)
can be combined as a single model:

y = Xβ + Zb + e, (11.4)
b ∼ N(0, D∗), e ∼ N(0, R),
β ∼ N(β0,Σ0). (11.5)

Note that
y|b ∼ N(Xβ + Zb, R), y ∼ N(Xβ, V ),

where V = R+ ZD∗ZT .

Bayesian estimation of the mean parameter β can be based on the following
posterior distribution

f(θ|y) =
f(y|θ)f(θ)

f(y)
=

∫
f(y|θ,b)f(θ)f(b) db∫ ∫
f(y|θ,b)f(θ)f(b) db dθ

.

Since the distributions of y,b, and β are all multivariate normal, the joint dis-
tribution of (y,b,β) is also multivariate normal. Then, based on properties of
multivariate normal distributions, it can be shown that the posterior distribution
of β is given by (Searle et al. 1992; Davidian and Giltinan 1995)

β|y ∼ N(C−1(XTV −1y + Σ−1
0 β0), C

−1),

where C = XTV −1X + Σ−1
0 . Bayesian inference for β can then be based on

this posterior distribution.

For example, a Bayesian estimate of β is given by

β̂B = E(β|y) = C−1(XTV −1y + Σ−1
0 β0),

with variance-covariance given by

Cov(β̂B) = Cov(E(β|y)) = C−1(XTV −1X)C−1.

Similarly, it can be shown that the Bayesian estimate of the random effects is
given by

b̂B = E(b|y) = (ZTLZ +D∗)−1ZTL(y −Xβ0),

where L = (R+XΣ0X
T )−1, with variance-covariance

Cov(b̂B) = Cov(b|y) = (ZTLZ +D∗)−1.
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If we assume a non-informative prior forβ, i.e., Σ−1
0 = 0 orβ ∼ uniform(−∞,∞),

the Bayesian estimator of β becomes the familiar MLE (with known variance
components):

β̂MLE = (XTV −1X)−1XTV −1y,

with variance
Cov(β̂MLE) = (XTV −1X)−1.

In other words, the MLE is a Bayesian estimator with non-informative prior.

When the variance components D and R are unknown, we can substitute them
by their usual estimates. The resulting Bayesian estimators of the mean pa-
rameters β and random effects b are then called empirical Bayes estimators.

Note that, if we assume non-informative prior for β, i.e., Σ−1
0 = 0 or β ∼

uniform(−∞,∞), estimation of the variance components D and R can be
based on the marginal likelihood, obtained by integrating out β and b,

Lm(D,R|y) =
∫ ∫

f(y|b,β)f(b|D)f(β) dβ db.

It can be shown that estimates of D and R based on the above marginal likeli-
hood is equivalent to the restricted maximum likelihood estimates (REMLs) of
D and R (Searle et al. 1992; Davidian and Giltinan 1995). In other words, the
REMLs of D and R can be obtained from a Bayesian framework by assuming
an non-informative prior for the mean parameters β and then integrating out β
and b in the likelihood.

For a full Bayesian inference of LME models, we should also choose prior
distributions for the variance components D and R. We may consider the fol-
lowing prior distributions for the variance-covariance matrices D and R (note
Ri = σ2Ini

):

D ∼W−1
q (D−1

0 , ρ0), σ−2 ∼ G
(ν0

2
,
ν0τ0
2

)
, (11.6)

whereW−1(·) andG(·) denote the inverse Wishart distribution and the gamma
distribution respectively. The joint posterior distribution for all unknown pa-
rameters and random effects is then given by

f(β, σ2, D,b|y) =
f(y|β, σ,b)f(b|D)f(β, σ,D)

f(y)
,

where

f(y) =
∫ ∫ ∫ ∫

f(y|β, σ,b)f(b|D)f(β, σ,D) dβ dσ dD db.

Thus, for example, Bayesian inference for the mean parameters β can be based
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on the following posterior distribution

f(β|y) =
∫ ∫ ∫

f(y|β, σ,b)f(b|D)f(β, σ,D) dσ dD db
/
f(y).

It is a common practice to assume that the prior distributions are independent,
i.e.,

f(β, σ,D) = f(β)f(σ)f(D),

which greatly simplifies the computation. Sometimes we also assume diago-
nal matrices for the covariance matrices Σ0 and D0 to reduce the number of
parameters.

Consider the simpler case where Xi = Zi and βi = β + bi. Let β∗ =
{β1, · · · ,βn} be the individual-specific parameters. The full conditional distri-
butions of any of the parameters given the remaining parameters can be written
as (Wakefield et al. 1994):

[β|y, σ,D,β∗] ∼ N
(
U(nD−1β̄ + Σ−1

0 β0), U
)
,

[D|y, σ,β,β∗] ∼W−1

[ n∑
i=1

(βi − β)(βi − β)T +D0

]−1

, n+ ρ0

 ,

[σ−2|y,β, D,β∗] ∼ G

(
ν0 +N

2
,

1
2

[
n∑

i=1

(yi −Xiβi)
T ( · ) + ν0τ0

])
,

[βi|y,β, σ,D,βj , j 6= i] ∼ N
(
Hi(σ−2XT

i yi +D−1β), Hi

)
,

where

β̄ =
n∑

i=1

βi

/
n, Hi = σ−2XT

i Xi +D−1, U−1 = nD−1 + σ−1
0 .

Note that many of the foregoing analytic expressions are derived mainly based
on two facts for LME models: (i) the response yi, the parametersβ, the random
effects bi, and the random errors ei are all linked in a linear form in the model;
and (ii) the parameters β, the random effects bi, and the random errors ei are
all assumed to be normally distributed. Many of the above analytic expressions,
however, are no longer available for Bayesian GLMM or NLME models since
these models are nonlinear.

11.3.2 Bayesian GLMMs

Conceptually, the Bayesian LME models in Section 11.3.1 can be extended
to Bayesian GLMMs in a straightforward way. However, a Bayesian GLMM
differs from a Bayesian LME model in two ways:
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• there is a nonlinear relationship between the response and the parameters
and the random effects,

• the response does not follow a normal distribution but instead a distribution
in the exponential family.

These differences make some of the analytic expressions in Section 11.3.1 un-
available, so MCMC methods are typically used for inference of a Bayesian
GLMM. We briefly describe Bayesian GLMMs and inference as follows, based
on Zeger and Karim (1991) and Gelman et al. (2003).

Suppose that the responses {yi1, · · · , yini
} in the i-th cluster are conditionally

independent given the mean parameters β and random effects bi. Let yi =
(yi1, · · · , yini

)T . A full Bayesian generalized linear mixed model (GLMM) can
be written as

E(yi|β,bi) = h(Xiβ + Zibi), i = 1, · · · , n, (11.7)
bi ∼ N(0, D), (11.8)
β ∼ N(β0,Σ0), D ∼W−1

q (η,Ψ), (11.9)

where h(·) is a known link function and Xi and Zi are known design matrices.
Let b = (b1, · · · ,bn). We assume that the prior distributions are independent,
so

f(β, D) = f(β)f(D).
Then, the posterior distribution of all parameters can be written as

f(β, D,b|y) ∝

 n∏
i=1

ni∏
j=1

f(yij |β,bi)f(β)

[ n∏
i=1

f(bi|D)f(D)

]
.

For Bayesian inference, note that the full conditionals are given by

f(β|D,b,y) ∝
n∏

i=1

ni∏
j=1

f(yij |β,bi)f(β), (11.10)

f(b|β, D,y) ∝
n∏

i=1

ni∏
j=1

f(yij |β,bi)f(bi|D), (11.11)

f(D|β,b,y) ∝
n∏

i=1

f(bi|D)f(D), (11.12)

where

[D|β,b,y] ∼W−1
q (η + n/2, Ψ +

n∑
i=1

bibT
i /2).

Bayesian inference can then be based on the Gibbs sampler along with rejec-
tion sampling methods (Zeger and Karim 1991; Gelman et al. 2003). A Gibbs
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sampler method to generate samples from the posterior distribution f(β, D,b|y)
is described as follows. At k-th iteration

• sample β(k) from f(β|D(k−1),b(k−1),y);
• sample D(k) from f(D|β(k),b(k−1),y);
• sample b(k) from f(b|β(k), D(k),y), k = 1, 2, 3, · · · .

Beginning with starting values (β(0), D(0),b(0)), after a warm-up period we
obtain a sample of (β, D,b) from the posterior distribution f(β, D,b|y).
Once we generate many such samples, the posterior mean and posterior covari-
ance can be approximated by the sample mean and sample covariance based
on the simulated samples. As one can imagine, this procedure can be compu-
tationally intensive.

11.3.3 Bayesian NLME Models

Bayesian NLME models are similar to Bayesian GLMMs, but in Bayesian
NLME models the responses are assumed to follow normal distributions. Bayesian
NLME models differ from Bayesian LME models in that the responses in
NLME models are nonlinearly related to the parameters and random effects.
We briefly describe Bayesian NLME models as follows, following Davidian
and Giltinan (1995) and Wakefield (1995).

Let yi = (yi1, · · · , yini
)T be the responses from cluster i. We consider the

following Bayesian NLME model

yi = fi(βi) + ei, ei ∼ N(0, σ2Ini
), (11.13)

βi = β + bi, bi ∼ N(0, D), i = 1, · · · , n,
σ−2 ∼ G(ν0, τ0), β ∼ N(β0,Σ0), D ∼W−1

q (D0, ρ0), (11.14)

where fi(·) is a vector-valued known nonlinear function. We assume that the
prior distributions are mutually independent:

f(β, σ,D) = f(β)f(σ)f(D).

Let b = (b1, · · · ,bn) be the random effects. The posterior distribution of all
parameters and random effects can be written as

f(β, D, σ,b|y) ∝
n∏

i=1

[f(yi|β, σ,bi)f(bi|D)f(D)f(β)f(σ)] .

Let β∗ = (β1, · · · ,βn) be the individual-specific parameters, and let y =
(y1, · · · ,yn). Following Gelfand and Smith (1990) and Davidian and Giltinan
(1995), the full conditional distributions can be shown to have the following
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distributions

[β|σ2,D,β∗,y] ∼ N

(
(nD−1 + Σ−1

0 )−1

(
D−1

n∑
i=1

βi + Σ−1
0 β0

)
,

(nD−1 + Σ−1
0 )−1

)
,

[σ−2|β,D,β∗,y] ∼ G

(
ν0 +

1

2

n∑
i=1

ni,

[
τ−1
0 +

1

2

n∑
i=1

ni∑
j=1

(yij − fij(βi))
2

]−1)
,

[D|σ,β,β∗,y] ∼W−1
q

([
D−1

0

n∑
i=1

(βi − β)(βi − β)T

]−1

, n+ ρ

)
.

The full conditional distribution of βi does not have a closed form expression,
but we have

f(βi|β, σ,D,y) ∝ exp

{
−σ

−2

2

ni∑
j=1

(yij − fij(βi))
2 − 1

2
(βi − β)TD−1(βi − β)

}
.

Now we can use the Gibbs sampler method to generate samples from the pos-
terior distribution f(β, D, σ,b|y) as follows. At k-th iteration

• sample β(k) from f(β|σ2(k−1), D(k−1),β(k−1)
∗ ,y);

• sample σ−2(k) from f(σ−2|β(k), D(k−1),β(k−1)
∗ ,y);

• sample D(k) from f(D|σ−2(k),β(k),β(k−1)
∗ ,y);

• sample β(k)
i from f(βi|β(k), σ(k), D(k),y), k = 1, 2, 3, · · · .

Beginning with starting values (β(0), D(0), σ(0),b(0)), after a burn-in period
we obtain a sample of (β, D, σ,b) from the posterior distribution f(β, D, σ,b|y).
Repeating this process many times, we can obtain many independent samples
from the target posterior distribution. Then, we can approximate the posterior
means and covariances by their corresponding sample means and sample co-
variances based on the simulated samples, which are the approximate Bayesian
estimates of the means and covariances.

Example 11.1 A Bayesian NLME model for HIV viral dynamics

For illustration, we consider a Bayesian model for long-term HIV viral dy-
namics with time-varying drug efficacy, following Huang and Lu (2009). HIV
viral dynamic models describe the interaction between cells susceptible to tar-
get cells (T ), infected cells (T ∗), and free virus (V ). Let λ be the rate at which
new T cells are created from sources within the body, dT be the death rate of
T cells, k be the infection rate of T cells infected by virus, δ be the death rate
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Figure 11.1 Viral loads trajectories (in log10 scale). The open circles are observed
values. Left figure: all patients. Right figure: five randomly selected patients.

for infected cells, m be the number of new virions produced from each of the
infected cells during their life time, and c be the clearance rate of free virions.

A long-term HIV viral dynamic model can be written as a solution of the fol-
lowing set of differential equations (Perelson and Nelson 1999, Huang and Lu
2009):

d

dt
T̃ = dT [1− T̃ − (1− γ(t))T̃ Ṽ ],

d

dt
T̃ ∗ = δ[(1− γ(t))T̃ Ṽ − T̃ ∗], (11.15)

d

dt
Ṽ = c(rT̃ ∗ − Ṽ ),

where T̃ = (dT /λ)T, T̃ ∗ = (δ/λ)T ∗, Ṽ = (k/dT )V , and γ(t) is a time-
varying parameter quantifying the antiviral drug efficacy and it can be written
as a function of a parameter φ (Huang and Lu 2009). Model (11.15) is nonlinear
and it does not have a closed-form solution.

Figure 11.1 shows the AIDS dataset used in the analysis which has a sample
size of 42. We see that there are substantial variations between patients, so we
should allow the parameters in model (11.15) to vary across patients by in-
troducing random effects to the parameters. There are also random errors for
within-patient viral load measurements. By incorporating between-patient ran-
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Table 11.1 Estimated posterior means and the corresponding 95% equal-tail credible
intervals for the parameters

Parameter φ c δ dT ρ r

Posterior mean 14.21 4.73 0.36 0.016 3.70 2.61
Left credit limit 3.39 1.57 0.11 0.003 0.58 1.52
Right credit limit 37.13 8.40 0.53 0.075 7.14 4.07

dom effects and within-patient random errors in the nonlinear model (11.15),
we obtain a NLME model, although the NLME model does not have an ana-
lytic expression. Furthermore, by introducing prior distributions for the model
parameters, we obtain a Bayesian NLME model, as described below.

Let β = (log φ, log c, log δ, log dT , log ρ, log r)T be the fixed mean parame-
ters in the NLME model. A Bayesian NLME model corresponding to model
(11.15) can be written in the following general form

yij = gij(βi, tij) + eij , eij i.i.d. ∼ N(0, σ2), (11.16)
βi = β + bi, bi ∼ N(0, D), i = 1, · · · , n; j = 1, · · · , ni,

β ∼ N(β0,Γ0), σ−2 ∼ G(a0, b0), D−1 ∼W (Ω0, ν0), (11.17)

where yij is the log10-transformation of viral load for patient i at time tij ,
G(a0, b0) is a gamma distribution,W (Ω0, ν0) is a Wishart distribution, gij(·) is
a nonlinear function without analytic expression, which is a solution of model
(11.15), and (β0,Γ0, a0, b0,Ω0, ν0) are known hyper-parameters.

Bayesian inference of the parameters is based on their posterior distributions
given the observed data. Here the posterior distributions are quite intractable,
but one can generate many samples from the posterior distribution using the
Gibbs sampler and then obtain summary statistics from these samples to con-
duct approximate Bayesian inference.

Huang and Lu (2009) analyzed the data based on the above Bayesian NLME
model. The values of the hyper-parameters were chosen as follows: a = 4.5, b =
9.0, ν0 = 8.0, β0 = (4.0, 1.1,−1.0,−2.5, 1.4, 0.28)T , Γ0 = diag(1000, 1000, 1000,
1000, 1000, 1000), Ω0 = diag(2.0, 2.0, 2.0, 2.0, 2.0, 2.0). In the Gibbs sam-
pler, they took 30,000 iterations as a burn-in period, and then took every 5th
MCMC sample which led to 24,000 samples from the targeted posterior distri-
bution. Estimated posterior means and the corresponding 95% equal-tail cred-
ible intervals for the parameters were then obtained from these samples. Table
11.1 shows the results. Huang and Lu (2009) compared these Bayesian es-
timates with estimates in previous studies using non-Bayesian methods and
discussed advantages of the Bayesian method.
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11.4 Bayesian Mixed Models with Missing Data

11.4.1 Bayesian Models with Missing Data

The Bayesian methods described in the previous sections can be extended to
models with missing data. In the following, we focus on Bayesian regression
models for cross-sectional data with missing covariates and a non-ignorable
missing data mechanism, following Ibrahim, Chen, and Lipsitz (2002). When
covariates have missing data, we need to assume a model for the covariates in
Bayesian inference, We assume prior distributions for all model parameters, in-
cluding prior distributions for the parameters in the covariate model. Bayesian
estimation is then based on the posterior distribution of the parameters given
the observed data. We briefly describe the approach as follows.

Let f(yi|xi,β) be the density function of a regression model for cross-sectional
data, such as a GLM, where xi contains covariates. In the presence of missing
data in the covariates xi, we assume a model for the covariates, with density
f(xi|α). For simplicity, we assume xi ∼ N(α1,α2) with α = (α1,α2).
Write xi = (xmis,i,xobs,i), where xmis,i contains the missing components
and xobs,i contains the observed components of xi. Let (y,xobs) = {(yi,xobs,i), i =
1, · · · , n} be the observed data. The joint posterior density for all the parame-
ters (β,α) can be written as

f(β,α|y,xobs) ∝

{
n∏

i=1

∫
f(yi|xi,β)f(xmis,i|xobs,i,α) dxmis,i

}
×f(β,α),

where f(β,α) is the joint density of the prior distributions for β and α.
Bayesian inference for the parameters (β,α) can then be based on the pos-
terior distribution f(β,α|y,xobs). In the following, we consider the Gibbs
sampler method to generate many samples from the posterior distribution and
then carry out approximate Bayesian inference based on the simulated samples.

Sampling from the posterior distribution f(β,α|y,xobs) can be accomplished
using the Gibbs sampler by iteratively sampling from the following full condi-
tionals:

• sample β from f(β|y,x,α1,α2);
• sample α1 from f(α1|y,x,β,α2);
• sample α2 from f(α2|y,x,β,α1);
• sample xmis,i from f(xmis,i|y,xobs,i,β,α1,α2), i = 1, · · · , n.

After a burn-in period, we obtain a sample from f(β,α|y,xobs). Repeating
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the procedure many times leads to many independent samples from the poste-
rior distribution. Then, approximate Bayesian inference can be based on these
samples.

For example, suppose that the following prior distributions are assumed:

β ∼ N(β0,Σ0), α1 ∼ N(α10, R0), and α2 ∼W−1(ν0, G0),

where (β0,Σ0,α10, R0, ν0, G0) are known hyper-parameters. To sample from
the above full conditionals, note that

f(β|y,x,α) ∝
n∏

i=1

f(yi|xi,β)f(β),

f(xmis,i|y,xobs,i,β,α) ∝
n∏

i=1

f(yi|xi,β)f(xmis,i|xobs,i,α),

where the density functions on the right-hand sides are known. Thus, rejection
sampling methods may be used to sample from the full conditionals. Note that
sampling from f(α1|y,x,β,α2) and f(α2|y,x,β,α1) is straightforward.
Therefore, the Gibbs sampler combined with rejection sampling methods can
be used to generate samples from the posterior distribution f(β,α|y,xobs).
Bayesian inference then proceeds in the usual way.

11.4.2 Bayesian Mixed Models with Missing Data

Bayesian methods for mixed effects models with missing data are similar to
that in Section 11.4.1. The only modification is to introduce prior distributions
for the parameters in the random effects distributions. We briefly describe the
method as follows, assuming the same setting as that in Section 11.4.1.

Let f(yi|xi,bi,β) be the conditional density function for a mixed effects
model given the random effects bi, such as a LME, or GLMM, or NLME
model. We assume the random effects bi ∼ N(0, D), with a prior distribution
D ∼ W−1

q (D0, ρ0). The joint posterior density for the parameters (β, D,α)
is given by

f(β, D,α|y,xobs) ∝

{
n∏

i=1

∫ ∫
f(yi|xi,bi,β)f(bi|D)

×f(xmis,i|xobs,i,α) dbi dxmis,i

}
f(β, D,α),

where f(β, D,α) is the joint prior distribution. We assume that the prior dis-
tributions are independent:

f(β, D,α) = f(β)f(D)f(α).
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As in Section 11.4.1, we can generate many samples from the posterior distri-
bution f(β, D,α|y,xobs) using the Gibbs sampler method, and then perform
approximate Bayesian inference based on the generated samples.

Sampling from the posterior distribution f(β, D,α|y,xobs) can be accom-
plished using the Gibbs sampler by iteratively sampling from the following
full conditionals:

• sample β from f(β|y,x,b,α1,α2);
• sample b from f(b|y,x,β,α1,α2);
• sample α1 from f(α1|y,x,b,β,α2);
• sample α2 from f(α2|y,x,b,β,α1);
• sample xmis,i from f(xmis,i|y,xobs,i,b,β,α1,α2), i = 1, · · · , n.

After a burn-in period, one obtains a sample of (β, D,α) from the posterior
distribution f(β, D,α|y,xobs). Repeating the procedure many times, one ob-
tains many samples from the posterior distribution and then proceeds with ap-
proximate Bayesian inference.

11.5 Bayesian Models with Covariate Measurement Errors

11.5.1 Bayesian Regression Models with Covariate Measurement Errors

Consider a regression model for cross-sectional data, with response yi and co-
variates zi and xi, i = 1, 2, · · · , n. Suppose that the observed covariates zi are
measured with errors, with the corresponding unobserved true values being z∗i ,
and suppose that covariates xi are accurately observed without measurement
errors. Let y = (y1, · · · , yn)T , z = (zT

1 , · · · , zT
n )T , and define z∗ and x simi-

larly. We may write the regression model as f(yi|z∗i ,xi,θ), where the response
yi depends on the unobserved true covariate values z∗i rather than the observed
but mis-measured covariate values zi and θ contains all unknown parameters.

A Bayesian approach typically treats the unobserved true covariates z∗i as miss-
ing data and essentially imputes them many times by sampling from the con-
ditional distribution of z∗i given all other variables and observed data. Specif-
ically, by treating the unobserved true covariates z∗i as missing data, we can
write the “complete data” likelihood for individual i as follows

f(yi, zi, z∗i |xi,θ) = f(yi|z∗i ,xi,θ)f(zi|z∗i ,xi,θ)f(z∗i |xi,θ),

where θ contains all unknown parameters. In measurement error literature,
model f(yi|z∗i ,xi,θ) is sometimes called outcome model, which can be a lin-
ear, or nonlinear, or generalized linear model. Model f(zi|z∗i ,xi,θ) is some-
times called measurement model. For example, a classical measurement error



372 MIXED EFFECTS MODELS FOR COMPLEX DATA

model can be written as

zi = z∗i + εi, E(εi) = 0.

Model f(z∗i |xi,θ)is sometimes called exposure model. The term exposure model
comes from epidemiology, where z∗i is often the true exposure to a toxicant. To
address measurement errors, replicates or validation data are typically required
for the mis-measured covariates zi.

For Bayesian inference, we consider a prior distribution f(θ) for the parame-
ters in θ, and consider the “likelihood”

f(θ)
n∏

i=1

f(yi, zi, z∗i |xi,θ).

Bayesian inference is then based on the following posterior distribution of θ

f(θ|y, z,x) =
f(θ)

∫
f(y, z, z∗|x,θ) dz∗∫ ∫

f(θ)f(y, z, z∗|x,θ) dz∗dθ
. (11.18)

Note that the integral in the denominator of (11.18) is typically very compli-
cated, since the parameter vector θ is typically of a high dimension and consists
of components with different types, such as mean parameters and variance-
covariance parameters. Thus, a major difficulty in Bayesian inference is the
computational challenge. However, we may again use the Gibbs sampler to
generate many samples from the posterior distribution f(θ|y, z,x) and con-
duct approximate Bayesian inference based on the simulated samples. This
avoids highly intractable integrals and is thus a solution to the dilemma.

Starting with initial values of θ and z∗i , the Gibbs sampler consists of the fol-
lowing steps:

• Generate a sample of the unobserved z∗i from its posterior distribution given
the observed data and current estimate of θ, i.e.,

z∗i ∼ f(z∗i |yi, zi,xi,θ) ∝ f(yi|z∗i ,xi,θ)f(zi|z∗i ,xi,θ)f(z∗i |xi,θ).

• Generate a sample of θ from its posterior distribution given the observed
data and current generated values of z∗i , i.e.,

θ ∼ f(θ|y, z, z∗,x) ∝ f(θ)f(y|z∗,x,θ)f(z|z∗,x,θ)f(z∗|x,θ),

which can be done one element of θ at a time, holding other elements fixed.

Sampling in the above two steps can be done using the rejection sampling
methods since the density functions on the right-hand sides of the above ex-
pressions are known. Repeating the two steps many times for a burn-in period,
we obtain a desired sample from the posterior distribution f(θ|y, z,x).
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In some cases, it may be more desirable to use the Metropolis-Hastings algo-
rithm, which is a very versatile and flexible tool and includes the Gibbs sam-
pler as a special case. See Chapter 12 for a more detailed description of the
Metropolis-Hastings algorithm. Carroll et al. (2006) provided a detailed de-
scription of a Metropolis-Hastings algorithm for measurement error problems
and other approaches for Bayesian inference.

11.5.2 Bayesian Mixed Models with Covariate Measurement Errors

The Bayesian method for regression models with covariate measurement er-
rors for cross-sectional data in the previous section can be extended to mixed
effects models for longitudinal data or clustered data with covariate measure-
ment errors. Note that a mixed effects model may be viewed as an extension of
the corresponding regression model for cross-sectional data by introducing ran-
dom effects, which are used to incorporate the correlation between the repeated
measurements within each individual or cluster and the variations between in-
dividuals or clusters. For time-dependent covariates with measurement errors,
the repeated measurements within each individual or cluster may be viewed
as “replicates” and thus may be used to partially address measurement errors.
For a mixed effects model, we can treat the random effects as additional un-
observed error-free “covariates” and then proceed for Bayesian inference in
a way similar to that in the previous section. The idea is briefly described as
follows.

The conditional density function for a mixed effects model for longitudinal or
clustered data with error-prone covariates can be written as f(yi|z∗i ,xi,bi,θ),
given random effects bi, where yi = (yi1, yi2, · · · , yini

)T , z∗i are unobserved
true covariates (either time dependent or time independent), xi are covariates
without measurement errors, and θ contains all unknown parameters, i =
1, 2, · · · , n. Let b = (b1, · · · ,bn). We can treat the unknown parameters θ,
the unobserved true covariates z∗i , and the unobserved random effects bi all as
“missing data”. Then, the “complete data likelihood” can be written as

f(θ)f(y|z∗,x,b,θ)f(b|θ)f(z|z∗,x,θ)f(z∗|x,θ),

where f(θ) is the prior distribution for the parameters θ.

Bayesian inference is based on the following posterior distribution of θ given
the observed data (y, z,x):

f(θ|y, z,x) =
f(θ)

∫ ∫
f(y, z, z∗,b|x,θ) dz∗db∫ ∫ ∫

f(θ)f(y, z, z∗,b|x,θ) dz∗dθdb
. (11.19)

The above posterior distribution is quite intractable and generally does not
have an analytic expression. Numerical integration methods such as the Gauss-
Hermite quadrature generally do not work well, due to the high dimensional
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integrations. Thus, the main challenge for Bayesian inference is computation.
We can again use the Gibbs sampler method, which generates many samples
from the posterior distribution by iteratively sampling from lower dimensional
conditional distributions.

Starting with initial values of the unobserved quantities (θ, z∗i ,bi), the Gibbs
sampler iterates between the following steps:

• Generate a sample of the unobserved covariate z∗i from its posterior distri-
bution given the observed data and the last generated random effects bi and
parameters θ, i.e.,

z∗i ∼ f(z∗i |yi, zi,xi,bi,θ)
∝ f(yi|z∗i ,xi,bi,θ)f(zi|z∗i ,xi,θ)f(z∗i |xi,θ), i = 1, · · · , n.

• Generate a sample of the random effects bi from its posterior distribution
given the observed data and the last generated values of z∗i and θ, i.e.,

bi ∼ f(bi|yi, zi,xi, z∗i ,θ) ∝ f(yi|z∗i ,xi,bi,θ)f(bi|θ). i = 1, · · · , n.

• Generate a sample of the parameter θ from its posterior distribution given
the observed data and last generated values of z∗i and bi, i.e.,

θ ∼ f(θ|y, z, z∗,x,b)
∝ f(θ)f(y|z∗,x,b,θ)f(b|θ)f(z|z∗,x,θ)f(z∗|x,θ).

This step is usually done one element of θ at a time, holding other elements
fixed, since the components of θ are of different types, such as mean and
variance-covariance parameters.

Iterating the above three steps for a burn-in period, the resulting sequence is
a Markov chain which will converge to its stationary distribution, the target
posterior distribution, So one obtains a sample from the target posterior distri-
bution. Sampling from the above full conditionals may be done using rejection
sampling methods, such as the adaptive rejection sampling method, since the
full conditionals are proportional to a product of known density functions.

11.6 Bayesian Joint Models of Longitudinal and Survival Data

In joint modeling of longitudinal data and survival data, the joint models often
contain many parameters, which may lead to identifiability problems or may
be poorly estimated. Moreover, the computation associated with joint model
inference is typically very challenging. A Bayesian approach for joint models
is thus very appealing since it can use prior information or borrow information
from similar studies to better estimate the parameters. Moreover, a Bayesian
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approach may avoid many complicated approximations required by a frequen-
tist approach. In a Bayesian approach, when the prior distributions are non-
informative, the Bayesian estimates are equivalent to maximum likelihood es-
timates. In this section, we follow Brown and Ibrahim (2003) and describe a
Bayesian approach for joint modeling of longitudinal data and survival data.

We focus on a joint model arising from a survival model with measurement
errors in a time-dependent covariate. For individual i, let si be the true survival
time, which may not be observed due to censoring, and let ci be the censoring
time. We assume non-informative right censoring. The observed survival times
are

ti = min(si, ci), i = 1, 2, · · · , n. (11.20)

Let

δi = I(si ≤ ci) =
{

1 an event is observed for individual i
0 the event time is censored for individual i

be the censoring indicator. Then, the observed data can be written as

{(ti, δi), i = 1, 2, · · · , n}. (11.21)

Let zi(t) be a time-dependent covariate with measurement error, whose unob-
served true value is z∗i (t).

For the survival model, we consider the following Cox proportional hazards
model

λ(ti) = λ0(ti) exp(β1z
∗
i (ti) + xT

i β2), (11.22)

where λ0(t) is a baseline hazard function, and xi are baseline covariates with-
out measurement errors. As in Brown and Ibrahim (2003), we may assume that
the baseline hazard function is piecewise constant as follows:

λ(u) = λj , for uj−1 ≤ u < uj , j = 1, · · · , J,

where the uj’s define the intervals for the baseline hazard function and can be
selected based on the quantiles of the observed event times.

For the covariate process, we consider the following classical measurement
error model

zij = g(tij ,α) + εij = z∗ij + εij , (11.23)

εij i.i.d. ∼ N(0, σ2), i = 1, · · · , n; j = 1, · · · ,mi, (11.24)

where zij = zi(tij) and g(t,α) is a parametric or nonparametric smooth func-
tion of time t with unknown parameters α, such as a polynomial function of
time.
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The joint likelihood function for individual i can then be written as

L(θ) = λ0(si)δi exp
[
δi(β1z

∗
i (ti) + xT

i β2)− exp(xT
i β2)

J∑
j=1

Λij(θ)
]

× 1
(2πσ2)mi/2

exp
[
− 1

2σ2

mi∑
j=1

(zij − g(tij ,α))2
]
,

where

Λij(θ) = I(si > uj−1)λj

∫ min(uj ,si)

uj−1

exp(β1z
∗
i (u))du,

I(si > uj−1) is the usual indicator function, and θ contains all unknown pa-
rameters.

For Bayesian inference, we assume prior distributions for the parameters and
then conduct estimation and inference based on the posterior distribution of the
parameters given the data. For non-informative proper priors, we may assume
the following conjugate prior for the hazard

λj ∼ Γ(aj , bj), j = 1, · · · , J,
σ2 ∼ IG(a, b),

where Γ(a, b) is the gamma distribution with shape parameter a and scale pa-
rameter b, and IG(a, b) is the inverse gamma distribution. For the regression
parameters β, we can consider a normal prior

β ∼ N(β0,Σ0).

For the parameters α in the covariate model, Brown and Ibrahim (2003) con-
sidered a unspecified nonparametric function and then place a Dirichlet process
prior on this distribution, which allows a more flexible modeling of the covari-
ate process. The Gibbs sampler can then be used to obtain Bayesian estimates
from the posterior distribution.

The above Bayesian approach can be extended in different ways. For example,
we may consider a parametric, or a semiparametric, or a nonparametric mixed
effects model to model the covariate process, which incorporates the correla-
tion between the repeated covariate measurements and the variations between
individuals or clusters. We may also consider a frailty models for the survival
models by introducing random effects in the survival models. In the presence
of random effects, one only needs to add another step of sampling the random
effects in the Gibbs sampler, so the extension is straightforward. Other survival
models such as accelerated failure time models or parametric survival models
may also be considered.



CHAPTER 12

Appendix: Background Materials

In the following sections, we provide some background materials for the stan-
dard methods that have been repeatedly used throughout the book, including
the likelihood methods and MCMC methods. We will focus on essential ideas
and results, without going too much details. More detailed discussions of these
topics can be found in many books, which are listed in the corresponding sec-
tions.

12.1 Likelihood Methods

Likelihood methods are widely used in statistical inference, due to general ap-
plicability of likelihood methods and attractive asymptotic properties of MLEs
such as asymptotic most efficiency and asymptotic normality. Moreover, the
likelihood principle says that likelihood functions contain all of the informa-
tion in the data about unknown parameters in the assumed models. Maximum
likelihood estimation is often viewed as the “gold standard” of estimation pro-
cedures. Likelihood functions also play an integral role in Bayesian inference.
In the following, we provide a brief overview of likelihood methods.

For a likelihood method, once the likelihood for the observed data is speci-
fied based on the assumed distributions, the MLEs of unknown parameters in
the assumed distributions can be obtained by maximizing the likelihood using
standard optimization procedures or the EM algorithms. The resulting MLEs
will be asymptotically consistent, most efficient (in the sense of attaining the
Cramer-Rao lower bound for the variances of the MLEs), and normally dis-
tributed, if some common regularity conditions hold. In other words, when the
sample size is large, the MLE is approximately optimal if the assumed dis-
tributions and some regularity conditions hold. In many problems, the sample
sizes do not have to be very large in order for the MLEs to perform well, and
the regularity conditions are often satisfied. Violations of the regularity condi-
tions may arise, for example, when the parameters are on the boundary of the

377
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parameter space. Therefore, likelihood methods are conceptually straightfor-
ward. In practice, difficulties often lie in computation since the observed-data
likelihoods can be highly intractable for some complex problems.

The asymptotic normality of MLEs can be used for (approximate) inference in
practice where the sample size is finite. For example, we may use the asymp-
totic normal distributions of MLEs to construct approximate confidence inter-
vals for the unknown parameters and to perform hypothesis testing such as
Wald-type tests, the likelihood ratio test, and the score test (these tests will
be described below). Likelihood methods are very general and can be used
in almost any situations where probability distributions are assumed. Potential
drawbacks of likelihood methods are that MLEs are often sensitive to outliers,
the assumed distributions may not hold, and MLEs may be biased for finite
samples (but the bias should decrease as the sample size increases). Restricted
maximum likelihood estimates (REML) are often used to correct some of the
biases in MLEs for variance components.

Let y1, y2, · · · , yn be a sample of independent and identically distributed (i.i.d.)
observations drawn from a distribution with a probability density function (for
continuous variables) or a probability mass function (for discrete variables)
f(y;θ), where θ = (θ1, · · · , θp)T are unknown parameters. Note that the re-
sults below also apply when the observations are independent but not identi-
cally distributed, e.g., in regression settings where the mean and variance of
yi may depend on covariates xi. Let y = (y1, y2, · · · , yn)T . The likelihood
function for the observed data y is defined as

L(θ) = L(θ|y) =
n∏

i=1

f(yi;θ),

which may be roughly interpreted as the probability of observing the data y
under the assumed distribution for the data.

The maximum likelihood estimate (MLE) of θ, denoted by θ̂, is the value of θ
which maximizes the likelihood L(θ), i.e., the MLE is the value of the param-
eter which makes the observed data most likely to occur. The corresponding
log-likelihood is given by

l(θ) ≡ logL(θ) =
n∑

i=1

log f(yi;θ).

Since the log-likelihood l(θ) is a monotone function of the likelihood L(θ),
maximization of the likelihood L(θ) is equivalent to maximization of the log-
likelihood l(θ), but the log-likelihood is easier to handle since a summation is
mathematically more manageable than a product. Thus, likelihood inference is
often based on the log-likelihood.
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The MLE θ̂ satisfies the following estimating equation (likelihood equation)

∂l(θ)
∂θ

=
n∑

i=1

∂ log f(yi;θ)
∂θ

= 0.

Note that the MLE may not be unique or may not even exist, but if the MLE
exists it should satisfy the above estimating equation. Note also that, if the like-
lihood function has multiple modes, a solution to the above estimating equation
may be a local maximum/minimum, depending on the choice of starting values.
So the choice of starting values is important for complex likelihood functions.
In practice, a simple approach is to try different starting values and check if the
solutions differ. The vector

s(θ) =
n∑

i=1

∂ log f(yi;θ)
∂θ

=

(
n∑

i=1

∂ log f(yi;θ)
∂θ1

, · · · ,
n∑

i=1

∂ log f(yi;θ)
∂θp

)T

is called the Fisher efficient score or the score. It can be shown that E(s(θ)) =
0.

The Fisher’s information function (matrix) is defined by

I(θ) = −E
(
∂2l(θ)
∂θ2

)
= (I(θ)jk)p×p, with I(θ)jk = −E

(
∂2l(θ)
∂θj∂θk

)
.

The information matrix I(θ) quantifies the expected amount of information
in the data about the unknown parameters θ. Note that the second derivatives
∂2l(θ)/∂θ2j describe the curvature of the likelihood in the neighborhood of θj ,
so the greater the value of −∂2l(θ)/∂θ2j , the sharper is the peak of the like-
lihood function and thus the greater is the information about θj . The Fisher’s
information matrix can also be expressed as

I(θ) = E

[(
∂l(θ)
∂θ

)(
∂l(θ)
∂θ

)T
]
,

which only involves the first derivatives so sometimes may be easier to evalu-
ate. The matrix

H(θ) =
∂2l(θ)
∂θ2 =

∂s(θ)
∂θ

,

is called the Hessian matrix. The observed information is defined as

i(θ) = −H(θ) = −∂
2l(θ)
∂θ2 ,

which sometimes can be used to approximate I(θ) since I(θ) = E(i(θ)).

Under some regularity conditions, the MLE is consistent, asymptotically effi-
cient, and asymptotically normally distributed. These regularity conditions can
be stated as follows:



380 MIXED EFFECTS MODELS FOR COMPLEX DATA

R1. The parameter space Θ of θ is an open subset of the whole space Rp.
R2. The set A = {y : f(y;θ) > 0} does not depend on θ.
R3. The function f(y;θ) is three times continuously differentiable with respect
to θ for all y.
R4. The following equations hold

E(∂l(y;θ)/∂θ) = 0, Cov(∂l(y;θ)/∂θ) = I(θ), for all θ.

R5. The expectations of all the derivatives of f(y;θ) with respect to θ exist
and are finite.
The above regularity conditions are satisfied for a wide variety of models and
are relatively easy to verify. Note that there are variations of these conditions,
and weaker conditions are available.

Under the regularity conditions R1 – R5, the MLE θ̂ of θ has the following
large-sample properties:

• The MLE θ̂ is consistent, i.e.,

θ̂
p−→ θ, as n→∞;

• The MLE θ̂ is asymptotically efficient, i.e., the asymptotic variance of θ̂
attains the Cramer-Rao lower bound, which is I−1(θ);

• The MLE θ̂ is asymptotically normal, i.e.,

θ̂
d−→ N(θ, I−1(θ)), as n→∞.

Thus, the MLE is asymptotically optimal. Note that, however, the MLE is not
necessary unbiased for finite samples. In some cases, the bias of MLE may
be substantial. On the other hand, the MLE is asymptotically unbiased, i.e.,
its bias tends to zero as the sample size increases. Due to the above attractive
asymptotic properties of MLEs, likelihood methods are widely used in statisti-
cal inference.

Based on the asymptotic normality of the MLE θ̂, in practice when the sample
size is finite, an approximate level 1 − α confident interval for θj , the j-th
component of θ, is given by

θ̂j ± zα/2 · s.e.(θ̂j),

where zα/2 is the 1−α/2 percentile of the standard normal distributionN(0, 1)
and s.e.(θ̂j) = I−1/2(θ̂)jj is the approximate standard error of the MLE θ̂j .
For hypothesis testing, the following three likelihood-based large-sample tests
are widely used: the Wald test, the likelihood ratio test (LRT), and the efficient
score test. These three tests are briefly described as follows.

Consider testing the hypotheses

H0 : θ = θ0 versus H1 : θ 6= θ0.



APPENDIX: BACKGROUND MATERIALS 381

The following three tests are based on asymptotic results and widely used in
practice:

• Wald-type test. The Wald-type test statistic for testingH0 versusH1 is given
by

TW = (θ̂ − θ0)T Σ̂−1(θ̂ − θ0),

where Σ̂ = I(θ̂)−1 is an estimate of the covariance matrix of θ̂. The test
statistic TW∼χ2

p asymptotically under H0, where p is the dimension of pa-
rameter θ. To test an individual component of θ, say H0j : θj = θj0 versus
H1 : θj 6= θj0, we may consider individual Wald-type test statistic

T
(j)
W =

(θ̂j − θ0)2

v̂ar(θ̂j)

where v̂ar(θ̂j) = (I(θ̂)−1)jj . The test statistic T (j)
W ∼χ2

1 asymptotically
under H0j .

• Likelihood ratio test (LRT). Let θ̂ be the MLE of θ, and let L(θ0) and L(θ̂)
be the likelihood functions evaluated at θ0 and θ̂ respectively. The LRT test
statistic for testing H0 versus H1 is given by

TL = −2 log

(
L(θ0)

L(θ̂)

)
= 2 logL(θ̂)− 2 logL(θ0).

The test statistic TL ∼ χ2
p asymptotically under H0.

• Score test. The score test statistic for testing H0 versus H1 is given by

TS = s(θ0)T I(θ0)−1s(θ0),

where s(θ0) is the score function at θ0. The test statistic TS ∼ χ2
p asymp-

totically under H0.

The above three tests are asymptotically equivalent, but they may differ with
finite samples. The LRT is equivalent to the deviance test which is widely used
in GLMs. The Wald test requires the least computational effort. The score test
does not require computing the MLE since the test statistic is evaluated under
the null hypothesis.

Note that the above asymptotic results do not hold for order-restricted tests or
constrained tests, such as the one-sided test H0 : θ = 0 versus H1 : θ > 0.
In this case, the above three tests can be constructed in a similar way, but their
asymptotic distributions are no longer χ2-distributions but are mixtures of χ2-
distributions. See Section 2.7.1 (page 91) for a more detailed discussion.
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12.2 The Gibbs Sampler and MCMC Methods

In likelihood inference of mixed effects models with incomplete data, Monte
Carlo EM algorithms are often used in which the E-step requires sampling
from multi-dimensional and intractable distributions. Similarly, in Bayesian
inference the target posterior distributions are often highly complicated, and
approximate Bayesian inference is usually based on large samples drawn from
the target posterior distributions. In both cases, one needs to generate large
numbers of samples from highly complicated and multi-dimensional distribu-
tions. Markov chain Monte Carlo (MCMC) methods are great tools for such
tasks and they have become very popular.

MCMC methods are algorithms for generating samples from intractable distri-
butions. The key idea of MCMC methods is to construct Markov chains that
have the desired distributions as their stationary distributions. After a large
number of steps, called a burn-in period, the Markov chain will converge to
its stationary distribution, and thus the last state of the chain can be used as a
sample from the desired distribution. A key characteristic of a Markov chain is
that the current state depends on the previous one, so there may be many ways
to construct a Markov chain which converges to the same target distribution.

MCMC methods have revolutionized Bayesian inference since they have made
highly complicated Bayesian computations feasible. These MCMC methods
are also very useful tools in likelihood inference since many likelihood com-
putations encount similar problems as in Bayesian inference. The most use-
ful MCMC method is probably the Gibbs sampler, which is briefly described
below. Detailed discussions of MCMC methods can be found in Gilks et al.
(1996), Gelman et al. (2003), and Robert and Casella (2004).

The Gibbs sampler

Gibbs sampling or the Gibbs sampler is an example of MCMC methods, which
is perhaps the most widely used MCMC method. It was devised by Geman and
Geman (1984). The Gibbs sampler is typically used to obtain random samples
from a multi-dimensional probability distribution, which is either intractable or
is not known explicitly. The desired samples can be obtained by sequentially
sampling from lower-dimensional conditional distributions which are easier to
sample from. These samples then comprise a Markov chain, whose stationary
distribution is the target distribution. The Gibbs sampler is widely used because
it is often easier to sample from the lower-dimensional conditional distributions
than the original distribution. We describe the details as follows.

Suppose that we wish to generate samples from the probability distribution
f(u|θ), where u = (uT

1 ,u
T
2 , · · · ,uT

q )T is a random vector, with each compo-
nent uj being possibly also a random vector. Suppose also that f(u|θ) is highly
intractable or even not known explicitly, so it is difficult to generate samples
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from f(u|θ) directly. Note that the components uj’s are typically unobserved
quantities which may have different dimensions or different types. For exam-
ple, for missing covariates xi in a mixed effects model f(yi|xi,bi,θ), with
bi being the random effects, we may want to generate samples from the in-
tractable distribution f(xmis,i,bi|xobs,i,yi,θ) in the EM algorithm for likeli-
hood estimation. In this case, we can choose

q = 2, u1 = xmis,i, u2 = bi.

As another example, let y ∼ N(µ,Σ). Suppose that we want to simulate from
the posterior distribution f(µ,Σ|y) in Bayesian inference. In this case, we can
choose

q = 2, u1 = µ, u2 = Σ.

In the following, we describe the Gibbs sampler method to generate samples
from f(u|θ), assuming θ is known for simplicity. Let

u−j = (uT
1 , · · · ,uT

j−1,u
T
j+1, · · · ,uT

q )T , j = 1, 2, · · · , q,

be the sub-vector of u without component uj . It is often easier to generate sam-
ples from the lower-dimensional conditional distributions f(uj |u−j ,θ), j =
1, 2, · · · , q, which are called full conditionals. The Gibbs sampler proceeds as
follows: beginning with starting values (u(0)

1 , · · · ,u(0)
q ), at step k,

• sample u(k)
1 from f(u1|u(k−1)

2 ,u(k−1)
3 , · · · ,u(k−1)

q ,θ);

• sample u(k)
2 from f(u2|u(k)

1 ,u(k−1)
3 , · · · ,u(k−1)

q ,θ);
• · · ·;
• sample u(k)

q from f(uq|u(k)
1 , · · · ,u(k)

q−1,θ), k = 1, 2, · · · .

The sequence {(u(k)
1 , · · · ,u(k)

q ), k = 1, 2, 3, · · ·} then comprises a Markov
chain with stationary distribution f(u|θ). Therefore, when k is large enough
(after a burn-in period), we can view u(k) = (u(k)

1 , · · · ,u(k)
q )T as a sample

generated from the target distribution f(u|θ).

Repeating the above process m times, or taking an independent sample of size
m after burn-in, we obtain a sample of size m from the intractable distribution
f(u|θ). When m is large, we can approximate the mean and variance of the
distribution f(u|θ) by the sample mean and sample variance respectively, or
we can approximate the density curve f(u|θ) by the empirical density function
based on the simulated samples.

The key idea of the Gibbs sampler is to sequentially sample from lower dimen-
sional conditional distributions in order to generate samples from the original
higher dimensional and intractable distribution. Usually it is easier to sam-
ple from these lower dimensional conditional distributions (full conditionals)
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than the original distribution. Sometimes, however, sampling from the lower-
dimensional conditional distributions may not be easy either. In this case, we
can use rejection sampling methods to sample from these full conditionals.
That is, we can combine the Gibbs sampler with rejection sampling methods
or other sampling methods.

Note that the Gibbs sampler or other MCMC methods can only approximate
the target distributions. The accuracy of the approximation improves as the
number of steps (burn-in period) increases. It may not be easy to determine the
burn-in period for the Markov chain to converge to the stationary distribution
within acceptable random errors. Determining the convergence criteria is an
important issue. See Gelman et al. (2003) for a more detailed discussion.

WinBUGS is a statistical software that is widely used to do Gibbs sampling.
It is based on the BUGS project (Bayesian inference Using Gibbs Sampling).
For details of the WinBUGS software, see webpage:

http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml.

Example 12.1 Consider a simple example of generating samples from the bi-
variate normal distribution u = (u1, u2)T ∼ N(µ,Σ) where µ = (µ1, µ2)T

and Σ is a 2 × 2 covariance matrix with diagonal elements being 1 and off-
diagonal elements being ρ (|ρ| < 1). Assume that µ and Σ are known. Here it
is not difficult to sample from N(µ,Σ), but we consider a Gibbs sampler for
illustration purpose.

Consider the Gibbs sampler to sample from the target distribution N(µ,Σ).
The full conditionals are

u1|u2,µ, ρ ∼ N(µ1 + ρ(u2 − µ2), 1− ρ2),
u2|u1,µ, ρ ∼ N(µ2 + ρ(u1 − µ1), 1− ρ2).

The Gibbs sampler proceeds as follows: beginning with starting value (u(0)
1 , u

(0)
2 ),

at k-th step,

• generate u(k)
1 from N(µ1 + ρ(u(k−1)

2 − µ2), 1− ρ2);

• generate u(k)
2 from N(µ1 + ρ(u(k)

1 − µ2), 1− ρ2), k = 1, 2, · · · .

Then, the sequence {(u(k)
1 , u

(k)
2 ), k = 0, 1, 2, · · ·} forms a Markov chain with

stationary distribution N(µ,Σ). Thus, when k is large (say 200), we may con-
sider (u(k)

1 , u
(k)
2 ) as a sample from N(µ,Σ).

The Metropolis-Hastings Algorithm

The Gibbs sampling algorithm is a special case of the Metropolis-Hastings al-
gorithm. That is, the Metropolis-Hastings algorithm is a more general method
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for creating a Markov chain that can be used to generate samples from an in-
tractable probability distributions, and it is often faster and easier to use than
the Gibbs sampler but it is less generally applicable. The algorithm can be used
to draw samples from a distribution without knowing the normalization factor,
i.e., from g(u) ∝ f(u), where f(u) is the target distribution of interest but
the normalization factor may be very difficult to compute (e.g., in Bayesian
inference).

Suppose that we wish to simulate a sample from an intractable distribution
f(u). Let p(u|v) be a proposal density. Beginning with a starting value u(0),
at step k we generate a value u∗ from p(u|v). Then the Metropolis-Hastings
algorithm proceeds as follows: simulate a value a from the uniform distribu-
tion U(0, 1) on (0, 1), then accept u∗ as the next value u(k+1) (i.e., choose
u(k+1) = u∗) if

a <
f(u∗) p(u(k)|u∗)
f(u(k)) p(u∗|u(k))

.

Otherwise, the proposal is not accepted and the current value is retained (i.e.,
u(k+1) = u(k)). The sequence {u(k), k = 0, 1, 2, · · ·} then forms a Markov
chain with stationary distribution f(u). After a burn-in period, we can view
u(k) as a sample from f(u).

The algorithm works best if the proposal density p(u|v) is close to f(u), but
often this is difficult to do. Gibbs sampling is a special case of the Metropolis-
Hastings sampling where the proposal is always accepted (see, e.g., Gelman et
al. 2004, page 328).

12.3 Rejection Sampling and Importance Sampling Methods

In likelihood or Bayesian inference, we often need to evaluate intractable in-
tegrals which do not have analytic or closed-form expressions. Monte Carlo
methods are widely used to approximate these integrals. In this section, we
briefly describe two popular Monte Carlo methods: rejection sampling meth-
ods and importance sampling methods.

We first consider the following integral

I =
∫
g(x)f(x)dx,

where g(·) is a continuous function and f(·) is a probability density function.
Suppose that I does not have an analytic expression. A Monte Carlo method
can be used as follows. If we can generate an i.i.d. sample x1, x2, · · · , xm from
the density f(x), we can then approximate the integral I by

I ≈ Î =
1
m

m∑
j=1

g(xj).
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The accuracy of this approximation increases as the numberm increases. Thus,
the problem is how to sample from the distribution f(x). Unfortunately, in
many problems the density function f(x) is highly complicated, especially
when x is a vector, so it may not be straightforward to generate these sam-
ples. The rejection sampling methods and the importance sampling methods
are two classes of general and widely used methods to generate samples from
intractable distributions.

Rejection Sampling Methods

Suppose that we wish to generate a sample from a complicated density function
f(x). Since f(x) is complicated, it may be hard to sample directly from f(x).
Suppose, however, that we know how to sample from the distribution with
density h(x), and that there is a known constant c such that

f(x) ≤ c h(x), for all x.

Then, a rejection sampling method may proceed as follows:

• generate a value x∗ from the distribution h(x);
• generate a value u from the uniform distribution on (0,1);
• accept x∗ if

u <
f(x∗)
c h(x∗)

,

otherwise reject x∗.

Repeating this procedure and retaining only accepted values of x∗, we obtain
a sample x∗1, x

∗
2, · · · , from the target distribution f(x).

The efficiency of the rejection sampling method depends strongly on how well
the function h∗(x) = c h(x), often called the envelope function, approximates
the target function f(x). If the ratio f(x)/h∗(x) is small, the probability of
acceptance will be small, so the algorithm will spend most of time rejecting x∗

values. A multivariate version of the rejection sampling method is similar. See
Evans and Swartz (2000) and Robert and Casella (2004) for more details.

It is often not easy to find a good envelope function. The following adaptive
rejection sampling method is widely applicable and very popular.

The Adaptive Rejection Sampling Method

The adaptive rejection sampling method (Gilks and Wild 1992) is a very use-
ful rejection sampling method when the target density function f(x) is log-
concave, i.e., function log f(x) is concave. It is particularly useful in Gibbs
sampling where the full conditional distributions may be intractable but are
known to be log-concave. In its original version, the adaptive rejection sam-
pling method constructs the envelope functions based on a set of tangents to the
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function log f(x). In later versions, the method updates the envelope functions
to correspond more closely to the target function log f(x) whenever a point
is rejected, and thus improves the efficiency of the method. More flexible al-
gorithms, which relax the log-concavity requirement, have also been proposed
(Evans and Swartz 2000).

Importance Sampling Methods

Let g(x) be a continuous function and f(x) be a probability density function.
Consider again the integral

I =
∫
g(x)f(x)dx = E(g(x)).

Suppose that it is hard to directly sample from f(x), but we know how to sam-
ple from a distribution h(x), which does not need to be an envelope function
as in a rejection sampling method. Since

I =
∫
g(x)f(x)dx =

∫
g(x)f(x)
h(x)

h(x)dx,

if x1, x2, · · · , xm is a sample generated from the distribution h(x), we then
have

I ≈ Î =
1
m

m∑
i=1

g(xi)f(xi)
h(xi)

=
1
m

m∑
i=1

wig(xi),

where wi = f(xi)/h(xi), i = 1, · · · ,m, are called importance weights and
h(x) is called the importance function. Note that here we do not require the
condition f(x) ≤ ch(x), and, unlike rejection sampling methods, here we
use all the generated xj’s. The efficiency of the importance sampling method
depends on the choice of the importance function. The closer the function
h(x) approximates f(x), the better the importance sampling method. Often,
the function h(x) is chosen to have larger tails than f(x). Evans and Swartz
(2000) and Robert and Casella (2004) provided more detailed discussions.

12.4 Numerical Integration and the Gauss-Hermite Quadrature Method

To evaluate intractable integrals, numerical integration methods are alterna-
tives to Monte Carlo methods. Numerical integration methods approximate an
integral by a weighted sum, with suitably chosen points and weights. These
methods include the Simpson’s rule and quadrature methods. In the following,
we briefly describe the popular Gauss-Hermite quadrature method. Evans and
Swartz (2000) provided a detailed discussion of various approaches.

Consider the following integral

I =
∫
g(x)f(x)dx,
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where g(x) is a continuous function and f(x) is a normal density function.
We first consider the N(0, 1) density and let f(x) = exp(−x2). The Gauss-
Hermite quadrature method approximates the integral by

I =
∫

exp(−x2)g(x)dx ≈
k∑

i=1

wi(xi)g(xi),

where the node xi is the i-th root of the Hermite polynomialHk(x) with degree
of k, wi(xi) is the weight which depends on Hk−1(xi):

wi(xi) =
2k−1k!

√
π

k2(Hk−1(xi))2
,

and the Hermite polynomials are orthogonal polynomials defined by

Hk(x) = (−1)kex2/2 d
k e−x2/2

dxk
.

The above approximation can be arbitrarily accurate when the number k of
nodes increases. When g(x) is a polynomial of degree up to 2k − 1, the ap-
proximation is exact. Note that the first several Hermite polynomials are:

H0(x) = 1, H1(x) = x, H2(x) = x2 − 1,
H3(x) = x3 − 3x, H4(x) = x4 − 6x2 + 3, · · · .

If f(x) is the density function of a general normal distribution N(µ, σ2), we
may consider transformation x =

√
2σz + µ, and we then have

I =
∫
g(x)f(x)dx ≈

k∑
i=1

w∗i (xi)g(
√

2σzi + µ),

where w∗i (xi) = π−1/2wi(xi).

If x = (x1, · · · , xm)T is a m-dimensional vector, we have

I =
∫

Rm

g(x)f(x)dx ≈
k1∑

i1=1

w
(1)
i1
· · ·

km∑
im=1

w
(m)
im

g(x(1)
i1
, · · · , (x(m)

im
)

where x(j)
ij

is the ij-th root of the Hermite polynomial with degree kj and

w
(j)
ij

is the corresponding weight. Note that the number of nodes increases
exponentially with the number m of dimensions, so the method can be very
inefficient for high-dimensional integrals. In practice, one may use the method
for integrals with dimensions up to 5 or 6. See Evans and Swartz (2000) and
Fahrmeir and Tutz (2001) for more detailed discussions.
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12.5 Optimization Methods and the Newton-Raphson Algorithm

In estimation problems, especially in likelihood methods, one often needs to
find a maxima or minima of a function, say L(θ). This problem is often equiv-
alent to finding a root of the function g(θ) ≡ ∂ logL(θ)/∂θ = ∂l(θ)/∂θ, or
solving equation

g(θ) = 0.
There are different general optimization procedures to accomplish this. The
most widely used one is perhaps the Newton-Raphson method or the Newton’s
method, which is briefly described below.

The Newton-Raphson method is an iterative algorithm based on a Taylor se-
ries expansion. In the univariate case θ = θ, the Newton-Raphson method
iteratively solves the following equation

θk = θk−1 −
g(θk−1)
g′(θk−1)

, k = 1, 2, · · · ,

where g′(θ) is the derivative of g(θ). Beginning with an initial value θ0, the
algorithm will usually converge to a possibly local maxima or minima of L(θ).
In the multi-dimensional case, the algorithm can be written as

θk = θk−1 −
(
∂g(θ)
∂θ

)−1 ∣∣∣
θ=θk−1

· g(θk−1), k = 1, 2, · · · ,

where
∂g(θ)
∂θ

=
(
∂g(θ)
∂θ1

, · · · , ∂g(θ)
∂θp

)
=
(
∂2l(θ)
∂θi∂θj

)
p×p

.

Note that the choice of the initial value θ0 is important. The closer θ0 to the
root of g(θ), the better. However, since we often do not know the root of g(θ),
a guessed value θ0 is usually chosen. If the function l(θ) has multi-mode (so
l(θ) has two or more roots), the Newton-Raphson algorithm only converges to
a local maxima. To find a global maxima, one should try several different initial
values. Note that the Newton-Raphson algorithm may not converge in some
cases, such as the initial value being too far from the true zero or the derivatives
being zeros or near zeros (so the tangent line is nearly horizontal). In practice,
one may want to put an upper limit on the number of iterations. For more
detailed discussions of the Newton-Raphson methods and other optimization
methods, see, e.g., Deuflhard (2004) and Press et al. (2007).

12.6 Bootstrap Methods

Bootstrap methods are widely used general approaches for statistical inference.
They are computer-intensive resampling methods, and are very useful for some
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difficult problems, such as variance estimations for intractable estimators and
statistical inference when parametric assumptions are in doubt or when para-
metric inference is highly complicated. For example, it is usually difficult to
compute the variances of a sample median or a sample percentile or a sample
correlation coefficient. In these cases, it is straightforward to use the bootstrap
method to compute estimates of standard errors and confidence intervals of
these estimators. Bootstrap methods are often easy to implement, though may
be computationally intensive, and can be applied to a wide variety of prob-
lems. Therefore, bootstrap has become a very popular statistical tool in modern
statistics.

The idea of a bootstrap method is usually to approximate a distribution by
the empirical distribution of the observed data, implemented by repeatedly
resampling from the observed dataset with replacement (with the same sample
size as the observed dataset). For example, suppose that (x1, x2, · · · , xn) is
an observed dataset, and suppose that one wishes to estimate the variance of
the sample median. A simple bootstrap method proceeds as follows. We can
sample from this observed dataset with replacement. The resulting sample,
denoted by (x∗1, x

∗
2, · · · , x∗n), is called a bootstrap sample. Then, we compute

the sample median of this bootstrap sample. Repeating this process B times
(B is often large, say B = 1000), we obtain B median estimates from the B
bootstrap samples. We then compute the sample variance of these B median
estimates and obtain a bootstrap estimate of the variance of the sample median
from the original dataset. The sampling distribution of these B estimates is an
approximation to the “true” distribution of the sample median from the original
dataset.

As another example, we know that the MLE of a parameter is asymptotically
normally distributed. In practice, this asymptotic distribution is often used to
construct approximate confidence intervals and hypothesis testing where the
sample size is in fact finite. Since the sample size is finite in practice, we may
want to know how close the distribution of the MLE is to normality, so that we
can judge how reliable the approximate confidence intervals and testing results
are. We can use a bootstrap method to check this, as illustrated as follow.

Suppose that we fit a mixed effects model, such as an NLME model, to a longi-
tudinal dataset (with sample size n) using the likelihood method, and we wish
to check if the resulting MLEs of the parameters are approximately normal. A
simple bootstrap method can be performed as follows:

• sample from the original dataset with replacement and obtain a bootstrap
sample;

• fit the mixed effects model to the bootstrap sample using the likelihood
method and obtain MLEs of the parameters;
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• Repeating the procedureB times, one obtainsB sets of parameter estimates
(MLEs).

The sampling distribution of the B estimates of a parameter is an approxima-
tion to the “true” sampling distribution of the MLE of this parameter based on
the original dataset. One can then, for example, obtain an approximate con-
fidence interval from the bootstrap samples by taking the α and 1 − α (say,
α = 0.05) quantiles of the B estimates. A bootstrap estimate of the standard
error of the parameter estimate is the sample standard error of the B estimates.

For a parametric bootstrap method, one would fit a parametric model and ob-
tain bootstrap samples from the fitted parametric model. The estimates are
again computed from the bootstrap samples.

For more detailed discussions of Bootstrap methods, see Efron and Tibshirani
(1993) and Davison and Hinkley (2006).

12.7 Matrix Algebra and Vector Differential Calculus

For statistical models with more than one parameters, it is often more conve-
nient to write the models in vector and matrix forms. For example, a multiple
linear regression model can be written in the compact form: y ∼ N(Xβ, σ2I),
where y and β are vectors and X and I are matrices. The least square can be
written as L(β) = (y − Xβ)T (y − Xβ), and the least square estimate of
β, obtained by solving ∂L(β)/∂β = 0, is given by β̂ = (XTX)−1XT y.
Thus, the compact forms are quite convenient, and some basic matrix algebra
and vector differential calculus are important. In this section, we present some
useful results, which may be helpful in understanding some of the results and
derivations presented in the book.

Let f(x) be a scalar function of a vector variable x = (x1, · · · , xp)T . Let

∂f(x)
∂x

=
(
∂f(x)
∂x1

, · · · , ∂f(x)
∂xp

)T

,

and let
∂2f(x)
∂x2

=
∂2f(x)
∂x∂xT

=
(
∂2f(x)
∂xi∂xj

)
p×p

be the p× p matrix with (i, j)-th element being ∂2f(x)/∂xi∂xj . Note that, if
df(x)/dx = a, then df(x) = adx. Let det(A) be the determinant of matrix A
and tr(A) be the trace of A, and let I denote the identity matrix.

Let A and B are matrices. We first present the following rules for matrix alge-
bra, which are often useful,

det(AB) = det(A)det(B),
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det(A−1) = det(A)−1,

det(I +ABT ) = det(I +BTA),
det(exp(A)) = exp(tr(A)),

tr(AB) = tr(BA),
tr(ATB) = vec(A)T vec(B),

where vec(A) is the vectorization of matrix A.

Let x and y are vector functions and X and Y be matrix functions. Let A and
B be constant matrices. The following are some useful rules for differentials

d(tr(X)) = tr(dX),
d(XY ) = (dX)Y +X(dY ),
dX−1 = −X−1(dX)X−1,

d det(A) = det(A)tr(A−1dA).

The following are some specific results which are useful in many cases:

∂(AT x)
∂x

= A,
∂2(AT x)
∂x2

= 0,

∂(xTAy)
∂x

= Ay,
∂2(xTAy)

∂x2
= 0,

∂(xT x)
∂x

= 2x,
∂2(xT x)
∂x2

= 2I,

∂(xTAx)
∂x

= 2Ax,
∂2(xTAx)

∂x2
= 2A, if A is symmetric

∂ log(det(A(x)))
∂x

= tr

(
A−1(x)

∂A(x)
∂x

)
where A(x) means that matrix A is a function of variable x.

Let f(A) be a scalar function of a matrix A = (aij)p×p, and let ∂f(A)/∂A be
the matrix with (i, j)-th element being ∂f(A)/∂aij . We have

∂(xTAy)
∂A

= xyT ,

∂(tr(A))
∂A

= I,

∂(xTAx)
∂A

= 2xxT − diag(xxT ), if A is symmetric,

∂|A|
∂A

= |A|(2A−1 − diag(A−1)), if A is symmetric,

∂tr(AB)
∂A

= B +BT − diag(B), if A is symmetric,
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where diag(A) is the diagonal matrix of A.

The above results are only partial lists of results for matrix algebra and vector
differential calculus. For more results and details, see Magnus and Neudecker
(1988) and Wand (2002).

Example 12.2 Maximum likelihood estimation in linear models

Consider the linear regression model

y ∼ N(Xβ, σ2I).

The log-likelihood for estimating β is given by

l(β) = − 1
2σ2

(y −Xβ)T (y −Xβ).

For likelihood estimation, we have

∂l(β)
∂β

=
1
σ2

(y −Xβ)TX = 0.

Thus, the MLE of β is given by

β̂ = (XTX)−1XT y,

which is the same as the least-square estimate. To obtain the variance-covariance
matrix of β̂, note that

∂2l(β)
∂β2 = − 1

σ2
XTX.

Thus, the Fisher information matrix is given by

I(β) =
1
σ2

(XTX).

The asymptotic variance-covariance matrix of β̂ is

V ar(β̂) = I−1(β).
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