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Abstract

As in the multivariate setting, the class of elliptical distributions on separable Hilbert spaces serves

as an important vehicle and reference point for the development and evaluation of robust methods in

functional data analysis. In this paper, we present a simple characterization of elliptical distributions

on separable Hilbert spaces, namely we show that the class of elliptical distributions in the infinite–

dimensional case is equivalent to the class of scale mixtures of Gaussian distributions on the space.

Using this characterization, we establish a stochastic optimality property for the principal component

subspaces associated with an elliptically distributed random element, which holds even when second

moments do not exist. In addition, when second moments exist, we establish an optimality property

regarding unitarily invariant norms of the residuals covariance operator.
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1. Introduction

When considering finite–dimensional random vectors, a natural and commonly used generaliza-
tion of the family of multivariate normal distributions is given by the class of elliptical distributions.
This class allows for heavy tail models while preserving many of the attractive properties of the mul-
tivariate normal model, such as regression being linear, as discussed for example in Muirhead (1982),
Seber (1984), Bilodeau and Brenner (1999) and Frahm (2004). Multivariate elliptical distributions
include the t−distributions, the symmetric generalized hyperbolic distribution, the multivariate Box-
Tiao or power exponential family distributions and the sub-Gaussian α−stable distributions, among
others. From a practical point of view, Frahm (2004) has argued that the class of heavy tailed
elliptical distributions offers a good alternative for modeling financial data in which the Gaussian
assumption may not be reliable. Multivariate elliptical models have also been considered extensively
within the area of robust statistics as a starting point for the development of the M -estimates of
multivariate location and scatter, see e.g. Maronna (1976), and also as a class of models under which
the asymptotic behavior and the influence functions of robust multivariate methods, such as robust
principal components, can be evaluated and judged. (See, for instance, Hampel et al. (1986), Huber
and Ronchetti, 2009 and Maronna et al., 2006.)

In many areas of statistics, the collected data are more naturally represented as functions rather
than finite-dimensional numerical vectors, as argued e.g. in Ramsay and Silverman (2005). Sim-
plifying the functional model by discretizing the observations as sequences of numbers can often
fail to capture some of its important characteristics, such as the smoothness and continuity of the
underlying functions. For this reason, in the last decades different methods have been proposed to
handle this type of “functional” data, which can be viewed as instances of random elements taking
values in a space of functions such as L2(I), with I ⊂ R a finite interval. A more general and
inclusive framework is to view the observations as elements in a separable Hilbert space H, which is
not necessarily finite–dimensional.

The notion of principal components analysis, which is a fundamental concept in multivariate
statistics, has been extended to the functional data setting and is commonly referred to as FPCA
or functional principal components analysis. The first few principal components are typically used
to explore the main characteristics of the data within a reduced dimensional space. In particular,
exploring this lower dimensional principal components space can be useful for detecting atypical
observations or outliers in the data set. The principal components subspace has the well known
property that the first q principal components associated with the distribution of a random element
with finite second moment provide the best q-dimensional linear approximation to the random ele-
ment in terms of mean squared error. These linear approximations also minimize unitarily invariant
norms of the covariance matrix of the residuals, in the finite–dimensional setting.

As in the multivariate setting, the class of elliptical distributions on separable Hilbert spaces
can serve as an important vehicle and reference point for the development and evaluation of robust
methods in functional data analysis. In addition, they allow for the development of FPCA even if the
random elements do not possess second moments. An extension of the class of elliptical distributions
to separable Hilbert spaces is given in the relatively recent paper by Bali and Boente (2009), while
the Fisher–consistency of some robust estimates of principal directions for this class of elliptical
distributions is established in Bali, et al. (2011). The main purpose of the present short paper is two-
fold. First, in section 2, we present a simple characterization of elliptical distributions on separable
Hilbert spaces, namely we show that the class of elliptical distributions in the infinite–dimensional
case is equivalent to the class of scale mixtures of Gaussian distributions on the space, unless the
random element is essentially finite–dimensional. Second, we then use this representation in section
3.1 to establish a stochastic best lower-dimensional approximation for elliptically distributed random
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elements and an optimality property for the scatter operator of the associated residuals. That is,
we derive two optimality properties for the eigenfunctions associated with the largest eigenvalues of
the scatter operator that hold even when second moments do not exist and which recover the same
best lower dimensional approximation properties mentioned above when second moments do exist.

In section 3.2 we extend another known optimality property of principal components from Eu-
clidean spaces to general Hilbert spaces. This optimality property holds not only for elliptical
distributions, but for any distribution with finite second moments. As in the finite-dimensional case,
when second moments exist a measure of closeness between a random element X and a predictor is
the norm of the residuals covariance operator. Although many operator norms can be defined, in
the principal components setting a reasonable requirement is that the operator norm be unitarily
invariant. Under this assumption, we show that the optimal linear predictors are those obtained
through the linear space spanned by the first q principal components. In Section 4 we use the theory
developed in this paper to show that the spherical principal components of Locantore et al. (1999)
and Gervini (2008) are Fisher consistent for elliptically distributed random elements. This result ex-
tends previous results obtained for random elements with a finite Karhunen-Loève expansion. Some
mathematical concepts and proofs are presented in the Appendix.

2. Elliptical distributions over Hilbert spaces

There are a number of ways to define the class of elliptical distributions in the multivariate
setting. An attractive constructive definition is to define them as the class of distributions generated
by applying affine transformations to the class of spherical distributions. The properties of elliptical
distributions then follow readily from the simpler class of spherical distributions.

Recall that a random vector Z ∈ Rd is said to have a d–dimensional spherical distribution if its
distribution is invariant under orthogonal transformations, i.e., if QZ ∼ Z for any d× d orthogonal
matrix Q. The classic example of a spherical distribution is the multivariate standard normal
distribution. In general, if Z has a spherical distribution in Rd then R = ‖Z‖d and U = Z/‖Z‖d
are independent with U having a uniform distribution on the d–dimensional unit sphere. Here ‖ · ‖d
refers to the Euclidean norm in Rd. If Z is also absolutely continuous in Rd, then it has a density of
the form f(z) = gd(ztz) for some function gd(s) ≥ 0, i.e., it has spherical contours. The marginal
density of a subset of the components of Z also has spherical contours, with the relationship between
gd and the k−dimensional density generator gk, for k < d being somewhat complicated. It turns out
to be more convenient to denote a spherical distribution by its characteristic function. In general,
the characteristic function of a spherically distributed Z ∈ Rd is of the form ψZ(td) = ϕ(ttdtd) for
td ∈ Rd, and any distribution in Rd having a characteristic function of this form is a spherical
distribution. Consequently, we express Z ∼ Sd(ϕ). This notation is convenient since, for Zt =
(Zt

1 ,Z
t
2 ) with Z1 ∈ Rk, the marginal Z1 is such that Z1 ∼ Sk(ϕ). More generally, for any k × d

matrix Qk such that Qt
kQk = I, we have QkZ ∼ Sk(ϕ). Note that if ϕ(ttdtd) is a valid characteristic

function in Rd then ϕ(ttktk), where tk = (t1, . . . , tk), is also a valid characteristic function in Rk for
any k < d. For some families of spherical distributions defined across different dimensions, such as
the multivariate power exponential family considered by Kuwana and Kariya (1991), the function
ϕ may depend upon the dimension d. In such cases, the marginal distributions are not elements of
the same family.

As already noted, the elliptical distributions in Rd correspond to those distributions arising
from affine transformations of spherically distributed random vectors in Rd. For a d × d matrix B
and a vector µ ∈ Rd, the distribution of X = BZ + µ when Z ∼ Sd(ϕ) is said to have an elliptical
distribution, denoted by X ∼ Ed(µ,Σ, ϕ), where Σ = BBt. Note that the distribution of X depends
on B only through Σ = BBt. For a fixed ϕ, the family of elliptical distributions Ed(µ,Σ, ϕ) forms a

3



symmetric location–scatter class of distributions with location parameter µ and symmetric positive
semi–definite scatter parameter Σ. If the first moment exists, then E(X) = µ, and if second moments
exist then the variance covariance matrix of X is proportional to Σ. If Z has the spherical density
noted above and Σ is nonsingular then the density of X has elliptical contours and is given by
f(x) = (det Σ)−1/2gd

(
(x− µ)tΣ−1(x− µ)

)
for x ∈ Rd. The characteristic function of X in general

has the simple form ψX(t) = exp(ittµ)ϕ(ttΣt). Furthermore, the elliptical distribution Ed(µ,Σ, ϕ)
can be characterized by its marginals, namely for any fixed k < d, X ∼ Ed(µ,Σ, ϕ) if and only if
AX ∼ Ek(Aµ,AΣAt, ϕ) for all k × d matrices A.

It is not possible to extend the definition of elliptical distributions from finite dimensional to
infinite dimensional Hilbert spaces using a construction based on spherical distributions since such
a spherical distribution cannot be defined in the latter case. Consequently, Bali and Boente (2009)
proposed the following definition based on generalizing the characterizing relationship between an
elliptical distribution and the distributions of its lower dimensional projections. Hereafter, H will
denote a separable Hilbert space, with inner product 〈·, ·〉 and corresponding induced norm ‖ · ‖.

Definition 2.1. Let X be a random element in a separable Hilbert space H. We will say that
X has an elliptical distribution with parameters µ ∈ H and Γ : H → H, where Γ is a self–adjoint,
positive semi–definite and compact operator, if and only if, for any d ≥ 1 and for any linear and
bounded operator A : H → Rd we have that AX ∼ Ed(Aµ, AΓA∗, ϕ) where A∗ : Rd → H denotes
the adjoint operator of A. We will write X ∼ E(µ,Γ, ϕ).

Since any multivariate distribution is determined by the distribution of its one dimensional pro-
jections, the above definition is equivalent to the case when one only considers d = 1. Consequently
an equivalent definition for a random element in H to have the elliptical distribution E(µ,Γ, ϕ) can
be stated as follows.

Definition 2.2. For X ∈ H, X ∼ E(µ,Γ, ϕ) with parameters µ ∈ H and Γ : H → H, where Γ is a
self–adjoint, positive semi–definite and compact operator, if and only if 〈a,X〉 ∼ E1(〈a, µ〉, 〈a,Γa〉, ϕ)
for all a ∈ H.

As in the finite–dimensional case, if the covariance operator of a random element X, ΓX , exists
then ΓX = γ Γ for some γ > 0. Also, as in the finite–dimensional setting, the scatter parameter Γ
is confounded with the function ϕ in that for any c > 0, E(µ,Γ, ϕ) ∼ E(µ, cΓ, ϕc) where ϕc(w) =
ϕ(w/c). For a given ϕ, though, Γ is well defined.

It should be noted that if the range of Γ is q–dimensional, then it is only necessary that the
function ϕ be such that ψq(t) = ϕ(ttt) is a valid characteristic function over t ∈ Rq in order for
E(µ,Γ, ϕ) to be well defined. On the other hand, if the range of Γ is infinite–dimensional, then
the function ψd(t) = ϕ(ttt) must be a valid characteristic function over t ∈ Rd for all finite d.
Furthermore, when this latter condition holds, the family of distributions E(µ,Γ, ϕ) is defined over
all µ ∈ H and over all self–adjoint, positive semi–definite and compact operators Γ : H → H.

As defined, the class of infinite–dimensional elliptical distributions is not empty. It includes
the family of Gaussian distributions on H, which corresponds to choosing ϕ(w) = exp{−w/2}.
Other elliptical distributions can be obtained using the following construction. Let V be a Gaussian
random element in H with zero mean and covariance operator ΓV , and let S be a non–negative real
random variable independent of V . Given µ ∈ H, define X = µ + S V , which is a scale mixture
of the Gaussian element V . The resulting random element X then has the elliptical distribution
E(µ,Γ, ϕ) with the operator Γ = ΓV and the function ϕ(w) = E(exp{−wS/2}). Note that Γ exists
even when the second moment of X may not. Moreover, when E(S2) <∞, the covariance operator
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of X, ΓX = E(S2)ΓV (see Bali and Boente, 2009).
In the univariate, as well as in the multivariate setting, a scale mixture of a Gaussian distributions

has a heavier tail than a Gaussian distribution. Hence, they are a often viewed as attractive longer
tail alternatives to the Gaussian model. In the univariate case, the scale mixture distribution
either does not have a fourth moment or, if it does, then its kurtosis, κ = E((X − µ)4)/(E(X −
µ)2)2, is greater than that of the Gaussian, which corresponds to κ = 3. For multivariate elliptical
distributions in general, all univariate projections have distributions which lie in the same location-
scale family, so the distribution of any univariate projection has the same kurtosis. It has been
known for some time that, for higher dimensional elliptical distributions, this kurtosis parameter
cannot be much smaller than that of a Gaussian vector. In particular, for a d–dimensional elliptical
distribution, κ ≥ 3d/(d + 2), see Tyler (1982), Bentler and Berkane (1986) or Anderson (2003). If
this holds for all finite d, then κ ≥ 0. Consequently, this implies that the distribution E(µ,Γ, ϕ),
when the rank of Γ is not finite, cannot have much shorter tails than a Gaussian distribution, i.e., the
kurtosis of E1(〈a, µ〉, 〈a,Γa〉, ϕ) must be non–negative. Proposition 2.1 below gives an even stronger
result, namely that such a distribution must be a scale mixture of Gaussians. The proof of the
proposition is based on an application of the following lemma given in Kingman (1972).

Lemma 2.1. Let Y1, Y2, . . . be an infinite sequence of real random variables with the property
that, for any n, the distribution of the random vector (Y1, . . . , Yn)t has spherical symmetry. Then,
there exists a random variable W , real and nonnegative, such that, conditional on W , Y1, Y2, . . . are
mutually independent and normally distributed with mean zero and variance W .

Proposition 2.1. Let X ∼ E(µ,Γ, ϕ) be an elliptical element of a separable Hilbert space H. If Γ
does not have finite rank, then there exists a zero mean Gaussian element V and a random variable
S ≥ 0 independent of V , such that X ∼ µ+ S V .

Proof. Without loss of generality assume µ = 0. For k ∈ N, let λik > 0 be the non-null eigenvalues
of Γ, with λi1 ≥ λi2 ≥ . . . , and let φik denote an eigenfunction of Γ associated with λik chosen so
that the set {φik , k ∈ N} forms an orthonormal set in H . We then have the representation X =∑

k≥1〈φik , X〉φik . For k ≥ 1, let Yk = λ
−1/2
ik
〈φik , X〉. Also, for each n ∈ N let Yn = (Y1, . . . , Yn)t,

and define the bounded linear operator An : H → Rn by Anx = (λ
−1/2
i1
〈x, φi1〉, . . . , λ

−1/2
in
〈x, φin〉)t.

It then follows that Yn = AnX ∼ En (0, An ΓA∗n, ϕ). Furthermore, AnΓA∗n = In, so Yn ∼ Sn(ϕ)
for all n ≥ 1. Thus, by Lemma 2.1, there then exists a non–negative random variable W such
that, for all n ∈ N, Yn|W ∼ Nn(0,W In). Let S = W 1/2, then Yn has the same distribution
as S Zn, where Zn ∼ Nn(0, In) and Zn is independent of S. Hence, for all k ≥ 1, Yk ∼ S Zk,
k ≥ 1, with Zk being i.i.d. standard normal random variables, independent of S. Consequently

X =
∑

k≥1 λ
1/2
ik

Yk φik ∼ SV , with V =
∑

k≥1 λ
1/2
ik

Zk φik being a Gaussian element in H.

Remark 2.1. The above proof depends heavily on Kingman’s result, which in turn depends heav-
ily on arguments involving characteristic functions. An alternative simple self–contained proof for
Proposition 2.1 can be given as follows. First note that the distribution of X ∼ E(0,Γ, ϕ) is deter-
mined by the distribution of any one–dimensional projection with a non–degenerate distribution, say
X1 = 〈φi1 , X〉. Without loss of generality, assume X1 is symmetrically distributed around zero. For

each n, let Yn be defined as above so that Y1 = X1λ
−1/2
i1

. Since Yn ∼ Sn(ϕ), its distribution can be
represented as Yn ∼ RnU, where U has a uniform distribution on the n−dimensional unit sphere,
and Rn is a non–negative random variable independent from U. The distribution of U itself can

5



then be represented as U ∼ Z/‖Z‖n where Z ∼ Nn(0, In) and independent of Rn. It then follows

that X1 ∼ λ1/2
i1
DnSnZ1, where Dn =

√
n/‖Z‖n, Sn = Rn/

√
n and Z1 ∼ N (0, 1) independent of Sn.

Now, by the weak law of large numbers, Dn
p−→ 1. Since the distributions of X1 and Z1 do not

depend on n, Sn must converge in distribution to a random variable S, with S being independent

of Z1. Thus, X1 = λ
1/2
i1
SZ1, which is a scale mixture of normals.

Remark 2.2. Proposition 2.1 only applies to the family E(µ,Γ, ϕ) for which ψd(t) = ϕ(ttt)
is a valid characteristic function in Rd for all finite d. It is worth noting though that elliptical
distributions on H, as given in Definition 2.1 or 2.2, are also defined for the case in which ψd(t) is
a valid characteristic function in Rd for say d = q but not for d = q + 1 for some finite q. In this
case the family of distributions given by E(µ,Γ, ϕ) is defined over all µ ∈ H but only over those
self–adjoint, positive semi–definite and compact operators Γ : H → H with ranks no greater than q.
In general, when the rank of Γ equals q, X ∼ E(µ,Γ, ϕ) admits a finite Karhunen-Loève expansion,

namely X = µ +
∑q

j=1 λ
1/2
j Zj φj with Z = (Z1, . . . , Zq)t ∼ Sq(ϕ) and where λ1 ≥ . . . ≥ λq > 0

and {φj , j = 1, . . . q} are respectively the non–null eigenvalues and the associated orthonormal set
of eigenfunctions of Γ.

Note that Proposition 2.1 is not true if Γ has finite rank. In particular, it does not hold in
the finite–dimensional setting, where examples of elliptical distributions that are not scale mixture
of normals can easily be constructed. For example, a random vector U uniformly distributed on
the d-dimensional unit sphere has an elliptical distribution but does not have a density function.
However, a random vector X ∈ Rd of the form X = SV with V ∼ N(0, Iq) and S independent of
V is absolutely continuous. For more details, see for instance, Muirhead (1982) or Bilodeau and
Brenner (1999).

3. Some optimality properties of principal components

3.1. Stochastic optimality of principal components for elliptical distributions

Principal components of finite–dimensional vectors were introduced by Hotelling (1933) as a
tool to display data on a lower dimensional linear space that best preserves the variability of the
data. Since then, principal components have been characterized by several other properties related
to their optimality with respect to the expected value of some approximation or prediction error,
see, for example, Rao (1964), Darroch (1965) and Okamoto and Kanazawa (1968). Furthermore,
Proposition 1 in Boente (1983) shows that, given any proper linear space L of dimension q, the norm
of the residuals of the orthogonal projection onto L of an elliptically distributed random vector is
stochastically larger than that obtained when L is spanned by the first q principal components.
In particular, when second moments exist, this result implies the well–known mean squared error
property of the principal components. In this Section, we extend these results to elliptical random
elements on separable Hilbert spaces.

In what follows π(x,L) will denote the orthogonal projection of x ∈ H onto the linear closed space
L. Note that if L is a finite–dimensional linear space then it is closed. Let X ∈ H be an elliptically
distributed random element X ∼ E(0,Γ, ϕ) as in Definition 2.1 or 2.2. Our first result shows that,
for any fixed q ≥ 1, the linear space L of dimension q that produces orthogonal projections π(X,L)
with (stochastically) largest norms is the one spanned by the first q eigenfunctions of Γ. The
proof relies on the well-known characterization of elliptical distributions Ed(µ,Σ, ϕ) on Rd as affine
transformations of a spherically distributed d-dimensional random vector Z ∼ Sd(ϕ).
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Proposition 3.1. Let X ∈ H be an elliptically distributed random element X ∼ E(0,Γ, ϕ) with Γ a
self–adjoint, positive semi–definite and compact operator. Denote by λ1 ≥ λ2 ≥ . . . the eigenvalues
of Γ with associated eigenfunctions φj , j ≥ 1. Then, if λq > λq+1, for any linear space L of dimension
m ≤ q, ‖π(X,L)‖ ≤s ‖π(X,Lq)‖, where Lq is the linear space spanned by φ1 . . . φq and U ≤s V
means that the random variable U is stochastically smaller than V .

Proof. First note that it is enough to show the result when m = q. To see this, let L be a
linear space of dimension m < q with orthonormal basis γ1, . . . , γm and find γm+1, . . . , γq such

that {γ1, . . . , γq} is an orthonormal set. If L̃ denotes the linear space spanned by γ1, . . . , γq, then

‖π(X,L)‖2 =
∑m

i=1〈X, γi〉2 ≤s

∑q
i=1〈X, γi〉2 = ‖π(X, L̃)‖2. Thus, it is enough to show the result

for spaces L of dimension q.
Let B : H → Rq and B0 : H → Rq be linear and bounded operators defined by BX =

(〈X, γ1〉, . . . , 〈X, γq〉)t and B0X = (〈X,φ1〉, . . . , 〈X,φq〉)t respectively. Define Y = BX and Y0 =
B0X and note that Y ∼ Eq(0,Σ, ϕ) and Y0 ∼ Eq(0,Σ0, ϕ), where Σ = BΓB∗ and Σ0 =
diag(λ1, . . . , λq) = Λ. Furthermore we have that ‖π(X,L)‖2 = ‖Y‖2 and ‖π(X,Lq)‖2 = ‖Y0‖2.

Write the spectral decomposition of Σ = βΛ̃βt where Λ̃ = diag(λ̃1, . . . , λ̃q) is the diagonal matrix of
eigenvalues of Σ and β ∈ Rq×q is orthonormal. Because Y ∼ Eq(0,Σ, ϕ) and Y0 ∼ Eq(0,Σ0, ϕ) we

can find a random vector Z ∼ Sq(ϕ) such that Y
D∼ βΛ̃

1/2
Z and Y0

D∼ Λ1/2Z, where A
D∼ B means

that the vectors A and B have the same distribution. Then ‖Y‖2 D∼ ‖Λ̃
1/2

Z‖2, ‖Y0‖2
D∼ ‖Λ1/2Z‖2,

P
(
‖Y‖2 ≤ y

)
= P

(
q∑

i=1

λ̃i Z
2
i ≤ y

)
and P

(
‖Y0‖2 ≤ y

)
= P

(
q∑

i=1

λi Z
2
i ≤ y

)
.

Now note that BB∗ = Iq, where Iq stands for the q × q identity matrix, i.e., B is a sub–unitary
operator. Hence, using Proposition A.1 in the Appendix we have that

λ̃i = λi(BΓB∗) ≤ λi(Γ) = λi , (1)

where λi(Υ) denotes the i−th largest eigenvalue of the operator Υ. It then follows that ‖Y‖2 ≤s

‖Y0‖2 which concludes the proof.

It is easy to see that when the random element X has an elliptical distribution X ∼ E(µ,Γ, ϕ)
and Γ has finite rank then the linear space spanned by the first q eigenfunctions of Γ provides the
best q-dimensional approximation to X − µ, in the sense of having stochastically smallest residual
squared norms among all linear spaces of dimension q. More specifically, if Γ has rank p, then with

probability one X−µ =
∑p

j=1 λ
1/2
j Zjφj , where λj and φj denote the eigenvalues and eigenfunctions

of Γ, respectively, and Z = (Z1, . . . , Zp)t ∼ Sp(ϕ). The result now follows from the finite-dimensional

result in Boente (1983) by identifying X − µ with the random vector (λ
1/2
1 Z1, . . . , λ

1/2
p Zp)t. The

arguments in the proof of Proposition 3.1 can be used to show that this also holds for linear spaces
L of dimension m ≤ q.

Together with Proposition 2.1, the following result shows that this property also holds when X
is a random element with elliptical distribution X ∼ E(µ,Γ, ϕ) and Γ does not have finite rank.
Note that this result also holds if the second moment of X is not finite, since Γ plays the role
of a scatter operator. It is worth noting that the stochastic optimality provided in Proposition
3.2 is novel, even in the case of Gaussian processes. When second moments exist, Proposition 3.2
entails the well known “best q-term approximation” property mentioned, for instance, in Ramsay
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and Silverman (2005), which states that the best q-dimensional approximation is optimal in the
sense of minimizing the mean squared error between X − µ and the resulting linear approximations∑q

j=1〈X − µ, ψj〉ψj , where 〈ψj , ψ`〉 = 0 for j 6= ` and 1 otherwise.

Proposition 3.2. Let X ∈ H be a random element such that X = SV , where S ∈ R is a non–
negative real random variable independent of V and V is a zero mean Gaussian random element
with covariance operator Γ. Denote the eigenvalues and eigenfunctions of Γ by λ1 ≥ λ2 ≥ . . . and
φj , j ≥ 1, respectively. If λq > λq+1, then for any linear space L of dimension q we have that
‖X − π(X,Lq)‖ ≤s ‖X − π(X,L)‖, where Lq denotes the linear space spanned by φ1 . . . φq.

Proof. First consider the case where S ≡ 1, i.e., X = V is Gaussian. Let ⊗ denote the tensor
product on H, e.g., for u, v ∈ H, the operator u ⊗ v : H → H is defined as (u ⊗ v)w = 〈v, w〉u.
Let L be a linear space of dimension q with orthonormal basis γ1, . . . , γq and define the operators
P =

∑q
i=1 γi ⊗ γi and P0 =

∑q
i=1 φi ⊗ φi. Both P and P0 are bounded operators with finite

rank q. Let Y and Y0 denote residuals of the orthogonal projections on L and Lq respectively, i.e.
Y = V − π(V,L) = (IH − P )V and Y0 = V − π(V,Lq) = (IH − P0)V , where IH denotes the identity
operator in H, i.e. IHx = x for all x ∈ H.

Note that Y and Y0 are mean zero Gaussian random elements with covariance operators Γ̃ = (IH−
P )Γ(IH−P )∗ and Γ0 = (IH−P0)Γ(IH−P0)∗, respectively. Furthermore, Γ0 has q zero eigenvalues
related to φ1, . . . , φq, the non–null ones being {λj}j≥q+1, so that λj(Γ0) = λj+q = λj+q(Γ) and
φj(Γ0) = φj+q = φj+q(Γ), for j ≥ 1, where, in general, λj(Υ) and φj(Υ) denote the eigenvalues
and eigenfunctions of the operator Υ, respectively. Hence, we have the following representation for
Y0:

Y0 =
∑
j≥1

λ
1
2
j+qfjφj+q , (2)

where fj are i.i.d fj ∼ N(0, 1). It is worth noting, that the convergence of the series in (2) is with

respect to the strong topology in H, that is, P(limM→∞ ‖Y0 −
∑M

j=1 λ
1
2
j+qfjφj+q‖ = 0) = 1.

Similarly, Γ̃ has q zero eigenvalues related to γ1, . . . , γq. Denote as {λ̃j}j≥1, the non–null eigen-

values such that λ̃1 ≥ λ̃2 ≥ . . . and by γq+j , j ≥ 1 the orthonormal eigenfunctions of Γ̃ related to

λ̃j which form an orthonormal basis of L⊥. In other words, λ̃j = λj(Γ̃) and γq+j = φj(Γ̃), and we
have the following representation for Y :

Y =
∑
j≥1

λ̃
1
2
j fjγj+q . (3)

Thus, from (2) and (3) we have P
(
‖Y ‖2 ≤ y

)
= P

(∑
j≥1 λ̃jf

2
j ≤ y

)
and P

(
‖Y0‖2 ≤ y

)
=

P
(∑

j≥1 λj+qf
2
j ≤ y

)
. The result now follows from Proposition A.1 in the Appendix which shows

that λ̃j = λj((IH − P )Γ(IH − P )∗) ≥ λj+q(Γ) = λj+q.
When S is a non-negative random variable independent from V we have ‖X−π(X,L)‖ = |S| ‖Y ‖

and ‖X−π(X,Lq)‖ = |S| ‖Y0‖, where Y and Y0 are as above. Therefore, the result follows easily from
the previous case using that P

(
‖X − π(X,L)‖2 ≤ y

)
= P

(
S2‖Y ‖2 ≤ y

)
= E

[
P
(
S2‖Y ‖2 ≤ y|S

)]
,

and that for any s 6= 0,

P
(
S2‖Y ‖2 ≤ y|S = s

)
= P

(
‖Y ‖2 ≤ ys−2

)
≤ P

(
‖Y0‖2 ≤ ys−2

)
.
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As mentioned above, finite–dimensional counterparts of Propositions 3.1 and 3.2 are given in
Proposition 1 in Boente (1983).

3.2. An optimality property of principal components related to the covariance operator

In this section, we extend another well-known optimality property of the principal components
of random vectors on Rp to the more general setting of separable Hilbert spaces. More specifically,
let X be a p-variate random vector with finite second moments and covariance matrix Σ. Consider
the problem of approximating X with q linear combinations of its own coordinates, and let Σres be
the covariance matrix of the vector of residuals. Then, for any orthogonal invariant matrix norm |||·|||
(that satisfies |||UΣV||| =|||Σ||| whenever U and V are orthogonal matrices) we have that |||Σres||| is
minimized when one uses the projections onto the q largest principal components. This is a direct
consequence of von Neumann’s (1937) characterization of such matrix norms as those generated by
symmetric gauge functions of the corresponding singular values of the matrices.

It is known (see Gohberg and Krein, 1969) that von Neumann’s (1937) characterization also
holds for finite-rank operators on infinite-dimensional Hilbert spaces. In what follows we show that
this is also true for positive semi–definite self–adjoint compact operators, provided that the unitarily
invariant norm |||·||| satisfies some relatively mild regularity conditions. This observation allows us
to extend the above optimality property of principal components to random elements over separable
Hilbert spaces.

Let H be a separable Hilbert space. A norm |||·||| for compact operators on H is said to be
unitarily invariant norm if, for any compact operator Υ we have that |||UΥV ||| =|||Υ||| for arbitrary
unitary operators U and V . Well-known unitarily invariant norms for linear bounded operators Υ
are the Schatten p-norms ‖Υ‖sch = {

∑
n≥1 µ

p
n(Υ)}1/p, where p ≥ 1 and µ1(Υ) ≥ µ2(Υ) ≥ · · · ≥ 0

denote the singular values of Υ, that is, the eigenvalues of the operator |Υ| = (ΥΥ∗)1/2. In other
words, ‖Υ‖psch = trace(|Υ|p). The family of Schatten norms includes the Hilbert–Schmidt operator
norm and also the trace norm. Furthermore, the usual operator norm ‖Υ‖op = sup‖x‖=1 ‖Υx‖ is
also unitarily invariant. For a more detailed discussion on unitary norms we refer to Gohberg and
Krein (1969).

As mentioned before (see also Gohberg and Krein, 1969), over the set of finite-rank operators,
unitary norms are generated by symmetric gauge functions Φ defined over infinite sequences. More
precisely, let `0 be the set of all infinite sequences a = {an}n≥1 converging to 0, and let F0 ⊂ `0 be
the subset of sequences with only finitely many non–zero elements. A function Φ : F0 → R is called
a gauge function if it satisfies:

a) Φ(a) > 0 for any a ∈ F0, a 6= 0,
b) Φ(αa) = |α|Φ(a) for any a ∈ F0, α ∈ R,
c) Φ(a + b) ≤ Φ(a) + Φ(b) for any a,b ∈ F0, and
d) Φ(1, 0, 0, . . . ) = 1 .

It is said to be a symmetric gauge function if, in addition,

e) Φ(a1, a2, . . . , an, 0, 0, . . . ) = Φ(|aj1 |, |aj2 |, . . . , |ajn |, 0, 0, . . . ) for any a ∈ F0 and any permuta-
tion j1, j2, . . . , jn of the indices 1, . . . , n.

In particular, Gohberg and Krein (1969) show that, if a ∈ F0 and b ∈ F0 are such that ai ≥ 0

and bi ≥ 0 and
∑k

i=1 ai ≤
∑k

i=1 bi, for any k ≥ 1 (in particular, if ak ≤ bk) then, Φ(a) ≤ φ(b)
(increasing monotonicity). Moreover, if a1 ≥ a2 ≥ · · · ≥ an ≥ 0 then

a1 ≤ Φ(a1, a2, . . . , an, 0, 0, . . . ) ≤
n∑

i=1

ai . (4)
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Furthermore, we have that for any unitarily invariant norm |||·|||, there exists a symmetric gauge
function Φ such that |||Υ||| = ‖Υ‖Φ = Φ(µ(Υ)) for any finite-rank operator Υ. For example, for the
Schatten p-norm ‖Υ‖sch = {

∑
j≥1 µ

p
j (Υ)}1/p the corresponding function Φ is the usual `p norm for

sequences. Moreover, the singular values of semi–definite self–adjoint compact operators are equal
to their eigenvalues, and hence ‖Υ‖op = µ1(Υ) so that Φ is the `∞ norm for sequences.

To extend this result to positive semi-definite and self-adjoint compact operators, we need to
introduce some notation. Given a symmetric gauge function Φ, its maximal space mΦ contains
those sequences a ∈ `0 such that limn→∞ Φ(a1, a2, . . . , an, 0, 0, . . . ) ≡ Φ(a) exists and is finite.
Let JΦ denote the subset of compact operators Υ such that the sequence of its singular values
µ(Υ) = {µj(Υ)}j≥1 belongs to mΦ. We can define a norm ‖ · ‖Φ over JΦ as ‖Υ‖Φ = Φ(µ(Υ)),
where each non-zero singular value appears repeated according to its multiplicity. Let A be the
linear space of positive semi–definite, self–adjoint compact operators Υ. If the unitarily invariant
norm |||·||| is continuous with respect to the weak convergence of operators and |||Υ||| < ∞, then
|||Υ||| = limn→∞|||Υn||| where Υn =

∑n
i=1 λi(Υ)φi(Υ)⊗ φi(Υ) and Υ =

∑∞
i=1 λi(Υ)φi(Υ)⊗ φi(Υ)

is the spectral decomposition of Υ, with φi(Υ) the orthonormal basis of eigenfunctions related to
the eigenvalues λ1(Υ) ≥ λ2(Υ) ≥ . . . . Since, for all n ≥ 1, Υn has finite rank, there exists a
symmetric gauge function Φ such that |||Υ||| = limn→∞ Φ(µ(Υn)). Now note that µ(Υn) equals to
the first n entries of µ(Υ) and that, since limn→∞ Φ(µ(Υn)) exists (and equals |||Υ|||), we have that
Υ ∈ JΦ and Φ(µ(Υ)) ≡ limn→∞Φ(µ(Υn)). Thus, for this symmetric gauge function Φ we have
|||Υ||| = Φ(µ(Υ)), for any Υ such that |||Υ||| <∞. The same conclusion holds if the norm |||·||| satisfies
the following weaker condition: for any Υ ∈ A such that |||Υ||| <∞, we have |||Υn −Υ||| → 0. Note
that for any unitarily invariant norm |||·|||, if the operator Υ has finite trace (as covariance operators
do), then the sequence {Υn}n≥1 is Cauchy (because we have |||Υn+m −Υn||| = ‖Υn+m −Υn‖Φ =

Φ(λn+1(Υ), λn+2(Υ), . . . , λn+m(Υ), 0, 0, . . . ) ≤
∑m

j=1 λn+j(Υ), where the last inequality follows
from (4)). Hence, if the set B = {Υ :|||Υ||| < ∞} is a Banach space a similar argument shows that
there exists a symmetric gauge function Φ such that such that |||Υ||| = ‖Υ‖Φ for any Υ ∈ A ∩ B.

Let X be a random element on a complete Hilbert space H with finite second moment. Without
loss of generality assume that X has mean zero and let Γ denote its covariance operator with eigen-
values λ1 ≥ λ2 ≥ . . . and associated eigenfunctions {φj}j≥1. Consider an arbitrary q-dimensional

linear space L in H, and let π(X,L) = P X be the orthogonal projection on L, where P denotes
the projection operator. Similarly, let L0 be the linear space spanned by φ1, φ2, . . . , φq, the
first q eigenfunctions of Γ and let P0 denote the orthogonal projection operator on L0, so that
π(X,L0) = P0X. If Y = X − π(X,L) and Y0 = X − π(X,L0) are the corresponding residu-
als, then the covariance operators of Y and Y0 are given by Γres = (IH − P )Γ(IH − P )∗ and
Γres,0 = (IH − P0)Γ(IH − P0)∗, respectively. Similarly, those of π(X,L) and π(X,L0) are given by
Γproj = PΓP ∗ and Γproj,0 = P0ΓP

∗
0 , respectively.

As noted in the proof of Proposition 3.2, Γres,0 has q zero eigenvalues related to φ1, . . . , φq, the
non–null ones being {λj}j≥q+1, so that λj(Γres,0) = λj+q = λj+q(Γ) and φj(Γ) = φj+q = φj+q(Γ),
for j ≥ 1. On the other hand, Γproj,0 is a finite–rank operator with eigenvalues λ1(Γ) ≥ λ2(Γ) ≥
· · · ≥ λq(Γ), and Proposition A.1 in the Appendix shows that λj(Γres) = λj((IH−P )Γ(IH−P )∗) ≥
λj(Γres,0) = λj+q, and λj(Γproj) ≤ λj(Γproj,0).

Using these results we immediately obtain the following proposition, which can be seen as an
extension of the finite–dimensional one (see Okamoto and Kanazawa, 1968). Note that this proposi-
tion also holds when the random element X has an elliptical distribution E(0,Γ, ϕ) with Γ a positive
semi-definite self-adjoint and compact operator.
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Proposition 3.3. Let X ∈ H be a zero mean random element with covariance operator Γ. Denote
by λ1 ≥ λ2 ≥ . . . the eigenvalues of Γ with associated eigenfunctions φj , j ≥ 1. Then, if λq > λq+1,
for any linear space L of dimension q, we have that

(a) for any a symmetric gauge function Φ if Γ ∈ JΦ we have that ‖Γres,0‖Φ ≤ ‖Γres‖Φ.

(b) ‖Γres,0‖op ≤ ‖Γres‖op and equality is obtained only when L = L0.

(c) ‖Γproj‖op ≤ ‖Γproj,0‖op.

(d) if, in addition, ‖Γ‖sch < ∞, then ‖Γres,0‖sch ≤ ‖Γres‖sch and ‖Γproj‖sch ≤ ‖Γproj,0‖sch
and equality is obtained only when L = L0.

(e) for any |||·||| unitarily invariant norm, |||Γproj||| ≤|||Γproj,0|||.

Proof. Recall that if Υ is a positive semi–definite self–adjoint compact operator then µj(Υ) =
λj(Υ). Statement (a) follows from the fact that Φ is increasing monotone,

Φ(λ1(Γres), λ2(Γres), . . . ) = lim
n→∞

Φ(λ1(Γres), λ2(Γres), . . . , λn(Γres), 0, 0, . . . ) ,

and λj(Γres) ≥ λj(Γres,0).
Parts (b), (c) and (d) follow immediately from Proposition A.1 in the Appendix using that for

any positive semi–definite self–adjoint compact operator Υ we have ‖Υ‖op = λ1(Υ).
To prove (e) we use that Γproj and Γproj,0 are finite rank operators, so that |||Γproj||| =

‖Γproj‖Φ = Φ(λ1(Γproj), λ2(Γproj), . . . ) and |||Γproj,0||| = ‖Γproj,0‖Φ = Φ(λ1(Γproj,0), λ2(Γproj,0), . . . )
for some symmetric gauge function Φ so the result follows from Proposition A.1 and the above men-
tioned increasing monotony of Φ.

It is worth noting that we cannot ensure that in (c) and (e) above equality holds only when L =
L0. An example where this may happen for (e) is when using the Ky Fan’s k−norm defined as |||Υ||| =∑k

i=1 λi(Υ), for any self–adjoint positive semi–definite compact operator Υ. In particular, we have

that ‖ · ‖op corresponds to the choice k = 1. For these norms we have |||Γproj||| =
∑k

i=1 λi(Γproj),
so that, if k < q, |||Γproj||| =|||Γproj,0|||, but, since λq > λq+1, the linear space L spanned by
φ1, φ2, . . . , φq−1, φq+1 is not equal to L0.

4. Applications and general comments

The results of the previous sections can be useful to study the properties of robust estimators
for functional data in a framework more general than Gaussian random elements, without requiring
finite moments. For example, as mentioned above, the robust estimates of principal directions defined
in Bali, et al. (2011) are Fisher-consistent for elliptically distributed random elements. Proposition
2.1 was used in Bali and Boente (2013) to show the consistency of a projection-pursuit estimator
for the first principal direction obtained by adapting the finite-dimensional algorithm of Croux and
Ruiz–Gazen (1996). The optimality results in Section 3, in particular the stochastic inequality of
Proposition 3.2, served as the foundation for the Sieves–based S−estimators for functional principal
components in Boente and Salibian–Barrera (2013)

More in general, whenever considering elliptical random elements, the results in Section 2 allow
us to consider two possible cases: either (a) Γ has finite rank, which reduces to the finite-dimensional
setting; or (b) the rank of Γ is infinite and, by Proposition 2.1 the process is a scale mixture of a
Gaussian element. This approach can be used to study the consistency of the spherical principal
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components estimators proposed in Gervini (2008). They are given by the eigenfunctions of the
spherical covariance operator (Locantore et al., 1999), defined as

Γ̃ = E
{

(X − µ)⊗ (X − µ)

‖X − µ‖2

}
. (5)

Gervini (2008) showed that these estimators are Fisher–consistent for the principal directions when
the process admits a Karhunen–Loève expansion with only finitely many terms (i.e., assuming that
the distribution is concentrated on a finite–dimensional subspace). The following Proposition, whose
proof is included in the Appendix, shows that the spherical principal components are in fact Fisher–
consistent for any elliptical distribution.

Proposition 4.1. Let X ∈ H be an elliptically distributed random element X ∼ E(µ,Γ, ϕ) with Γ a
self–adjoint, positive semi–definite and compact operator. Denote by λ1 ≥ λ2 ≥ . . . the eigenvalues
of Γ with associated eigenfunctions φj , j ≥ 1, and let Γ̃ be as in (5). Then, the eigenfunctions of

Γ̃ are φj , j ≥ 1 with eigenvalues λ̃j , j ≥ 1, where λ̃j+1 ≥ λ̃j . Moreover, if λj+1 ≥ λj we have

λ̃j+1 > λ̃j .

Testing whether a random vector or random element has an elliptical distribution is a challenging
problem. In the finite–dimensional setting tests have been proposed by Beran (1979), Koltchinskii
and Sakhanenko (2000), Schott (2002), Zhu and Neuhaus (2003), Huffer and Park (2007) and more
recently, Batsidis and Zografos (2013). Developing such a test for the distribution of an infinite–
dimensional random element is beyond the scope of this paper. However, the random projections
procedure used in Cuesta Albertos et al. (2014) to decide whether a stationary process has a
Gaussian distribution may be generalized to build a consistent test for ellipticity. The above paper
proposes tests based on testing if the projections are normal using univariate tests for normality. For
ellipticity, the appropriate generalization of this method would be to replace the univariate tests for
normality with univariate tests for detecting if two projections are location–scale transformations
of each other, e.g., tests based on their relative kurtosis. Another possible and more exploratory
approach would be to generalize the methods discussed in Tyler et al. (2009) for exploring whether
and how a multivariate distribution deviates from an elliptical distribution. The method in Tyler et
al. (2009) is based upon a comparison of different consistent estimates of the scatter matrix. In the
infinite-dimensional setting, we are unaware of any consistent alternative to the sample covariance
operator (presuming second moments). As an alternative approach one could consider comparing
different consistent estimates of the principal components, such as those proposed in Bali et al.(2011),
and if they vary greatly then this would indicate that the underlying distribution is not well modelled
by an elliptical distribution. We leave these problems, however, as open topics for future research.

A. Appendix

In this Appendix, we recall some results related to the eigenvalues of compact self–adjoint oper-
ators. We first state a characterization of the eigenvalues, usually known as the min–max theorem
or the Courant–Fisher principle, whose proof can be found in Dunford and Schwartz (1965), chapter
10.

Theorem A.1. Let Γ be a compact, positive semi–definite and self adjoint operator over a separable
Hilbert space H and λ1 ≥ λ2 ≥ . . . its positive eigenvalues, each repeated a number of times equal
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to its multiplicity. Denote by φj the eigenfunction related to λj chosen so that {φj , j ≥ 1} is an
orthonormal set in H. Then, we have that

λ1 = max
x 6=0

〈Γx, x〉
‖x‖2

λk+1 = min
Lk

max
x∈L⊥k

〈Γx, x〉
‖x‖2

, (A.1)

where Lk stands for any k−dimensional linear space and L⊥k for its orthogonal. The minimum in
(A.1) is attained when Lk is spanned by φ1, . . . , φk.

Using Theorem A.1, we obtain the following Proposition whose part a) is known, in the finite–
dimensional case, as the Poincaré’s Theorem. As above let λi(Υ) be the i−th largest eigenvalue of
the self–adjoint, positive semi-definite and compact operator Υ.

Proposition A.1. Let Γ be a self–adjoint, positive semi-definite and compact operator over a
separable Hilbert space H and λ1 ≥ λ2 ≥ . . . its positive eigenvalues, each repeated a number of
times equal to its multiplicity. Let φj denote the eigenfunction associated to λj , j ≥ 1. Then:

a) If B : H → H1 is a linear sub-unitary operator, that is, BB∗ = IF , where F = range(B) and
H1 is a separable Hilbert space, then λk+1(BΓB∗) ≤ λk+1(Γ) = λk+1.

b) Let L be a linear space of dimension q and assume that L is spanned by γ1, . . . , γq with
γj orthonormal elements of H. Denote by P the bounded projection operator over L, i.e.,
Px =

∑q
j=1〈x, γj〉γj . Then, we have that λk((IH − P )Γ(IH − P )∗) ≥ λk+q(Γ).

Proof. a) The proof follows the same lines as in the finite–dimensional setting (see, Okamoto,
1969). First note that, since BB∗ = I, B∗ and B are both bounded operators, so BΓB∗ is a
compact operator. From Theorem A.1 we have that

λk+1 = max
〈x,φj〉=0

1≤j≤k

〈Γx, x〉
〈x, x〉

≥ max
〈x,φj〉=0

1≤j≤k,x=B∗y

〈Γx, x〉
〈x, x〉

= max
〈B∗y,φj〉=0

1≤j≤k

〈ΓB∗y, B∗y〉
〈B∗y, B∗y〉

= max
〈B∗y,φj〉=0

1≤j≤k

〈BΓB∗y,y〉1
〈BB∗y,y〉1

≥ max
〈y,Bφj〉1=0

1≤j≤k

〈BΓB∗y,y〉1
〈y,y〉1

,

where 〈·, ·〉1 denotes the inner product in H1. Denote by L the linear space in H1 spanned by
Bφ1, . . . , Bφk, then dim(L) = ko ≤ k, and so, if Sko stands for any linear space of dimension ko

max
〈y,Bφj〉1=0

1≤j≤k

〈BΓB∗y,y〉1
〈y,y〉1

≥ inf
Sko

max
y⊥Sko

〈BΓB∗y,y〉1
〈y,y〉1

= λko+1(BΓB∗) ,

concluding the proof of a) since λko+1(BΓB∗) ≥ λk+1(BΓB∗).
b) It is worth noting that since P =

∑q
j=1 γj ⊗ γj , then IH − P = (IH − P )∗. Let ψj be the

eigenfunction associated to the eigenvalue λj((IH−P )Γ(IH−P )∗), j ≥ 1 chosen so that {ψj , j ≥ 1}
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form an orthonormal set. Denote Sk−1 the linear space of dimension k spanned by ψ1, . . . , ψk−1.
Then,

λk((IH − P )Γ(IH − P )∗) = max
x∈S⊥k−1

〈(IH − P )Γ(IH − P )∗x, x〉
‖x‖2

= max
x∈S⊥k−1

〈Γ(IH − P )∗x, (IH − P )∗x〉
‖x‖2

≥ max
x∈S⊥k−1∩L⊥

〈Γ(IH − P )∗x, (IH − P )∗x〉
‖x‖2

= max
x∈S⊥k−1∩L⊥

〈Γ(IH − P )∗x, (IH − P )∗x〉
〈(IH − P )∗x, (IH − P )∗x〉

.

Note that for any x ∈ H, (IH − P )∗x is orthogonal to L. Moreover, if x ∈ S⊥k−1 ∩ L⊥ then
(IH − P )∗x = x is also orthogonal to (IH − P )ψj , j = 1, . . . , k − 1. Let D be the linear subspace
spanned by (IH−P )ψ1, . . . (IH−P )ψk−1, γ1, γ2, . . . , γq, and note that D⊥ = S⊥k−1∩L⊥ and dim(D) =
m ≤ k + q − 1. Then, it follows that

λk((IH − P )Γ(IH − P )∗) ≥ max
y∈D⊥

〈Γ y, y〉
〈y, y〉

≥ λm+1(Γ) ≥ λk+q(Γ) .

It is worth noting that when H1 = H and B : H → H is the projection operator over a closed
space, the results in Proposition A.1 can also be derived from Theorem 2.2 of Pousse and Téchené
(1997). However, we keep our proof due to its simplicity.

Proof of Proposition 4.1. When Γ has finite rank, the result follows immediately from Theorem
3 in Gervini (2008) since in this case X admits a finite–dimensional expansion. On the other hand,
if Γ does not have finite rank, then by Proposition 2.1. there exists a zero mean Gaussian element
V and a random variable S ≥ 0, independent of V , such that X ∼ µ + S V . Hence, the spherical
scatter operator Γ̃ defined in (5) equals Γ̃V where

Γ̃V = E
{
V ⊗ V
‖V ‖2

}
.

Furthermore, as mentioned in Section 2, the covariance operator of the Gaussian process V , ΓV ,
satisfies ΓV = Γ, where Γ is the scatter operator of X. Thus, we only need to show that Proposition
4.1 holds for Gaussian processes.

Assume, for the sake of simplicity, that the non-null eigenvalues of Γ are λ1 ≥ λ2 ≥ . . . . Then, V

has the following Karhunen–Loève expansion, V =
∑

j≥1 λ
1/2
j ξjφj , with ξj ∼ N(0, 1), independent

of each other. Hence, (V ⊗ V )φk = λ
1/2
k ξkV . Since ξk has a symmetric distribution, we have that

E
(
ξk
∑

j 6=k λ
1/2
j ξjφj/‖V ‖2

)
= 0, and hence

Γ̃V φk = λ
1/2
k E

{
ξkV

‖V ‖2

}
= λk E

{
ξ2
k

‖V ‖2

}
φk = λ̃kφk ,

where λ̃k = λk E(ξ2
k/‖V ‖2). Thus, we have that φk, k ≥ 1, are the eigenfunctions of Γ̃V with

associated eigenvalues λ̃k.
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To show that the order among the eigenvalues is preserved we use a similar argument to that in the

proof of Theorem 3 in Gervini (2008). Define gk : [0,∞) → R as gk(λ) = λξ2
k/
(∑

j 6=k λjξ
2
j + λξ2

k

)
and note that λ̃k = Egk(λk) and that gk is strictly increasing as a function of λ (because P(ξk 6=
0) = 1). Hence, λ̃k = Egk(λk) ≥ Egk(λk+1), with strict inequality if λk > λk+1. On the other hand,
we have that

Egk(λk+1) = E

{
λk+1ξ

2
k∑

j 6=k,k+1 λjξ
2
j + λk+1ξ2

k+1 + λk+1ξ2
k

}
= E

{
λk+1ξ

2
k+1∑

j 6=k,k+1 λjξ
2
j + λk+1ξ2

k + λk+1ξ2
k+1

}
,

because ξj ∼ N(0, 1) are independent of each other, and hence (
∑

j 6=k,k+1 λjξ
2
j , λk+1ξ

2
k+1, λk+1ξ

2
k)

has the same distribution as (
∑

j 6=k,k+1 λjξ
2
j , λk+1ξ

2
k, λk+1ξ

2
k+1). Finally, note that λk ≥ λk+1 implies

that

λ̃k = Egk(λk) ≥ Egk(λk+1) = E

{
λk+1ξ

2
k+1∑

j 6=k,k+1 λjξ
2
j + λk+1ξ2

k+1 + λk+1ξ2
k

}

≥ E

{
λk+1ξ

2
k+1∑

j 6=k,k+1 λjξ
2
j + λk+1ξ2

k+1 + λkξ2
k

}
= λ̃k+1 .
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[28] Pousse, A. and Téchené, J. J. (1997). Quelques propriétés extrémales des valeurs singulières d’un
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