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Abstract

Additive models provide an attractive setup to estimate regression functions in a
nonparametric context. They provide a flexible and interpretable model, where each
regression function depends only on a single explanatory variable and can be estimated
at an optimal univariate rate. It is easy to see that most estimation procedures for these
models are highly sensitive to the presence of even a small proportion of outliers in the
data. In this paper, we show that a relatively simple robust version of the backfitting
algorithm (consisting of using robust local polynomial smoothers) corresponds to the
solution of a well-defined optimization problem. This formulation allows us to find
mild conditions to show that these estimators are Fisher consistent and to study the
convergence of the algorithm. Our numerical experiments show that the resulting
estimators have good robustness and efficiency properties. We illustrate the use of these
estimators on a real data set where the robust fit reveals the presence of influential
outliers.

Keywords: Fisher–consistency; Kernel weights; Robust estimation; Smoothing

1



1 Introduction

Consider a general regression model, where a response variable Y ∈ R is related to a vector
X = (X1, . . . , Xd)

t ∈ Rd of explanatory variables through the following non-parametric
regression model:

Y = g0(X) + σ0 ε . (1)

The error ε is assumed to be independent from X and centered at zero, while σ0 is the
error scale parameter. When ε has a finite first moment, we have the usual regression
representation E(Y |X ) = g0(X). Standard estimators for g0 can thus be derived relying
on local estimates of the conditional mean, such as kernel polynomial regression estimators.
It is easy to see that such procedures can be seriously affected either by a small proportion
of outliers in the response variable, or when the distribution of Y |X has heavy tails. Note,
however, that even when ε does not have a finite first moment, the function g0(X) can
still be interpreted as a location parameter for the distribution of Y |X. In this case, local
robust estimators can be used to estimate the regression function as, for example, the local
M−estimators proposed in Boente and Fraiman (1989) and the local medians studied in
Welsh (1996).

Unfortunately both robust and non-robust non-parametric regression estimators are af-
fected by the curse of dimensionality, which is caused by the fact that the expected number of
observations in local neighbourhoods decreases exponentially as a function of d, the number
of covariates. This results in regression estimators with a very slow convergence rate. Stone
(1985) showed that additive models can avoid these problems and produce non-parametric
multiple regression estimators with a univariate rate of convergence. In an additive model,
the regression function is assumed to satisfy

g0(X) = µ0 +
d∑
j=1

g0,j(Xj) , (2)

where µ0 ∈ R, g0,j : R→ R, 1 ≤ j ≤ d, are unknown smooth functions with E(g0,j(Xj)) = 0.
Such a model retains the ease of interpretation of linear regression models, where each com-
ponent g0,j can be thought as the effect of the j-th covariate on the centre of the conditional
distribution of Y . Moreover, Linton (1997), Fan et al. (1998) and Mammen et al. (1999)
obtained different oracle properties showing that each additive component can be estimated
as well as when all the other ones are known.

Several algorithms to fit additive models have been proposed in the literature. In this
paper, we focus on the backfitting algorithm as introduced in Friedman and Stuetzle (1981)
and discussed further in Buja et al. (1989). The backfitting algorithm can be intuitively
motivated by observing that, if (2) holds, then

g0,j(x) = E
(
Y − α−

∑
`6=j

g0,`(X`)

∣∣∣∣Xj = x

)
. (3)
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Hence, given a sample, the backfitting algorithm iteratively estimates the components g0,j,
1 ≤ j ≤ d, using a univariate smoother of the partial residuals in (3) as functions of
the j-th covariate. This algorithm is widely used due to its flexiblity (different univariate
smoothers can be used), ease of implementation and intuitive motivation. Furthermore, it has
been shown to work very well in simulation studies (Sperlich et al. 1999) and applications,
although its statistical properties are difficult to study due to its iterative nature. Some
results regarding its bias and conditional variance can be found in Opsomer and Ruppert
(1997), Wand (1999) and Opsomer (2000).

When second moments exist, Breiman and Friedman (1985) showed that, under certain
regularity conditions, the backfitting procedure finds functions m1(X1), . . . ,md(Xd) mini-
mizing E(Y −µ0−

∑d
i=1mj(Xj))

2 over the space of functions with E[mj(Xj)] = 0 and finite
second moments. In other words, even if the regression function g0 in (1) does not satisfy
the additive model (2), the backfitting algorithm finds the orthogonal projection of the re-
gression function onto the linear space of additive functions in L2. Equivalently, backfitting
finds the closest additive approximation (in the L2 sense) to E(Y |X1, . . . , Xd). Furthemore,
the backfitting algorithm is a coordinate-wise descent algorithm minimizing the squared loss
functional above. The sample version of the algorithm solves a system of nd × nd normal
equations and corresponds to the Gauss–Seidel algorithm for linear systems of equations.

If the smoother chosen to estimate (3) is not resistant to outliers then the estimated
additive components can be seriously affected by a relatively small proportion of atypical
observations. Given the local nature of non–parametric regression estimators, we will be
concerned with the case where outliers are present in the response variable. Bianco and
Boente (1998) considered robust estimators for additive models using kernel regression, which
are a robust version of those defined in Baek and Wehrly (1993). The main drawback of this
approach is that it assumes that Y − g0,j(Xj) is independent from Xj, which is difficult to
justify or verify in practice. Outlier–resistant fits for generalized additive models have been
considered recently in the literature. When the variance is a known function of the mean
and the dispersion parameter is known, we refer to Alimadad and Salibián-Barrera (2012)
and Wong et al. (2014), who consider robust fits based on backfitting and penalized splines
M−estimators, respectively. In the case of model (1), the approach of Wong et al. (2014)
reduces to that of Oh et al. (2007) which is an alternative based on penalized splines. On
the other hand, Croux et al. (2011) provides a robust fit for generalized additive models
with nuisance parameters using penalized splines, but no theoretical support is provided for
their method.

In this paper, we consider an intuitively appealing way to obtain robust estimators for
model (1) which combines the backfitting algorithm with robust univariate smoothers. For
example, one can consider those proposed in Boente and Fraiman (1989), Härdle and Tsy-
bakov (1988), Härdle (1990) and Oh et al. (2007). One of the main contributions of this
paper is to show that this intuitive approach to obtain a robust backfitting algorithm is well
justified. Specifically, we show that applying the backfitting algorithm using the robust non-
parametric regression estimators of Boente and Fraiman (1989) corresponds to minimizing
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E[ρ((Y − µ0 −
∑d

i=1mj(Xj))/σ0)] over functions m1(X1), . . . ,md(Xd) with E[mj(Xj)] = 0,
where ρ is a loss function. Furthermore, this robust backfitting corresponds to a coordinate-
wise descent algorithm and can be shown to converge. We also establish sufficient conditions
for these robust backfitting estimators to be Fisher consistent for the true additive compo-
nents when (2) holds. Our numerical experiments confirm that these estimators have very
good finite-sample properties, both in terms of robustness, and efficiency with respect to the
classical approach when the data do not contain outliers. These robust estimators cannot
be interpreted as orthogonal projections of the regression function onto the space of additive
functions of the predictors. However, the first-order conditions for the minimum of this op-
timization problem are closely related to the robust conditional location functional defined
in Boente and Fraiman (1989).

The rest of the paper is organized as follows. In Section 2, we show that the robust back-
fitting algorithm mentioned above corresponds to a coordinate-descent algorithm to minimize
a robust functional using a convex loss function. We also prove that the resulting estimator
is Fisher consistent, which means that the solution to the population version of the problem
is the object of interest (in our case, the true regression function). The convergence of this
algorithm is studied in Section 2.1, while its finite-sample version using local M−regression
smoothers is presented in Section 3. The results of our numerical experiments conducted
to evaluate the performance of the proposed procedure are reported in Section 4. To study
the sensitivity of the robust backfitting with respect to single outliers, Section 5 provides a
numerical study of the empirical influence function. Finally, in Section 6 we illustrate the
advantage of using robust backfitting on a real data set. All proofs are relegated to the
Appendix.

2 The robust backfitting functional

In this section, we introduce a population-level version of the robust backfitting algorithm.
By showing that the robust backfitting corresponds to a coordinate-descent algorithm to
minimize a “robust functional”, we are able to find sufficient conditions for the robust back-
fitting to be Fisher-consistent.

In what follows, we will assume that (Xt, Y )t is a random vector satisfying the additive
model (2), where Y ∈ R and X = (X1, . . . , Xd)

t, that is,

Y = µ0 +
d∑
j=1

g0,j(Xj) + σ0 ε . (4)

As it is customary, to ensure identifiability of the components of the model, we will further
assume that Eg0,j(Xj) = 0, 1 ≤ j ≤ d. When second moments exist, it is easy to see that
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the backfitting estimators solve the following minimization problem

min
(ν,m)∈R×Had

E
(
Y − ν −

d∑
j=1

mj(Xj)
)2
, (5)

whereHad =
{
m(x) =

∑d
j=1mj(xj), mj ∈ Hj

}
⊂ H,H = {r(x) : E(r(X)) = 0 ,E(r2(X)) <

∞} and Hj is the Hilbert space of measurable functions mj of Xj, with zero mean and
finite second moment, i.e., Emj(Xj) = 0 and Em2

j(Xj) < ∞. The solution to (5) is
characterized by its residual Y − µ − g(X) being orthogonal to Had. Since this space is
spanned by H`, 1 ≤ ` ≤ d, the solution of (5) satisfies E(Y − µ −

∑d
j=1 gj(Xj) ) = 0 and

E(Y − µ −
∑d

j=1 gj(Xj) |X` ) = 0, for 1 ≤ ` ≤ d, from where it follows that µ = E(Y )
and g`(X`) = E(Y − µ −

∑
j 6=` gj(Xj)|X`), 1 ≤ ` ≤ d. Given a sample, the backfitting

algorithm iterates the above system of equations replacing the conditional expectations with
non-parametric regression estimators (e.g. local polynomial smoothers).

To reduce the effect of outliers on the regression estimates, we replace the square loss
function in (5) by a function with bounded derivative such as the Huber or Tukey’s–loss
functions. For these losses, ρc(u) = c2ρ1(u/c), where c > 0 is a tuning constant to achieve
a given efficiency. The Huber–type loss corresponds to ρ1 = ρh while the Tukey’s loss
to ρt, where ρh (u) = u2/2 if |u| ≤ 1 and ρh (u) = |u| − 1/2 otherwise, while ρt(u) =
min (3u2 − 3u4 + u6, 1). Another possible choices are ρ1(u) =

√
1 + u2−1 which is a smooth

approximation of the Huber function and ρ1(u) = u arctan(u) − 0.5 ln(1 + u2) which has
derivative ρ′1(u) = arctan(u). The bounded derivative of the loss function controls the
effect of outlying values in the response variable (sometimes called “vertical outliers” in the
literature).

Formally, our objective function is given by

Υ(ν,m) = E ρ

(
Y − ν −

∑d
j=1mj(Xj)

σ0

)
, (6)

where ρ : R → [0,∞) is even, ν ∈ R and the functions mj ∈ Hj, 1 ≤ j ≤ d. Let P be
a distribution in Rd+1 and let (Xt, Y )t ∼ P . Define the functional (µ(P ), g(P )) as the
solution of the following optimization problem:

(µ(P ), g(P )) = argmin
(ν,m)∈R×Had

Υ(ν,m) , (7)

where g(P )(X) =
∑d

j=1 gj(P )(Xj) ∈ Had.

To prove that the functional in (7) is Fisher-consistent and to derive first-order conditions
for the point where it attains its minimum value, we will need the following assumptions:

E1 The random variable ε has a density function f0(t) that is even, non-increasing in |t|,
and strictly decreasing for |t| in a neighbourhood of 0.
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R1 The function ρ : R → [0,∞) is continuous, non-decreasing, ρ(0) = 0, and ρ(u) =
ρ(−u). Moreover, if 0 ≤ u < v with ρ(v) < supt ρ(t) then ρ(u) < ρ(v).

A1 Given functions mj ∈ Hj, if P(
∑d

j=1mj(Xj) = 0) = 1 then, for all 1 ≤ j ≤ d, we have
P(mj(Xj) = 0) = 1

Remark 2.1. Assumption E1 is a standard condition needed to ensure Fisher-consistency
of an M−location functional (see, e.g. Maronna et al., 2006). Assumption R1 is satisfied
by the so-called family of “rho functions” in Maronna et al. (2006), which include many
commonly used robust loss functions, such as those mentioned above. Since the loss function
ρ can be chosen by the user, this assumption is not restrictive. Finally, assumption A1 allows
us to write the functional g(P ) in (7) uniquely as g(P ) =

∑d
j=1 gj(P ).

Assumption A1 appears to be the most restrictive and deserves some discussion. It is
closely related to the identifiability of the additive model (4) and holds if the explanatory
variables are independent from each other. Indeed, let us denote (x,Xα) the vector with
the α−th coordinate equal to x and the other ones equal to Xj, j 6= α and by m(x) =∑d

j=1mj(xj), for mj ∈ Hj. For any fixed 1 ≤ α ≤ d, the condition P(m(X) = 0) =
1 implies that for almost every xα, P(m(xα,Xα) = 0|Xα = xα) = 1. Using that the
components of X are independent, we obtain that P(m(xα,Xα) = 0) = 1 which implies that∫
m(xα,uα)dFXα(u) = 0. Note that since Emj(Xj) = 0 for all j,

∫
m(xα,uα)dFXα(u) =

mα(xα) +
∫ ∑

j 6=αmj(uj)dFXα(u) = mα(xα). Hence, mα(xα) = 0, for almost every xα as
desired. However, if the components of X are not independent, then P(m(xα,Xα) = 0|Xα =
xα) = 1 does not imply

∫
m(xα,uα)dFXα(u) = 0. This has already been observed by Hastie

and Tibshirani (1990, page 107). The fact that Had is closed in H entails that under mild
assumptions, the minimum of E(Y −m(X))2 over Had exists and is unique. However, the
individual functions mj(xj) may not be uniquely determined since the dependence among
the covariates may lead to more than one representation for the same surface (see also
Breiman and Friedman, 1985). In fact, condition A1 is analogous to assumption 5.1 of
Breiman and Friedman (1985). It is also worth noticing that Stone (1985) gives conditions
to ensure that A1 holds. Indeed, Lemma 1 in Stone (1985) implies Proposition 2.1 below
which gives weak conditions for the unique representation and hence, as shown in Theorem
2.1 below, for the Fisher–consistency of the functional g(P ). Its proof is omitted since it
follows straightforwardly.

Proposition 2.1. Assume that X has compact support S and that its density fX is bounded
in S and such that infx∈Sf fX(x) > 0. Let Vj = mj(Xj) be random variables such that

P(
∑d

j=1 Vj = 0) = 1 and E(Vj) = 0, then P(Vj = 0) = 1.

The next Theorem establishes the Fisher–consistency of the functional (µ(P ), g(P )).
In other words, it shows that the solution to the optimization problem (7) are the target
quantities to be estimated under model (4).
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Theorem 2.1. Assume that the random vector (Xt, Y )t ∈ Rd+1 satisfies (4) and let P
stand for its distribution.

a) If E1 and R1 hold, then Υ(ν,m) in (6) achieves its unique minimum over R × Had

at (µ(P ), g(P )) = (µ(P ),
∑d

j=1 gj(P )) when µ(P ) = µ0 and P(
∑d

j=1 gj(P )(Xj) =∑d
j=1 g0,j(Xj) ) = 1 .

b) If in addition A1 holds, the unique minimum (µ(P ), g(P )) = (µ(P ),
∑d

j=1 gj(P )) sat-
isfies µ(P ) = µ0 and P ( gj(P )(Xj) = g0,j(Xj) ) = 1 for 1 ≤ j ≤ d.

It is worth noticing that a minimizer (µ(P ), g(P )) of (7) always exists if ρ is a strictly
convex function, even if E1 does not hold. If in addition A1 holds, the minimizer will have
a unique representation.

For ν ∈ R, x = (x1, . . . , xd)
t ∈ Rd and m = (m1, . . . ,md)

t ∈ H1 × H2 · · · × Hd let
Γ(ν,m,x) = (Γ0(ν,m),Γ1(ν,m, x1), . . . ,Γd(ν,m, xd))

t , where

Γ0(ν,m) = E

[
ψ

(
Y − ν −

∑d
j=1mj(Xj)

σ0

)]

Γ`(ν,m, x`) = E

[
ψ

(
Y − ν −

∑d
j=1mj(Xj)

σ0

)∣∣∣∣∣X` = x`

]
, 1 ≤ ` ≤ d . (8)

Our next theorem shows that it is possible to choose the solution g(P ) of (7) so that its
additive components gj = gj(P ) satisfy first order conditions which are generalizations of
those corresponding to the classical case where ρ(u) = u2.

Theorem 2.2. Let ρ be a differentiable function satisfying R1 and such that its derivative
ρ′ = ψ is bounded and continuous. Let (Xt, Y )t ∼ P be a random vector such that
(µ(P ), g(P )) is a minimizer of Υ(ν,m) over R×Had where µ(P ) ∈ R, g(P ) =

∑d
j=1 gj(P ) ∈

Had, i.e., (µ(P ), g(P )) is the solution of (7). Then, (µ(P ),g(P )) satisfies the system of
equations Γ(ν,m,x) = 0 almost surely PX.

Remark 2.2. a) It is also worth mentioning that if (Xt, Y )t satisfies (4) with the errors
satisfying E1, then Γ(µ0,g0,x) = 0. Moreover, if the model is heteroscedastic

Y = g0(X) + σ0(X) ε = µ0 +
d∑
j=1

g0,j(Xj) + σ0(X) ε , (9)

where the errors ε are symmetrically distributed and the score function ψ is odd, then (µ0,g0)
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satisfies

E

[
ψ

(
Y − µ0 −

∑d
j=1 g0,j(Xj)

σ0(X)

)]
= 0 ,

E
[

1

σ0(X)
ψ

(
Y − µ0 −

∑
j 6=` g0,j(Xj)− g0,`(X`)

σ0(X)

)∣∣∣∣X`

]
= 0 , 1 ≤ ` ≤ d ,

which provides a way to extend the robust backfitting algorithm to heteroscedastic models.

b) Assume now that missing responses can arise in the sample, that is, we have a sample
(Xt

i , Yi, δi)
t, 1 ≤ i ≤ n, where δi = 1 if Yi is observed and δi = 0 if Yi is missing, and

(Xt
i , Yi)

t satisfy an additive heteroscedastic model (9). Let (Xt, Y, δ)t be a random vector
with the same distribution as (Xt

i , Yi, δi)
t. Moreover, assume that responses may be missing

at random (mar), i.e., P(δ = 1|(X, Y )) = P(δ = 1|X) = p(X). Define (µ(P ), g(P )) =
argmin(ν,m)∈R×Had Υδ(ν,m) where

Υδ(ν,m) = E δρ

(
Y − ν −

∑d
j=1mj(Xj)

σ0(X)

)
= E p(X)ρ

(
Y − ν −

∑d
j=1mj(Xj)

σ0(X)

)
.

Analogous arguments to those considered in the proof of Theorem 2.1, allow to show that,
if E1 and R1 hold, Υδ(ν,m) achieves its unique minimum at (ν,m) ∈ R×H where ν = µ0

and P(m(X) =
∑d

j=1 g0,j(Xj)) = 1. Besides, if in addition A1 holds, the unique minimum
satisfies that µ(P ) = µ0 and P(gj(P )(Xj) = g0,j(Xj)) = 1, that is, the functional is Fisher–
consistent.

On the other hand, the proof of Theorem 2.2 can be also generalized to the case of an
homocedastic additive model (4) with missing responses. Effectively, when infx p(x) > 0,
using the mar assumption, it is possible to show that there exists a unique measurable
solution g̃`(x) of λ`,δ(x, a) = 0 where

λ`,δ(x, a) = E
{
p(X) ψ

(
Y − µ(P )−

∑
j 6=` gj(P )(Xj)− a
σ0

)∣∣∣∣X` = x

}
.

More precisely, let Γδ(ν,m,x) = (Γ0,δ(ν,m),Γ1,δ(ν,m, x1), . . . ,Γd,δ(ν,m, xd))
t with m =

(m1, . . . ,md)
t and

Γ0,δ(ν,m) = E

[
p(X)ψ

(
Y − ν −

∑d
j=1mj(Xj)

σ0

)]

Γ`,δ(ν,m, x`) = E
[
p(X) ψ

(
Y − µ(P )−

∑
j 6=`mj(Xj)−m`(X`)

σ

)∣∣∣∣X` = x`

]
1 ≤ ` ≤ d .

Similar arguments to those considered in the proof of Theorem 2.2, allow to show that if
there exists a unique minimizer (µ(P ), g(P )) ∈ R × Had of Υδ(ν,m), then (µ(P ),g(P )) is
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a solution of Γδ(ν,m,x) = 0. Note that instead of a simplified approach, a propensity
score approach can also be considered taking δ/p(X) instead of δ. In this case, Υδ(ν,m) =
Υ(ν,m) defined in (6) and Γ`,δ = Γ` defined in (8). The propensity approach is useful
when preliminary estimates of the missing probability are available, otherwise, the simplified
approach is preferred.

2.1 The population version of the robust backfitting algorithm

In this section, we derive an algorithm to solve (7) and study its convergence. For simplicity,
we will assume that the vector (Xt, Y )t is completely observed and that it satisfies (4). By
Theorem 2.2, the robust functional (µ(P ),g(P )) satisfies (8). To simplify the notation, in
what follows we will put µ = µ(P ) and gj = gj(P ), 1 ≤ j ≤ d and

∑m
s=` as will be understood

as 0 if m < `. The robust backfitting algorithm is given in Algorithm 1.

Algorithm 1 Population version of the robust backfitting

1: Let ` = 0 and g(0) = (g
(0)
1 , . . . , g

(0)
d )t be an initial set of additive components, for example:

g(0) = 0 and µ0 an initial location parameter.
2: repeat
3: `← `+ 1
4: for j = 1 to d do
5: Let R

(`)
j = Y − µ(`−1) −

∑j−1
s=1 g̃

(`)
s (Xs)−

∑d
s=j+1 g

(`−1)
s (Xs)

6: Let g̃
(`)
j solve

E

[
ψ

(
R

(`)
j − g̃

(`)
j (Xj)

σ0

)∣∣∣∣∣Xj = x

]
= 0 a.s.

7: end for
8: for j = 1 to d do
9: g

(`)
j = g̃

(`)
j − E[g̃

(`)
j (Xj)].

10: end for
11: Let µ(`) solve

E

[
ψ

(
Y − µ(`) −

∑d
j=1 g

(`)
j (Xj)

σ0

)]
= 0 .

12: until convergence

Our next Theorem shows that each Step ` of the algorithm above reduces the objective
function Υ(µ(`), g(`)).

Theorem 2.3. Let ρ be a differentiable function satisfying R1 and such that its derivative
ρ′ = ψ is a strictly increasing, bounded and continuous function with limt→+∞ ψ(t) > 0

and limt→−∞ ψ(t) < 0. Let
(
µ(`),g(`)

)
`≥1 = (µ(`), g

(`)
1 , . . . , g

(`)
d )`≥1 be the sequence obtained

9



with Algorithm 1. Then, {Υ(µ(`), g(`))}`≥1 is a decreasing sequence, so that the algorithm
converges.

3 The sample version of the robust backfitting algo-

rithm

In practice, given a random sample (Xt
i , Yi)

t 1 ≤ i ≤ n from the additive model (4) we
apply Algorithm 1 replacing the unknown conditional expectations with univariate robust
smoothers. Different smoothers can be considered, including splines, kernel weights or even
nearest neighbours with kernel weights. In what follows we describe the algorithm for kernel
polynomial M -estimators.

Let K : R → R be a kernel function and let Kh(t) = (1/h)K(t/h). The estimators of
the solutions of (8) using kernel M−polynomial estimators of order q ≥ 0 are given by the
solution to the following system of equations:

1

n

n∑
i=1

ψ

(
Yi − µ̂−

∑d
j=1 ĝj(Xi,j)

σ̂0

)
= 0

1

n

n∑
i=1

Khj(Xi,j − xj)ψ

(
Yi − µ̂−

∑
6̀=j ĝ`(Xi,`)−

∑q
s=0 βs,jZi,j,s

σ̂0

)
Zi,j(xj) = 0 , 1 ≤ j ≤ d ,

where Zi,j(xj) = (Zi,j,0, Zi,j,1, . . . , Zi,j,q)
t with Zi,j,s = (Xi,j−xj)s, 0 ≤ s ≤ d. Then, we have

ĝj(xj) = β0,j, 1 ≤ j ≤ d. The corresponding algorithm is described in detail in Algorithm 2.
The same procedure can be applied to the complete sample when responses are missing.

Remark 3.1. A possible choice of the preliminary scale estimator σ̂0 is obtained by cal-
culating the mad of the residuals obtained with a simple and robust nonparametric regres-

sion estimator, as local medians. In that case we have σ̂0 = mad1≤i≤n

{
Yi − Ŷi

}
, where

Ŷi = median1≤j≤n {Yj : |Xj,k −Xi,k| ≤ hk, ∀ 1 ≤ k ≤ d}. The bandwidths hk are preliminary
values to be selected, or alternatively they can be chosen as the distance between Xi,k and
its r-th nearest neighbour among {Xj,k}j 6=i.

4 Numerical studies

This section contains the results of a simulation study designed to compare the behaviour
of our proposed estimator with that of the classical one. We generated N = 500 samples
of size n = 500 for models with d = 2 and d = 4 components. We considered samples
without outliers and also samples contaminated in different ways. We also included in our
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Algorithm 2 The sample version of the robust backfitting

1: Let ` = 0 and ĝ(0) = (ĝ
(0)
1 , . . . , ĝ

(0)
d )t be an initial set of additive components, for example:

ĝ(0) = 0, and let σ̂0 be a robust residual scale estimator. Moreover, let µ̂(0) an initial
location estimator such as an M−location estimator of the responses.

2: repeat
3: `← `+ 1
4: for j = 1 to d do
5: for i0 = 1 to n do
6: Let xj = Xi0,j

7: for i = 1 to n do
8: Let Zi,j(xj) = (1, (Xi,j − xj), (Xi,j − xj)

2, . . . , (Xi,j − xj)
q)t and R̂

(`)
i,j = Yi −

µ̂(`) −
∑j−1

s=1 g̃
(`)
s (Xi,s)−

∑d
s=j+1 ĝ

(`−1)
s (Xi,s).

9: end for
10: Let β̂j(xj) = (β̂0j(xj), β̂1j(xj), . . . , β̂qj(xj))

t be the solution to

1

n

n∑
i=1

Kh(Xi,j − xj)ψ

(
R̂

(`)
i,j − β̂j(xj)

tZi,j(xj)

σ̂0

)
Zi,j(xj) = 0 .

11: Let g̃
(`)
j (xj) = β̂0j(xj).

12: end for
13: end for
14: for j = 1 to d do
15: ĝ

(`)
j = g̃

(`)
j −

∑n
i=1 g̃

(`)
j (Xi,j)/n.

16: end for
17: Let µ̂(`) solve

1

n

n∑
i=1

ψ

(
Yi − µ̂(`) −

∑d
j=1 ĝ

(`)
j (Xi,j)

σ̂0

)
= 0 .

18: until convergence

experiment cases where the response variable may be missing, as described in Remark 2.2.
All computations were carried out using an R implementation of our algorithm, publicly
available on–line at http://www.stat.ubc.ca/~matias/soft.html.

To generate missing responses, we first generated observations (Xt
i , Yi)

t satisfying the
additive model Y = g0(X) +u = µ0 +

∑d
j=1 g0,j(Xj) +u , where u = σ0 ε. Then, we generate

{δi}ni=1 independent Bernoulli random variables such that P (δi = 1|Yi,Xi) = P (δi = 1|Xi) =
p (Xi) where we used a different function p for each value of d. When d = 2 we used
p(x) = p2(x) = 0.4+0.5(cos(x1 +0.2))2 which yields around 31.5% of missing responses. For
d = 4, we set p(x) = p4(x) = 0.4 + 0.5(cos(x1 ∗ x3 + 0.2))2, which produces approximately
33% of missing Yi’s. In addition, we also consider the case where all responses are observed,

11



i.e., p(x) ≡ 1.

We compared the following estimators:

• The classical backfitting estimator adapted to missing responses, denoted ĝbc.

• A robust backfitting estimator ĝbr,h using Huber’s loss function with tuning constant
c = 1.345. This loss function is such that ρ′c(u) = ψc(u) = min (c,max(−c, u)) .

• A robust backfitting estimator ĝbr,t using Tukey’s bisquare loss function with tuning

constant c = 4.685. This loss function satisfies ρ′c(u) = ψc(u) = u (1− (u/c)2)
2 I[−c,c](u) .

The univariate smoothers were computed using the Epanechnikov kernel K(u) = 0.75 (1 −
u2)I[−1,1](u). We used both local constants and local linear polynomials which correspond to
q = 0 and q = 1 in Algorithm 2 denoted in all Tables and Figures with a subscript of 0 and
1, respectively.

The performance of each estimator ĝj of g0,j, 1 ≤ j ≤ d, was measured through the
following approximated integrated squared error (ise):

ise(ĝj) =
1∑n
i=1 δi

n∑
i=1

(g0,j (Xij)− ĝj (Xij))
2 δi .

where Xij is the jth component of Xi and δi = 0 if the i-th response was missing and δi = 1
otherwise. An approximation of the mean integrated squared error (mise) was obtained by
averaging the ise above over all replications. A similar measure was used to compare the
estimators of the regression function g0 = µ0 +

∑d
j=1 g0,j.

4.1 Monte Carlo study with d = 2 additive components

In this case, the covariates were generated from a uniform distribution on the unit square,
Xi = (Xi,1, Xi,2)

t ∼ U([0, 1]2), the error scale was σ0 = 0.5 and the overall location µ0 = 0.
The additive components were chosen to be

g0,1(x1) = 24 (x1 − 0.5)2 − 2 , g0,2(x2) = 2π sin(πx2)− 4 . (10)

Optimal bandwidths with respect to the mise can be computed assuming that the other
components in the model are known (see, for instance, Härdle et al., 2004). Since the ex-
planatory variables are uniformly distributed, the optimal bandwidths for the local constant
(q = 0) and local linear (q = 1) estimators are the same and very close to our choice of
h = (0.10, 0.10).

For the errors, we considered the following settings:

• C0: ui ∼ N(0, σ2
0).

12



• C1: ui ∼ (1− 0.15)N(0, σ2
0) + 0.15N(15, 0.01).

• C2: ui ∼ N(15, 0.01) for all i’s such that Xi ∈ D0.3, where Dη = [0.2, 0.2 + η]2.

• C3: ui ∼ N(10, 0.01) for all i’s such that Xi ∈ D0.09, where Dη is as above.

• C4: ui ∼ (1− 0.30)N(0, σ2
0) + 0.30N(15, 0.01) for all i’s such that Xi ∈ D0.3.

Case C0 corresponds to samples without outliers and they will illustrate the loss of effi-
ciency incurred by using a robust estimator when it may not be needed. The contamination
setting C1 corresponds to a gross-error model where all observations have the same chance
of being contaminated. On the other hand, case C2 is highly pathological in the sense that
all observations with covariates in the square [0.2, 0.5]× [0.2, 0.5] are severely affected, while
C3 is similar but in the region [0.2, 0.29] × [0.2, 0.29]. The difference between C2 and C3

is that the bandwidths we used (h = 0.10) are wider than the contaminated region in C3.
Finally, case C4 is a gross-error model with a higher probability of observing an outlier, but
these are restricted to the square [0.2, 05]× [0.2, 0.5]. Figure 1 illustrate these contamination
scenarios on one randomly generated sample. The panels correspond to settings C2, C3 and
C4, with solid triangles indicating contaminated cases.
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(b) C3
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(c) C4

Figure 1: Scatter plots of covariates (x1, x2)
t with solid triangles indicating observations with

contaminated response variables, for contamination settings C2, C3 and C4. The square regions

indicate the sets Dη for each scenario.

Tables 1 to 3 report the obtained values of the mise when estimating the regression
function g0 = µ0+g0,1+g0,2 and each additive component g0,1 and g0,2, respectively. Estimates
obtained using local constant (q = 0) and local linear smoothers (q = 1) are indicated with a
subscript “0” and “1”, respectively. To complement the reported results on the mise, given
in Tables 1 to 3, we report in Tables 4 to 6 the ratio between the mean integrated squared
error (mise) obtained for each considered contamination and for the clean data. To identify
the ratio, it is denoted as mise(Cj)/mise(C0).

Consider first the situation where there are no missing responses. As expected, when
the data do not contain outliers the robust estimators are slightly less efficient than the
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ĝ b

c
,0
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ĝ b

r
,t

,1

C
0

0.
07

04
0.

07
03

0.
07

18
0.

00
7
7

0
.0

0
7
9

0
.0

0
7
9

0
.0

7
4
1

0
.0

7
5
6

0
.0

7
9
0

0
.0

1
1
0

0
.0

1
1
3

0
.0

1
1
3

C
1

5.
84

37
0.

13
06

0.
07

30
5.

90
2
6

0
.0

6
2
0

0
.0

0
9
1

6
.1

6
5
7

0
.1

4
5
7

0
.0

8
0
0

6
.3

1
2
5

0
.0

8
9
7

0
.0

2
7
2

C
2

8.
58

23
0.

24
70

0.
07

53
8.

52
1
8

0
.1

4
7
1

0
.0

0
8
6

1
0
.0

8
4
1

0
.3

5
5
0

0
.0

8
3
7

1
0
.0

1
0
0

0
.3

0
4
0

0
.0

3
9
6

C
3

0.
15

60
0.

07
22

0.
07

19
0.

09
3
0

0
.0

0
9
0

0
.0

0
8
0

0
.1

8
8
2

0
.0

7
8
6

0
.0

7
9
0

0
.1

2
2
4

0
.0

1
2
7

0
.0

1
1
3

C
4

0.
91

59
0.

07
64

0.
07

18
0.

85
2
3

0
.0

1
2
2

0
.0

0
8
0

1
.1

0
1
7

0
.0

8
4
0

0
.0

7
8
2

1
.0

3
0
7

0
.0

1
6
9

0
.0

1
1
5

T
ab

le
1:

m
is
e

of
th

e
es

ti
m

at
or

s
of

th
e

re
gr

es
si

on
fu

n
ct

io
n
g 0

=
µ
0
+
g 0
,1

+
g 0
,2

u
n
d
er

d
iff

er
en

t
co

n
ta

m
in

at
io

n
s

an
d

m
is

si
n
g

m
ec

h
an

is
m

s.

p
(x

)
≡

1
p
2
(x

)
=

0
.4

+
0
.5

co
s2

(x
1

+
0
.2

)
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ĝ b

r
,t

,1
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ĝ 1

,b
c
,0
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least squares one, although the differences in the estimated mise’s are well within the Monte
Carlo margin of error. For the contamination cases C1 and C2, when using either local
constants or local linear smoothers, the mise of the classical estimator for g0 is notably
larger than those of the robust estimators (more than 40 times larger). This difference is
smaller when estimating each component g0,1 and g0,2, but remains fairly large nonetheless.
In general, when the data contain outliers, we note that the robust estimators give noticeably
better regression estimators (both for g0 and its components) than the classical one. The
estimator based on Tukey’s bisquare function is very stable across all the contamination cases
considered here, while for the Huber one, there’s a slight increase in mise for the estimated
additive components under the contamination setting C1 and a larger one under C2. The
advantage of the estimators based on Tukey’s loss function over those based on the Huber
one becomes more apparent when one inspects the ratio between the mise’s obtained with
and without outliers given in Tables 4 to 6.

It is worth noting that, for clean data, local linear smoothers achieve much smaller mise
values than local constants. This may be explained by the well-known bias-reducing property
of local polynomials, particularly near the boundary. This behaviour can also be observed
across contamination settings for the robust estimators.

Interestingly, the results of our experiments with missing responses yield the same overall
conclusions. The estimators based on the subset of complete data remain Fisher-consistent,
but, as one would expect, they all yield larger mise’s due to the smaller sample sizes used to
compute them. Moreover, the estimators based on Tukey’s loss function are still preferable,
although they are slightly less efficient than those based on the Huber loss when q = 0. When
comparing the behaviour of the robust local constant and local linear estimators one notices
that, as above, local linear estimators have smaller mise’s. However, the ratios of mise,
reported in Tables 4 to 6, show that under C2 the mise’s of the local linear estimators of g0
with missing responses are more than 4 times larger than those obtained with local constants.
This effect is mainly due to the poor estimation of g0,2 and of the location parameter µ0 as
suggested by the reported results.

We also looked at the median ise across the simulation replications to determine whether
the differences in the observed averaged ise’s are representative of most samples or they were
influenced by poor fits obtained in a few bad samples. Tables 7 to 9 report the median over
replications of the ise, denoted Medise for the estimators of the regression function g0 and
each additive component when d = 2. Besides, Tables 10 to 12 report the ratio between
the median integrated squared error (Medise) obtained for each considered contamination
and for the clean data. To identify the ratio, it is denoted as Medise(Cj)/Medise(C0).
The median ise results show that the robust estimators behave similarly when p(x) ≡ 1 and
when responses may be missing. Furthermore, the performances of Tukey’s local linear and
local constant smoothers are equally good.

Based on the above results we recommend using local linear smoothers computed with
Tukey’s loss function, although in some situations local constants may give better results,
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ĝ 1

,b
r
,t

,0
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in particular when responses are missing and some neighbourhoods contain too few obser-
vations.

4.2 Monte Carlo study with d = 4 additive components

For this model we generated covariates Xi = (Xi1, Xi2, Xi3, Xi4) ∼ U([−3, 3]4), independent
errors εi ∼ N(0, 1) and σ0 = 0.15. We used the following additive components: g0,1(x1) =
x31/12, g0,2(x2) = sin(−x2), g0,3(x3) = x23/2 − 1.5, g0,4(x4) = ex4/4 − (e3 − e−3)/24. As in
dimension d = 2, optimal bandwidths with respect to the mise were computed assuming that
the other components in the model are known, resulting in hMISE

opt = (0.36, 0.38, 0.34, 0.29).
However, it was difficult to obtain a reliable estimate for the residual scale σ0 using these
bandwidths (see Remark 3.1), since many 4-dimensional neighbourhoods did not contain
sufficient observations. To solve this problem we used hσ = (0.93, 0.93, 0.93, 0.93) to estimate
σ0 (we expect an average of 5 points in each 4-dimensional neighbourhood using hσ). We
then applied the backfitting algorithm with the optimal bandwidths hMISE

opt .

In addition to the settings C0 and C1 described above, we modified the contamination
setting C2 so that ui ∼ N(15, 0.01) for all i such that Xi,j ∈ [−1.5, 1.5] for all 1 ≤ j ≤ 4.

Tables 13 to 17 report the mise for the different estimators, contamination settings and
missing mechanisms. Ratios of mise’s for clean and contaminated settings and median ise’s
are reported in tables included Tables 18 to 32 .

As observed in Section 4.1, our experiments with and without missing responses yield
similar conclusions regarding the advantage of the robust procedure over the classical back-
fitting and the benefits of the Tukey’s loss function over the Huber one. As in dimension
d = 2, when responses are missing, all the mise’s are slightly inflated, as it is to be expected.
It is also not surprising that when the data do not contain outliers (C0), the robust estima-
tors have a slightly larger mise than their classical counterparts. However, when outliers are
present, both robust estimators provide a substantially better performance than the classical
one, given similar results to those for clean data. Also as noted for the model with d = 2,
the mise of the estimators based on Tukey’s bisquare score function are more stable across
the different contamination settings than those using Huber’s score function. However, one
difference with the results in dimension d = 2 should be pointed out. Under the gross error
model C1, the local linear smoother performs worse than the local constant when missing re-
sponses arise. This difference is highlighted when one looks at the ratio of the corresponding
mise’s. However, median ise’s reported in Tables 23 to 27 are more stable, which indicates
that the difference in mise’s may be due to a few samples. In fact, due to the relatively large
number of missing observations that may be present in this setting (around 33%) around 6%
of the replications produce robust fits with Tukey’s loss function with atypically large values
of mise, which are due to sparsely populated neighbourhoods. Based on these observations,
we also recommend using Tukey’s local linear estimators.
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ĝ
1
,b
c
,0

ĝ
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ĝ
1
,b
r
,t
,0

ĝ
1
,b
c
,1

ĝ
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ĝ
2
,b
c
,1

ĝ
2
,b
r
,h
,1

ĝ
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ĝ
2
,b
c
,0

ĝ
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ĝ
4
,b
r
,t
,1

ĝ
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ĝ b

c
,0
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ĝ 4
,b
r
,h

,0
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ĝ b

c
,1
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ĝ 1

,b
r
,t

,1
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ĝ 4
,b
r
,h

,0
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ĝ b

r
,t

,1

M
e
d
is
e
(C

1
)

M
e
d
is
e
(C

0
)

58
7.

92
80

3.
99

01
1.

06
32

3
2
8
4
.7

1
2
0

1
8
.3

5
9
9

1
.1

8
4
0

6
1
6
.5

2
6
4

3
.3

8
3
7

1
.0

4
5
7

2
6
9
4
.8

3
4
4

1
3
.3

4
2
2

1
.2

3
3
5

M
e
d
is
e
(C

2
)

M
e
d
is
e
(C

0
)

38
6.

76
98

2.
76

23
1.

02
53

2
0
7
5
.0

9
9
0

8
.8

7
9
0

1
.0

6
8
2

4
3
7
.7

1
6
2

2
.5

6
8
0

0
.9

9
5
1

1
8
2
0
.7

4
1
8

6
.6

0
0
7

1
.0

6
3
1

T
ab

le
28

:
R

at
io

b
et

w
ee

n
th

e
M
e
d
is
e

o
f

th
e

es
ti

m
at

or
s

of
th

e
ad

d
it

iv
e

co
m

p
on

en
t
g 0

u
n

d
er

th
e

co
n

si
d

er
ed

co
n
ta

m
in

at
io

n
s

an
d

u
n

d
er

cl
ea

n
d

a
ta

fo
r

th
e

tw
o

m
is

si
n

g
m

ec
h

an
is

m
s.

p
(x

)
≡

1
p
4
(x

)
=

0
.4

+
0
.5

co
s2

(x
1
x
3

+
0
.2

)
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ĝ 1

,b
c
,1
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ĝ 1

,b
c
,1
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ĝ 3

,b
c
,1

ĝ 3
,b
r
,h

,1
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ĝ 4
,b
r
,h

,1
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5 Empirical Influence

A well-known measure of robustness of an estimator is given by its influence function (see
Hampel et al. 1986). The influence function measures resistance of an estimator against
infinitesimal proportions of outliers and helps study the local robustness and asymptotic
efficiency of an estimator. The finite-sample version of the influence function, called the
empirical influence function (Tukey, 1977), is a useful measure of sensitivity quantifying the
effect of a single outlier on the estimator computed on a given sample. Although influence
functions have been widely studied for many parametric models, much less attention has
been paid to nonparametric estimators. To measure the influence of a contaminating point
on the estimators, we follow the approach of Manchester (1996), who proposed a graphical
method to display the sensitivity of a scatter plot smoother that is related to the finite–
sample influence function introduced by Tukey (1977).

Given a data set {(Xt
i , Yi)

t}1≤i≤n satisfying the additive model Y = µ0+
∑d

j=1 g0,j(Xj)+
σ0 ε, let ĝn,j(τ) be the estimator of the j−th component based on this data set evaluated
at the point τ ∈ R. Assume that z0 = (xt0 , y0)

t represents a contaminating point and

let ĝ
(z0)
n,j (τ) be the estimator based on the augmented data set {(Xt

1 , Y1)
t, . . . (Xt

n , Yn)t, z0}
evaluated at the point τ . For a fixed value of τ , we define the empirical influence function
of ĝn,j(τ) at z0 as the surface

EIFj,τ (z0) = (n+ 1)
[
ĝ
(z0)
n,j (τ)− ĝn,j(τ)

]
, (11)

as z0 varies in Rd×R. To explore the sensitivity of the backfitting estimators to the presence
of outliers using the empirical influence function (11), we generated a data set of size n =
500 following an additive model with location µ0 = 0, additive components g0,1(x1) =
24 (x1 − 0.5)2−2 and g0,2(x2) = 2π sin(πx2)−4 and covariates Xi = (Xi,1, Xi,2)

t ∼ U([0, 1]×
[0, 1]). The data and the regression function are shown in Figure 2.

We used an Epanechnikov kernel with bandwidths h1 = h2 = 0.10, local constant
smoothers (q = 0) and the same tuning constants as in our simulation study. We com-
puted EIFj,τ (z0) for τ = 0.20, 0.40, 0.60 and 0.80 and a grid of points z0 = ((x1, 0.5)t, y)t,
where x1 ranges over 30 equidistant points in the interval [0.15, 0.85] and y takes 50 equally
spaced points in [−20, 20].

The results for each estimator and for τ = 0.2 and 0.4 are displayed in Figure 3, while
the results for τ = 0.6 and 0.8 are given in Figure 4.

These plots illustrate the expected lack of robustness of the classical backfitting estimator,
for which the empirical influence function takes very large values. Note the EIF attain the
largest absolute value when x1 is close to τ , and estimators based on Tukey’s bisquare loss
function have a slightly larger |EIF | than those based on Huber’s loss. The redescending
structure of the score function can also be observed in the plot, showing that very large
values of the responses have less effect on the estimator based on the Tukey loss function
than in that based on the Huber loss, as noted also in the simulation study. It is important to
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Figure 2: Data used for the influence function study, and the corresponding regression function
g0.

note that, when the nonparametric regression model does not take into account an additive
structure and when using a kernel with compact support to compute a kernel regression
estimator only outliers near the value at which the regression function estimator is evaluated
may impact the regression estimator. However, the situation is different for the backfitting
method, which involves the estimation of the location parameter and an iterative algorithm
involving all the residuals.

Since the absolute value of EIF1,τ (x, y) attains its maximum value near τ , Figure 5 shows
the surfaces EIF1,x1((x1, 0.5), y), which represent the worst possible bias of these estimators
in this setting. The plots of |EIF1,x1((x1, 0.5), y)| are given in Figure 6. As expected, the
bias of the classical estimators follows the size of the contaminated responses. On the other
hand, the empirical functions of the robust estimators are bounded, and the most influential
points correspond to x1 near 0.2 and 0.8, which reflects the expected boundary effect. Due
to the redescending nature of the Tukey score function, the absolute value of the empirical
function for larger values of y (|y| > 5, say) remains very low, near its minimum absolute
value of 0.019.
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Figure 3: Empirical influence for the classical and robust estimators, EIF1,τ (x, y) when τ = 0.2
and 0.4 and x = (x1, 0.5).
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Figure 4: Empirical influence for the classical and robust estimators, EIF1,τ (x, y) when τ = 0.6
and 0.8 and x = (x1, 0.5)
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Figure 5: Empirical influence EIF1,x1((x1, 0.5), y) for the classical and robust estimators.
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Figure 6: Absolute value of the empirical influence, |EIF1,x1((x1, 0.5), y)| for the classical and
robust estimators.
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6 Real data example

In this section, we compare the performance of the robust backfitting described in this paper
with the classical one on a real data set. We considered the airquality data set available
in R. The data set corresponds to 153 daily air quality measurements in the New York region
between May and September, 1973 (see Chambers et al., 1983). The interest is in explaining
mean Ozone concentration (“O3”, measured in ppb) as a function of 3 potential explanatory
variables: temperature (“Temp”, in degrees Fahrenheit), wind speed (“Wind”, in mph)
and solar radiance measured in the frequency band 4000-7700 (“Solar.R”, in Langleys).
In our analysis, we only considered the 111 cases that do not contain missing observations.
Dengyi and Kawagochi (1986) and Lacour et al. (2006) report a positive correlation between
ozone concentration and temperature in the Antarctica during Spring and also, in France
during the 2003 heat wave. Cleveland (1985) finds that the relationship between ozone
concentration and wind speed is non-linear, with higher wind speeds associated to lower
Ozone concentrations. Simple visual exploration of the data indicates that the relationship
between ozone and the other variables does not appear to be linear, so we propose to fit an
additive model of the form

O3 = µ0 + g0,1(Temp) + g0,2(Wind) + g0,3(Solar.R) + u ,

where the errors u = σ0 ε are assumed to be independent, homoscedastic and with location
parameter 0.

Based on the results obtained in Section 4, we used local linear backfitting estimators
with the classical squared loss function and also with Tukey’s bisquare loss (with tuning
constant c = 4.685) to provide a robust alternative. Bandwidths were selected using a
3-dimensional grid search. For the bandwidth hj of the j-th covariate, 1 ≤ j ≤ 3, we
considered 6 possible values (equal to multiples of its estimated standard deviation): Gj =
{σ̂j/2, σ̂j, 1.5 σ̂j, 2 σ̂j, 2.5 σ̂j, 3 σ̂j}, where σ̂j = sd(Xj). Our 3-dimensional grid is the product
of these sets: G = G1 × G2 × G3 ⊂ R3. Let (Xt

1 , Y1)
t, . . . , (Xt

n , Yn)t be the considered
observations (n = 111). The usual leave-one-out cross-validation criterion in this setting

is given by Lls(h) = (1/n)
∑n

i=1

(
Yi − ĝ−ibc,h(Xi)

)2
, where ĝ−ibc,h(Xi) denotes the backfitting

predictor for Xi, computed with bandwidth h ∈ G and without using the i-th observation.
For the classical backfitting estimator the smallest value of Lls over the grid G was obtained
at hls = (9.53, 10.67, 91.15).

When outliers may be present in the data, it is important to use a robust selection crite-
rion for smoothing parameters, even when considering robust estimators, see, for instance,
Cantoni and Ronchetti (2001) for a discussion. Noting that the classical cross–validation
criterion combines the squared bias and variance, Bianco and Boente (2007) and Boente and
Rodriguez (2008) introduced the following robust cross-validation criterion based on robust
estimators of bias and scale. Let ĝ−ibr,t,h(Xi) denote the robust backfitting predictor at Xi,
computed with the smoothing parameter h ∈ G and without using the i-th observation. The
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robust cross-validation criterion is:

Lr(h) =

(
median
1≤i≤n

{Yi − ĝ−ibr,t,h(Xi)}
)2

+

(
mad
1≤i≤n

{Yi − ĝ−ibr,t,h(Xi)}
)2

.

The minimum of Lr over G was obtained at hr = (4.76, 8.89, 136.73), which leads to a
smaller bandwidth for the first additive component and a larger one for the third than the
ones chosen with the classical approach. This suggests that some influential observations
may be present, which lead to oversmoothing of the classical estimator of the first additive
component.

Figure 7 shows the partial residuals and the estimated regression components for each
explanatory variable, both for the classical and robust estimators. Although the shape of
the estimated additive components are similar, some important differences in their pattern
can be highlighted. On the one hand, the classical estimator appears to magnify the effect
of the covariates on the additive components of the regression function. With the classical
estimator increasing temperatures correspond to a higher mean ozone concentration, but only
for temperatures between 70 and 90 degrees (F). Higher temperatures correspond to lower
mean ozone concentrations, and the same happens for increasing wind speeds and low values
of solar radiance. At the same time, low wind speeds and solar radiance values between 150
and 250 correspond to higher mean levels of ozone. Intriguingly, lower temperatures are seen
to result in a slight increase in mean ozone concentration. On the other hand, the robust
estimator suggests covariate effects that are more moderate. For example, in the case of
temperature, we note that the corresponding additive component is practically constant for
temperatures up to 75 degrees, and for temperatures beyond 90 degrees does not decrease
as markedly as the classical one.

We can use the residuals obtained with the robust fit to explore the presence of potential
outliers in the data. Figure 8 shows the corresponding residual boxplot which indicates 5 clear
outliers (observations 23, 34, 53, 68 and 77). To study the influence of these observations
on the classical fit we repeat the analysis without them. The obtained cross–validation
bandwidths for the classical estimator are now h

(−5)
ls = (4.85, 10.52, 138.87). Note that these

values are very similar to those obtained with the robust estimator combined with the robust
cross–validation criterion. Figure 9 shows the estimates, ĝ

(−5)
j , j = 1, . . . , 3, obtained with

the classical estimator using the “cleaned” data together with the robust ones obtained with
the original data set. We see that both sets of fits are now very similar. In other words, the
robust fit automatically down-weighted potential outliers and returned estimated additive
components based on the remaining observations that are almost identical to the classical
ones when the outliers are removed by hand. Furthermore, the residuals obtained from the
robust fit allow us to identify potential outliers.
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with data-driven bandwidth h
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A Appendix: Proofs

Proof of Theorem 2.1. (a) We will show that if (ν,m) ∈ R × Had is such that either
ν 6= µ0 or P(

∑d
j=1mj(Xj) =

∑d
j=1 g0,j(Xj)) < 1 then Υ (ν,m) > Υ (µ0, g0). For any

(ν,m) ∈ R×Had we have

Υ (ν,m) = Eρ

(
Y − ν −

∑d
j=1mj(Xj)

σ0

)
= EX

(
Eε|X

{
ρ

(
ε− b(X)

σ0

)})
,

where b(x) = ν − µ +
∑d

j=1(mj(xj) − g0,j(xj)). Furthermore, since ε is independent of X,
it follows that Υ (ν,m) = EX Eε {ρ (ε− [b(X)/σ0])} . To simplify the notation, let a(x) =
b(x)/σ0 and B0 = {x : b(x) = 0}. We have

Υ (ν,m) =

∫
B0
Eε (ρ (ε)) dFX(x) +

∫
Bc0

Eε (ρ (ε− a(x))) dFX(x) . (A.1)

Note that if either ν 6= µ0 or P(
∑d

j=1mj(Xj) =
∑d

j=1 g0,j(Xj)) < 1 then P (B0) < 1.
To see this, assume that P(B0) = 1 which implies that E [b(X)] = 0. Since E [mj(Xj)] =
E [g0,j(Xj)] = 0, for all 1 ≤ j ≤ d, we have that ν = µ0. Moreover, it then follows that

P(
∑d

j=1mj(Xj) =
∑d

j=1 g0,j(Xj)) = 1, which is a contradiction.

In addition, Lemma 3.1 of Yohai (1987) and assumptions E1 and R1 imply that for all
a 6= 0, Eε [ρ (ε− a)] > Eε [ρ (ε)].

Hence, if (ν,m) ∈ R×Had is such that either ν 6= µ0 or P(
∑d

j=1mj(Xj) =
∑d

j=1 g0,j(Xj)) <
1 we have P (B0) < 1, and then from (A.1) it follows that

Υ (ν,m) >

∫
B0

Eε (ρ(ε)) dFX(x) +

∫
Bc0

Eε (ρ(ε)) dFX(x) = Eε (ρ(ε)) = Υ (µ0, g0) .

(b) Follows immediately from (a) and A1 noting that gj(P )− g0,j ∈ Hj, 1 ≤ j ≤ d.

Proof of Theorem 2.2. For the sake of simplicity, denote µ = µ(P ) and gj = gj(P ).
Note that Υ(µ, g) ≤ Υ(ν, g), since Υ(µ, g) ≤ Υ(ν,m). Then, if we denote L(ν) = Υ(ν, g),
we have that µ = argminν∈R L(ν) which leads to L′(µ) = 0. Noting that

L′(ν) = − 1

σ0
Eψ

(
Y − ν −

∑d
j=1 gj(Xj)

σ0

)

we obtain that Γ0(µ,g(P )) = 0, as desired.

Let 1 ≤ j ≤ d be fixed and consider the problem of minimizing Υ(µ,m) with respect to
mj for any m(x) ∈ Had such that its j−th component is mj(Xj), the other ones been equal
to gs. To be more precise, for any mj ∈ Hj let m(j) ∈ Had be defined as m(j)(x) = mj(xj) +
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∑
s 6=j gs(xs). Denote Lj(mj) = Υ(µ,m(j)) = E ρ

(
(Y − µ−mj(Xj)−

∑
s 6=j gs(Xs))/σ0

)
.

Note that the fact that Υ(µ, g) ≤ Υ(ν,m) for any m ∈ Had, entails that Lj(gj) ≤ Lj(mj).
Hence, for any direction η ∈ Hj, the partial Gateaux derivative of Lj at gj along η should
vanish. Denote this Gateaux derivative as ∂Lj(gj; η). Furthermore, let νη(t) = Lj(gj + tη)
and note that ∂Lj(gj; η) = ν ′η(0), where

ν ′η(0) = lim
t→0

1

t
E
[
ρ

(
Rj − gj(Xj)− tη(Xj)

σ0

)
− ρ

(
Rj − gj(Xj)

σ0

)]
, (A.2)

with Rj = Y − µ −
∑

s 6=j gs(Xs). Then, the first order condition states that ν ′η(0) = 0, for

any η ∈ Hj. Note that for any (x1, x2, . . . , xd, y)t we have

∂

∂t

{
ρ

(
rj − gj(xj)− t η(xj)

σ

)}
= ψ

(
rj − gj(xj)− t η(xj)

σ

)(
−η(xj)

σ

)
,

where rj = y−µ−
∑
6̀=j g`(x`). Now we use (A.2) and the Dominating Convergence Theorem

to obtain ν ′η(t) = −(1/σ0)E [ψ ((Rj − gj(Xj)− t η(Xj))/σ0) η(Xj)], so that ∂Lj(gj; η) =
− (1/σ0)E [ψ ((Rj − gj(Xj))/σ0) η(Xj)] . Hence, the first order condition ν ′η(0) = 0 is

E
[
ψ

(
Rj − gj(Xj)

σ0

)
η(Xj)

]
= 0 , ∀η ∈ Hj . (A.3)

Let h be any measurable function such that E|h(Xj)| <∞ and denote ah = Eh(Xj). Then,
η = h− ah ∈ Hj, so from (A.3) we get that

E
[
ψ

(
Rj − gj(Xj)

σ0

)
h(Xj)

]
= ahE

[
ψ

(
Rj − gj(Xj)

σ0

)]
. (A.4)

Recall that we have shown that Γ0(µ,g(P )) = 0, i.e.,

Eψ
(
Rj − gj(Xj)

σ0

)
= 0 . (A.5)

Therefore, from (A.4) and (A.5), we obtain that E [ψ ((Rj − gj(Xj))/σ0)h(Xj)] = 0, for
any integrable function h, which implies that E [ψ ((Rj − gj(Xj))/σ0)|Xj = x] = 0 a.s.
concluding the proof since Γj (µ,g, xj) = E [ψ ((Rj − gj(xj))/σ0)|Xj = xj].

Proof of Theorem 2.3. Since the value of the objective function is not changed, we will
assume that Eg̃(`)j (Xj) = 0. Hence, g

(`)
j = g̃

(`)
j and µ(`) = µ̃(`). Note that the last equation in

the `−th iteration of the algorithm is equivalent to solving µ(`) = argminµ∈R Eρ
(

(R
(`)
0 − µ)/σ0

)
,

where R
(`)
0 = Y −

∑d
j=1 g

(`)
j (Xj), since ψ is strictly increasing so that the equation has a

unique solution. On the other hand, in the (k + 1)−th equation of the `−th iteration, we
seek for a solution a = gk(Xk) ∈ Hk of

E

[
ψ

(
Y − µ(`−1) −

∑k−1
j=1 g

(`)
j (Xj)−

∑d
j=k+1 g

(`−1)
j (Xj)− a

σ0

)∣∣∣∣∣Xk

]
= 0 .
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which corresponds to finding the M -conditional location functional, as defined in Boente and
Fraiman (1989), of the partial residuals R

(`)
k = Y −µ(`−1)−

∑k−1
j=1 g

(`)
j (Xj)−

∑d
j=k+1 g

(`−1)
j (Xj).

Using again that ψ is strictly increasing, we obtain that

g
(`)
k (Xk) = argmin

mk∈Hk
E

[
ρ

(
R

(`)
k −mk(Xk)

σ0

)∣∣∣Xk

]
.

Hence, taking expectation with respect to Xk, we get that

g
(`)
k (Xk) = argmin

mk∈Hk
E

[
ρ

(
R

(`)
k −mk(Xk)

σ0

)]
.

Hence, for the `−th iteration, the system of equations in Algorithm 1 is equivalent to the
following system of equations

g
(`)
k (Xk) = argmin

mk∈Hk
E

[
ρ

(
R

(`)
k −mk(Xk)

σ0

)]
1 ≤ k ≤ d

µ(`) = argmin
ν∈R

Eρ

(
R

(`)
0 − ν
σ0

) (A.6)

Let us show that this entails that {υ`}`≥1 is a decreasing sequence where υ` = Υ(µ(`), g(`)).
Let 1d be the d−dimensional vector with all its components equal to 1. To reinforce the

additive structure, denote Φ (ν,m) = Υ(ν,1tm) = Eρ
(

(Y − ν −
∑d

j=1mj(Xj))/σ0

)
, where

m = (m1, . . . ,md)
t.

We begin with Step 1. The first equation of the first iteration seeks for the first addi-

tive component through g
(1)
1 (X1) = argminm1∈H1

Eρ
(

(R
(1)
1 −m1(X1))/σ0

)
. Hence, choosing

m1 = g
(0)
1 , we get that

Φ
(
µ(0), g

(1)
1 , g

(0)
2 , . . . , g

(0)
d

)
≤ Φ

(
µ(0), g

(0)
1 , g

(0)
2 , . . . , g

(0)
d

)
= Φ

(
µ(0),g(0)

)
≤ Φ

(
µ(0),g(0)

)
.

Assume that Φ
(
µ(0), g

(1)
1 , . . . , g

(1)
k−1, g

(0)
k , . . . , g

(0)
d

)
≤ Φ

(
µ(0),g(0)

)
and consider the k−th

equation of the first iteration. Then, as g
(1)
k (Xk) = argminmk∈Hk E

[
ρ
(

(R
(1)
k −mk(Xk))/σ0

)]
,

we get Φ
(
µ(0), g

(1)
1 , . . . , g

(1)
k , g

(0)
k+1 . . . , g

(0)
d

)
≤ Φ

(
µ(0), g

(1)
1 , . . . , g

(1)
k−1, g

(0)
k , . . . , g

(0)
d

)
, choosing

mk = g
(0)
k . Applying these arguments for 1 ≤ k ≤ d we finally get for k = d that

Φ
(
µ(0),g(1)

)
= Φ

(
µ(1), g

(1)
1 , . . . , g

(1)
d

)
≤ Φ

(
µ(0), g

(1)
1 , . . . , g

(1)
d−1, g

(0)
d

)
≤ Φ

(
µ(0),g(0)

)
. (A.7)

Finally, using the last equation in (A.6), we have that µ(1) = argminν∈R Eρ
(

(R
(1)
0 − ν)/σ0

)
=

arg minν∈R Φ
(
ν,g(1)

)
, which entails that for any ν ∈ R, Φ

(
µ(1),g(1)

)
≤ Φ

(
ν,g(1)

)
. In
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particular, taking ν = µ(0) we obtain that Φ
(
µ(1),g(1)

)
≤ Φ

(
µ(0),g(1)

)
≤ Φ

(
µ(0),g(0)

)
,

where the last inequality follows from (A.7). Therefore, we have shown that υ1 ≤ υ0.

Let us consider ` > 1 and assume that υs ≤ υs−1 for s = 1, . . . , `. As above, the k−th
equation in (A.6) leads to

Φ
(
µ(`−1), g

(`)
1 , . . . , g

(`)
k , g

(`−1)
k+1 , . . . , g

(`−1)
d

)
≤ Φ

(
µ(`−1), g

(`)
1 , . . . , g

(`)
k−1, g

(`−1)
k , g

(`−1)
k+1 , . . . , g

(`−1)
d

)
.

(A.8)
Using (A.8) iteratively for k = 1, . . . d, we get Φ

(
µ(`−1),g(`)

)
≤ Φ

(
µ(`−1),g(`−1)) = υ`−1. Fi-

nally, using similar arguments as those considered above, we get easily that υ` = Φ
(
µ(`),g(`)

)
≤

Φ
(
µ(`−1),g(`)

)
, so that υ` ≤ υ`−1.
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Härdle, W. and Tsybakov, B. (1988). Robust nonparametric regression with simultaneous scale
curve estimation. Annals of Statistics, 16, 120-135.

Hastie, T.J. and Tibshirani, R.J. (1990). Generalized Additive Models. Monographs on Statistics
and Applied Probability No. 43. Chapman and Hall, London.

Lacour, S.A., Monte, M., Diot, P., Brocca, J., Veron, N., Colin, P. and Leblond, V. (2006). Rela-
tionship between ozone and temperature during the 2003 heat wave in France: consequences
for health data analysis. BMC Public Health, 6, 261.

Linton, O.B. (1997). Efficient estimation of additive nonparametric regression models. Biometrika,
84, 469-473.

Mammen, E., Linton, O.B. and Nielsen, J. (1999). The existence and asymptotic properties of a
backfitting projection algorithm under weak conditions. Annals of Statistics, 27, 1443-1490.

Manchester, L. (1996). Empirical Influence for robust smoothing. Australian Journal of Statistics,
38, 275-296.

Maronna, R., Martin, R. and Yohai, V. (2006) Robust Statistics, Theory and Methods. John
Wiley & Sons, Ltd.

Oh, H-S., Nychka, D.W. and Lee, T.C.M. (2007). The role of pseudo data for robust smoothing
with applications to wavelet regression. Biometrika, 94:4, 893-904.

37



Opsomer, J.D. (2000). Asymptotic properties of backfitting estimators. Journal of Multivariate
Analysis, 73, 166-179.

Opsomer, J.D. and Ruppert, D. (1997). Fitting a bivariate additive model by local polynomial
regression. Annals of Statistics, 25, 186-211.
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