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Abstract

ANOVA tests are the standard tests to compare nested linear models fitted by least squares. These tests are equivalent
to likelihood ratio tests, so they have high power. However, least squares estimators are very vulnerable to outliers in
the data, and thus the related ANOVA type tests are also extremely sensitive to outliers. Therefore, robust estimators
can be considered to obtain a robust alternative to the ANOVA tests. Regression τ-estimators combine high robustness
with high efficiency which makes them suitable for robust inference beyond parameter estimation. Robust likelihood
ratio type test statistics based on the τ-estimates of the error scale in the linear model are a natural alternative to
the classical ANOVA tests. The higher efficiency of the τ-scale estimates compared with other robust alternatives is
expected to yield tests with good power. Their null distribution can be estimated using either an asymptotic approx-
imation or the fast and robust bootstrap. The robustness and power of the resulting robust likelihood ratio type tests
for nested linear models is studied.

Keywords: robust statistics, robust tests, linear regression

1. Introduction

An important step in regression analysis is determining which of the available explanatory variables are relevant in
the proposed model. One approach is to test whether some of the regression coefficients are different from zero or not.
The standard test for linear hypotheses of this type is the well-known F-test based on least squares estimates. It is also
the likelihood ratio test when the errors are normally distributed. Unfortunately, small deviations from this assumption
may seriously affect both the least squares estimates and the corresponding F-test, invalidating the resulting inference
conclusions. Such small perturbations in the data are very common in real applications, and as the number of variables
and the complexity of the models increase, they become much more difficult to detect using diagnostic methods based
on non-robust estimators.

To overcome this problem robust estimators have been proposed and studied extensively in the literature. These
estimators yield reliable point estimates for the model parameters even when the ideal distributional assumptions
are not satisfied. Robustness properties of such estimators have been investigated via their influence function and
breakdown point (see e.g. Hampel et al. 1986, Maronna et al. 2006). The influence function provides information
on the effect of a small amount of contamination on the estimator while, intuitively speaking, the breakdown point is
the largest fraction of arbitrary contamination that can be present in the data without driving the bias of the estimator
to infinity. Another robustness criterion to compare estimators is the maximum asymptotic bias which measures the
effect of a positive (non-infinitesimal) fraction of contamination (Martin et al., 1989; Berrendero et al., 2007). Robust
high-breakdown estimators of the regression parameters include the least median of squares and least trimmed squares
estimators (Rousseeuw 1984), S-estimators (Rousseeuw and Yohai 1984), MM-estimators (Yohai 1987), τ-estimators
(Yohai and Zamar 1988) and CM-estimators (Mendes and Tyler 1996).

In this paper we consider the problem of performing inference for a linear regression model using robust esti-
mators. Specifically, we are interested in obtaining robust and efficient tests for linear hypotheses on the regression
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coefficients. Robust hypothesis tests have received much less attention in the literature than point estimators. A natu-
ral approach to obtain robust tests is to use a robust point estimator of the model parameters. Robust Wald-, scores-
and likelihood-ratio-type tests based on M- and GM-estimators have been proposed in the literature by Markatou and
Hettmansperger (1990), Markatou, Stahel and Ronchetti (1991), Markatou and He (1994), and Heritier and Ronchetti
(1994). Unfortunately, the breakdown point of these estimators is less than 1/p, where p is the number of regression
coefficients. In other words, the more explanatory variables in the model the less robust these estimators are. This
lack of robustness in turn affects the associated test statistics.

Alternatively, one can note that the classical F-test compares the residual sum of squares obtained under the null
and alternative hypotheses. Since the residual sum of squares can also be thought of as (non-robust) residual scale
estimates, it is natural to consider test statistics of the form σ̂2

0 − σ̂
2
a

σ̂2
a

 (1)

where σ̂0 is a robust residual scale estimate obtained under the null hypothesis, and σ̂a is the scale estimate for the
unrestricted model. τ-estimators (Yohai and Zamar, 1988) are a class of high-breakdown and highly efficient regres-
sion estimators that are naturally accompanied by an associated estimator of the error scale which is also highly robust
and highly efficient. This is an advantage compared to other classes of high-breakdown, highly efficient regression
estimators such as MM-estimators or CM-estimators. The τ-estimators are defined as the minimizers of a robust
and efficient scale estimator of the regression errors. These estimators can be tuned to simultaneously have a high-
breakdown point (50%) and achieve high-efficiency (e.g. 85% or 95%) at the central model with normal errors. Good
robustness properties of τ-estimators have been shown for both the estimator of the regression coefficients (Berrendero
and Zamar, 2001) and the estimator of the error scale (Van Aelst, Willems and Zamar, 2013). We expect that the good
robustness properties of the τ-scale estimates compared with other scale estimators to yield tests with good robustness
properties as well. Until recently, the main drawback of τ-estimators was the lack of a good algorithm for their compu-
tation. However, Salibian-Barrera, Willems and Zamar (2008) proposed an efficient algorithm for these estimators and
implementations in R and MATLAB / OCTAVE are publicly available on-line at http://www.stat.ubc.ca/~matias.

In what follows we study ANOVA-type tests of the intuitively appealing test in (1) using τ-scale estimators which
we call ANOVA τ-tests. We show that under certain regularity conditions the test statistics proposed in this paper
are asymptotically central chi-squared distributed under the null hypothesis, and non-central chi-squared distributed
under sequences of contiguous alternatives. Note that these ANOVA-type test statistics thus have a much simpler
asymptotic distribution than several robust likelihood ratio type test statistics based on M-estimators whose asymptotic
distribution is a linear combination of χ1 distributions (Ronchetti 1982, Heritier and Ronchetti, 1994). Furthermore,
we derive the influence functions of these tests, which show that the tests are robust against vertical outliers and bad
leverage points, although good leverage points may have a larger influence on the test statistic and corresponding level
and power.

Since the finite-sample distribution of test statistics of this form is generally unknown, p-values are usually ap-
proximated using the asymptotic distribution of the test statistic. However, numerical experiments show that in some
cases these approximations are reliable only for relatively large sample sizes. Moreover, some of the required reg-
ularity assumptions may not hold when the data contain outliers, which compromises the validity of the asymptotic
approximation. To obtain better p-value approximations one can consider using the bootstrap (Efron, 1979). How-
ever, bootstrapping robust estimators when the data may contain outliers presents two important challenges. First,
re-calculating many times the estimator is highly computationally demanding. Second, the bootstrap results may not
be reliable due to bootstrap samples containing many more outliers than the original sample. In fact, this might cause
the bootstrapped estimate to break down even if the original estimate did not. Salibian-Barrera and Zamar (2002)
proposed a fast and robust bootstrap (FRB) method for MM-regression estimates that solves both of these problems
by calculating a fast approximation to the bootstrapped MM-estimators. This FRB method has been extended to other
settings (see e.g. Van Aelst and Willems, 2005; Salibian-Barrera, Van Aelst and Willems, 2006; and Samanta and
Welsh, 2013).

In this paper we also extend the FRB methodology to the class of τ-estimators. Salibian-Barrera (2005) showed
that the FRB also works well as a way to obtain p-value estimates for robust scores-type test statistics. However,
because the likelihood ratio type tests have a higher order of convergence than the scores-type tests, the consistency of
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the FRB estimator for the null distribution of the robust likelihood ratio type tests proposed here needs to be studied
carefully. This problem is discussed in Section 3, where we show that the test statistics satisfy a sufficient condition
given in Van Aelst and Willems (2011) that guarantees that the FRB is a consistent estimator for their null distribution.
This result allows us to propose a computationally feasible and reliable p-value estimate based on the FRB that is con-
sistent under weaker regularity assumptions than those required by the corresponding asymptotic approximation. Our
simulation results show that, regardless of the presence of outliers in the sample, the FRB approximation yields tests
with empirical levels closer to the nominal one. The advantage of using the FRB approximation is more noticeable
for smaller sample sizes.

The rest of the paper is organized as follows. In Section 2 we introduce the ANOVA-type tests based on τ-
estimators and derive their asymptotic distribution and robustness properties. A fast and robust bootstrap estimator for
the null distribution of the test statistics is discussed in Section 3, where we also show that this bootstrap approximation
is consistent. In Section 4 we investigate the behavior of the ANOVA τ-tests by means of simulations, while Section
5 illustrates our proposal on a real data set. Concluding remarks are included in Section 6 while all technical details
and proofs are relegated to the Appendix.

2. ANOVA tests based on τ-estimators

In what follows let (yi, xi), i = 1, . . . , n, denote a random sample, with yi ∈ R and xi ∈ Rp. The model of interest
is

yi = θ′0xi + εi , i = 1, . . . , n , (2)

where θ0 ∈ Rp denotes the vector of regression coefficients. The errors εi are assumed to be iid according to a
symmetric distribution F with center zero and scale σ0, and independent from the covariates xi. The distribution F is
often assumed to be Gaussian. We consider regression τ-estimators (Yohai and Zamar, 1988), which are defined by

θ̂n = arg min
θ∈Rp

τ2
n(θ) , (3)

where, for each θ ∈ Rp,

τ2
n(θ) = s2

n(θ)
1

b2 n

n∑
i=1

ρ2

(
ri(θ)
sn(θ)

)
, (4)

and sn(θ) is an M-scale estimator of the residuals ri(θ) = yi − θ
′xi, 1 ≤ i ≤ n, satisfying

1
n

n∑
i=1

ρ1

(
ri(θ)
sn(θ)

)
= b1 . (5)

The parameters b1 and b2 are chosen such that EΦ

(
ρ j (u)

)
= b j, j = 1, 2, where Φ denotes the standard normal

distribution. These conditions ensure consistency of the scale estimators τ̂n = τn(θ̂n) and σ̂n = sn(θ̂n) for normally
distributed errors. The functions ρ j, j = 1, 2, are supposed to be continuous, non-decreasing and even on the positive
real numbers, with ρ j(0) = 0, j = 1, 2. Furthermore, if a = supu ρ j(u), then 0 < a < ∞ and, for 0 ≤ u < v such
that ρ j(u) < a we have ρ j(u) < ρ j(v). Following Maronna, Martin and Yohai (2006), we refer to functions that satisfy
these conditions as “ρ-functions”.

Note that the choice of loss functions ρ1 and ρ2 can have important practical and theoretical consequences (see e.g.
Berrendero and Zamar (2001), Van Aelst, Willems and Zamar (2013)). In this paper we use the family of functions
proposed in Muler and Yohai (2002), which has been shown to yield τ-estimators with better robustness properties
than those obtained when using the Tukey bisquare family (Van Aelst et al., 2013). This family is indexed with a
tuning parameter c and given by

ρc(t) =


1.38

(
t
c

)2
| tc | ≤

2
3

0.55 − 2.69
(

t
c

)2
+ 10.76

(
t
c

)4
− 11.66

(
t
c

)6
+ 4.04

(
t
c

)8 2
3 < |

t
c | ≤ 1

1, | tc | > 1.

3



To obtain consistency and a maximal break-down point, we select the tuning parameters c1 = 1.214 and b1 = 0.5
for ρ1 = ρc1 in (5). The choice c2 = 3.270 and b2 = 0.128 for ρ2 = ρc2 results in an estimator with 95% efficiency
compared to the least-squares estimator when the errors in (2) are normally distributed (see Yohai and Zamar, 1988).
In this case, the associated τ-scale estimate τn(θn) for the residual scale has 50% breakdown point and a Gaussian
efficiency of 97.7%.

Yohai and Zamar (1998) showed that any local minimum θ̂n of (3) satisfies

n∑
i=1

[
Wn(θ̂n)ψ1

(
r̃i(θ̂n)

)
+ ψ2

(
r̃i(θ̂n)

) ]
xi = 0 , (6)

where ψ j = ρ′j, j = 1, 2, r̃i(θ̂n) = (yi − x′i θ̂n)/σ̂n, 1 ≤ i ≤ n, with σ̂n = sn(θ̂n), and

Wn(θ̂n) =

∑n
i=1

[
2 ρ2(r̃i(θ̂n)) − ψ2(r̃i(θ̂n)) r̃i(θ̂n)

]
∑n

i=1 ψ1(r̃i(θ̂n)) r̃i(θ̂n)
(7)

An efficient algorithm to solve (3) have been developed by Salibian-Barrera, Willems and Zamar (2008). R and
MATLAB / OCTAVE code can be obtained from http://www.stat.ubc.ca/~matias.

In this paper we study tests for linear hypotheses on the vector of regression parameters θ0 in (2). In general, these
hypotheses can be written in the following form:

H0 : θ0 ∈ V vs Ha : θ0 < V , (8)

where V ⊂ Rp denotes a linear subspace of dimension q < p. Equivalently (see Appendix), we may consider
hypotheses of the form

H0 : θ(2) = 0 vs Ha : θ(2) , 0 , (9)

where θ = (θ′(1), θ
′
(2))
′, with θ(1) ∈ Rq and θ(2) ∈ Rp−q. The usual F-test rejects H0 if the residual sum of squares under

the null hypothesis is sufficiently larger than under the alternative. Noting that these sums (or averages) of squares
can also be thought of as (non-robust) residual scale estimates, it is natural to replace the sums of squared residuals
by robust scale estimators in order to obtain a robust test. More specifically, let

θ̂n,0 = arg min
θ∈V

τ2
n(θ) ,

be the τ-regression estimator for the null model, i.e. the restricted model under the null hypothesis, and let τ̂2
n,0 =

τ2
n(θ̂n,0) be the corresponding scale estimator. Similarly, let θ̂n and τ̂2

n = τ2
n(θ̂n) denote the estimators for the full

model, i.e. the larger model under the alternative. To test the hypotheses in (8) consider the following ANOVA-type
test statistic:

Ln( θ̂n,0 , θ̂n ) = n

 τ̂2
n,0 − τ̂

2
n

τ̂2
n

 . (10)

Note that this test statistic can immediately be obtained once the τ-estimates of both models have been calculated.
The next theorem shows that the asymptotic distribution of Ln is χ2

p−q if the null hypothesis H0 in (8) holds. More-
over, under a sequence of contiguous alternatives the asymptotic distribution becomes a non-central χ2

p−q distribution.

Theorem 1 Assume that ρ1 and ρ2 are ρ-functions, and that ρ2 satisfies 2ρ2(u) − uρ′2(u) ≥ 0. F, the distribution of
the errors εi in (2), is assumed to have a unimodal density function that is symmetric around zero. Let s0 ∈ (0,+∞) be
such that

EF

(
ρ1

(
u
s0

))
= b1 ,

with b1 ∈ (0, 1/2]. For each j = 1, 2, let

B j = EF

(
ψ j

(
u
s0

)
u
s0

)
, M j = EF

(
ρ j

(
u
s0

))
, and D j = EF

(
ψ′j

(
u
s0

))
.
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Moreover, define W = (2 M2 − B2) /B1, ψ0 = W ψ1 + ψ2, where ψ j = ρ′j, j = 1, 2, and let

D0 = EF

(
ψ′0

(
u
s0

))
, and K0 = EF

(
ψ2

0

(
u
s0

))
.

Consider the hypotheses in (8), then for the test statistic Ln(θ̂n,0, θ̂n) defined in (10) the following holds:

(a) Under the null hypothesis, as n→ ∞,
(2 D0 M2)

K0
Ln

D
−→ χ2

p−q . (11)

(b) Let θ0 ∈ V and a ∈ V+, the orthogonal complement of V, then under the sequence of contiguous alternative
hypotheses

Hn : θ = θ0 +
a
√

n
. (12)

it holds that, as n→ ∞
(2 D0 M2)

K0
Ln

D
−→ χ2

p−q (δ) ,

where the non-centrality parameter δ2 = (a′ Σ a) /ϑ, with Σ = E(XX′) and ϑ = s2
0 K0/D2

0.

Note that the class of τ-estimators includes the S-estimators (Rousseeuw and Yohai, 1984), when we choose
ρ1 = ρ2. Hence, the theorem above also provides the asymptotic distribution of the test statistic

S Ln = n

 ŝ2
n,0 − ŝ2

n

ŝ2
n

 , (13)

where ŝn,0 and ŝn denote the S-scale estimators of the models under the null and alternative hypotheses, respectively.

2.1. Robustness properties
To study the robustness properties of the ANOVA τ-tests, following Heritier and Ronchetti (1994) we examine the

effect of a small amount of contamination on the asymptotic level of the test. Let us consider a statistical functional
Λ(H) corresponding to some test statistic Λn, i.e. Λn = Λ(Hn) with Hn the empirical distribution of the data. Now,
consider a sequence of contaminated distributions

Hε,n = (1 −
ε
√

n
) H +

ε
√

n
G ,

where H is the distribution of the vector (y, x′)′ when no outliers are present, and G is an arbitrary contaminating
distribution. Following e.g. Heritier and Ronchetti (1994), Wang and Qu (2007), Van Aelst and Willems (2011), we
obtain the following general result.

Theorem 2 Consider the statistical functional Λ(H) and let

ξ2(z1, z2) =
∂

∂ε1∂ε2
Λ(Hε1,z1,ε2,z2 )|ε1=0,ε2=0 ,

with Hε1,z1,ε2,z2 = (1 − ε1 − ε2)H + ε1∆z1 + ε2∆z2 where zi = (yi, x′i)
′, and ∆z denotes a point-mass distribution at z.

Assume that
n(Λ(Hε,n) − Λn)

D
−→ χ2

q (14)

uniformly over distributions in the contamination set Hε,n. Denote the asymptotic level of the test based on Λn by α(K)
when the underlying distribution is K, and denote the nominal level α(H) by α0. Furthermore, denote by Hq(., δ) the
cumulative distribution function of a χ2

q(δ) distribution, and by η1−α0 the 1− α0 quantile of the central χ2
q distribution.

Then, we have

lim
n→∞

α(Hε,n) = α0 +
ε2

2
κ

∫∫
ξ2(z1, z2) dG(z1) dG(z2) + o(ε2), (15)
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where κ = −(∂/∂δ)Hq(η1−α0 ; δ)|δ=0. For the special case of point-mass contamination G = ∆y,x this reduces to

lim
n→∞

α(Hε,n) = α0 + ε2q κ SIF(x, y,Λ,H) + o(ε2), (16)

where SIF(x, y,Λ,H) is the self standardized influence function of the test statistic Λ under the null hypothesis.

Note that condition (14) is stronger than requiring the existence of the influence function of the test statistic, but is
guaranteed for functionals that are Fréchet differentiable (see Heritier and Ronchetti 1994, Ronchetti and Trojani,
2001). Fréchet differentiability is fulfilled for M-estimators and τ-estimators, which are asymptotically equivalent to
M-estimators, that satisfy conditions (A.1)-(A.9) of Heritier and Ronchetti (1994).

The self standardized influence function of a test statistic Λ corresponding to an asymptotically quadratic test is
given by

SIF(x, y,Λ,H) = ASV(Λ,H)−1 IF2(x, y,Λ,H) ,

where IF2(x, y,Λ,H) is the second-order influence function of the test statistic Λ, i.e.

IF2(x, y,Λ,H) =
∂2

∂ε2 Λ(Hε,y,x)

∣∣∣∣∣∣
ε=0

,

with Hε,y,x = (1 − ε)H + ε∆(y,x) (see e.g. Croux et al. 2008). We can apply Theorem 2 to our test based on τ-scales by
rescaling the test statistic Ln as in (11) so that the test has an asymptotic chi-square distribution with p − q degrees of
freedom, i.e. Λn = d Ln with d = 2 D0 M2/H0. It then follows that

lim
n→∞

α(Hε,n) = α0 + ε2d (p − q) κ SIF(x, y, L,H) + o(ε2) (17)

Hence, the stability of the level of the test is guaranteed if the test statistic L has a bounded self-standardized influence
function. A result similar to Theorem 2 can be obtained for the power of a test, which will be stable when the
self-standardized influence function is bounded (see Ronchetti and Trojani, 2001).

Denote by τ0(H) and τ(H) the functionals corresponding to the τ-scale estimators of the models under the null
and alternative, respectively. Then, the corresponding test functional is given by L(H) = (τ0(H)2 − τ(H)2)/(τ(H)2). It
can easily be shown that under the null hypothesis

SIF(x, y, L,H0) =
ψ2

0(y − θ′(1)x(1))

(p − q)E[ψ2
0]

(x′Σ−1x − x′(1)Σ
−1
11 x(1)) , (18)

where x = (x′(1), x
′
(2))
′, with x(1) ∈ Rp−q and x(2) ∈ Rq. It can immediately be seen that for bounded ψ0 functions

this self-standardized influence function is bounded in the response y, but not in x. Hence, good leverage points
may have a high influence on the test statistic and corresponding level and power of the test. However, the effect of
vertical outliers and bad leverage points remains bounded. Figure 1 shows the effect of response outliers by plotting
the residual part of the influence function (18), i.e. the factor ψ2

0(y − θ′(1)x(1))/(E[ψ2
0]). The solid line corresponds to

the 95% efficient τ-estimators while the dashed line corresponds to the 50% breakdown point S-estimator obtained by
setting ψ0 = ψ1 in (18). These influence functions show that the redescending behavior of the estimators is passed on
to the test statistics. Intermediate outliers can affect the test statistics to some extend, but far outliers are effectively
downweighted and thus do not harm the test statistics. The higher efficiency of τ-estimators makes the corresponding
test statistic more sensitive to intermediate outliers in the sense that their effect can be larger and outliers need to lie
further away before their effect disappears.

3. Bootstrap

The asymptotic approximation to the null distribution of the test statistic given in Theorem 1 requires regular-
ity conditions that may be hard to verify in practice, or that might be violated by the presence of outliers (e.g. the
symmetric distribution of the errors). Furthermore, numerical experiments show that relatively large sample sizes are
required for this approximation to be reliable (see Section 4). The bootstrap (Efron, 1979) provides an alternative
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Figure 1: Response part of the standardized second-order influence function of the robust test statistic for a normal error distribution.

estimator for the null distribution of our test statistic that in many cases requires fewer regularity conditions to be
consistent. However, the presence of outliers in the data may have a serious damaging effect on the usual bootstrap
estimators. Moreover, the computational complexity of robust estimators might make the standard bootstrap unfea-
sible, particularly for moderate to high-dimensional problems. In this section we investigate the use of the fast and
robust bootstrap (Salibian-Barrera and Zamar, 2002) to obtain approximate p-values for the ANOVA τ-tests discussed
above. The fast and robust bootstrap (FRB) successfully overcomes both problems mentioned above. Although it was
initially proposed for linear regression models, the FRB has been extended to several other models (Van Aelst and
Willems, 2002, 2005; Salibian-Barrera, Van Aelst, 2008; Roelant, Van Aelst and Croux, 2009; Khan, Van Aelst and
Zamar, 2010; and Samanta and Welsh, 2013).

The basic idea of the FRB can be outlined as follows. Let γ̂n denote a vector of estimated parameters. Many
robust estimators satisfy a set of fixed-point equations of the form γ̂n = gn(γ̂n), where the function gn : Rk → Rk

typically depends on the sample. Given a bootstrap sample, the re-calculated estimator γ̂∗n solves γ̂∗n = g∗n(γ̂∗n). To
avoid solving this new system of nonlinear equations for each bootstrap sample, the FRB computes instead

γ̂R∗
n = γ̂n +

[
I − ∇gn(γ̂n)

]−1 (
g∗n(γ̂n) − γ̂n

)
. (19)

The above equation is derived from a first-order Taylor approximation to the set of nonlinear equations that needs to
be solved for each bootstrap sample. Note that the matrix [I − ∇gn(γ̂n)]−1 is computed only once with the original
sample, and that evaluating g∗n(γ̂n) is typically very fast (it only requires finding the solution of a linear system of
equations compared to solving a nonlinear optimization problem in p dimensions).

For τ-regression estimators, we set γ̂n = (θ̂n, σ̂n), then we obtain from (5) and (6) that

gn(θ, σ) =


(∑n

i=1
ψn( ri (θ)

σ )
ri (θ)
σ

xix′i
)−1 ∑n

i=1
ψn( ri (θ)

σ )
ri (θ)
σ

xiyi

σ 1
b1

1
n

∑n
i=1 ρ1

(
ri(θ)
σ

)
 , (20)

where ψn = Wn ψ1 + ψ2 and Wn is given in (7). Simple calculations show that

I − ∇gn(θ, σ) =

(
A−1 B A−1 v

b′ a

)
, (21)

where

A =
1
σ

n∑
i=1

ψn( ri(θ)
σ

)
ri(θ)
σ

xix′i , B =
1
σ

n∑
i=1

ψ′n(
ri(θ)
σ

) xix′i ,

7



v =
1
σ

n∑
i=1

ψn( ri(θ)
σ

)
ri(θ)
σ

xi , b =
1
b1

1
n

n∑
i=1

ψ1(
ri(θ)
σ

)xi ,

and a = (1/(b1 n))
∑n

i=1 ψ
′
1(ri(θ)/σ) ri(θ)/σ.

In order to show that the FRB can be used to find a consistent estimator of the null distribution of the test statistic
Ln in (10), we first need to show that the FRB provides a consistent estimator for the distribution of the τ-regression
estimators in (3).

Theorem 3 Let (yi, xi), i = 1, . . . , n be a random sample satisfying the linear regression model in (2). Let θ̂n and σ̂n

be the τ-regression and scale estimators, respectively, defined in (3) and (4), such that θ̂n
P
−−−−→
n→∞

θ0 and σ̂n
P
−−−−→
n→∞

σ0.

Assume that ρ j, j = 1, 2 are ρ-functions with continuous third derivatives, E[ρ′1(r)r] , 0 and finite, and such that
ρ′j(u)/u, j = 1, 2 are continuous. Furthermore, assume that E[ρ′0(r)/r XX′] is non-singular, and that the following
quantities exist and are finite: E[ρ′′0 (r)XX′], E[ρ′′0 (r)rX], and E[ρ′1(r)X]; where ρ0(r) = Wρ1(r) + ρ2(r) and W is
defined in Theorem 1. Then, along almost all sample sequences, the distribution of

√
n(θ̂
∗

n − θ̂n) converges weakly to
the same limit as

√
n(θ̂n − θ0).

In order to obtain correct estimates of the sampling distribution of the estimators under the null hypothesis, we
follow Hall and Wilson (1990) and Fisher and Hall (1991). As before, let θ̂n,0 and θ̂n be the regression estimators
computed under the null and full model, respectively. Let r(a)

i = yi − x′i θ̂n and f (0)
i = x′i θ̂n,0, i = 1, . . . , n, be the

residuals in the full model and the fitted values in the null model, respectively. We build a data set that mimics
samples from the null hypothesis as follows:

ỹi = f (0)
i + r(a)

i = x′i θ̂n,0 + r(a)
i , i = 1, . . . , n . (22)

Note that these “null data” approximately satisfy the null hypothesis even if the original sample does not. Let
r∗ (a)

1 , . . . , r∗ (a)
n be a bootstrap sample from the residuals r(a)

1 , . . . , r(a)
n and construct our “null” bootstrap observations

ỹ∗i = x′i θ̂n,0 + r∗ (a)
i , i = 1, . . . , n .

We can then use the FRB with these bootstrap samples to obtain recomputed τ-regression estimates and evaluate the
test statistics with them.

It is important to note that even after obtaining consistent FRB estimates of the sampling distribution of the
regression estimators, the consistency of the FRB for the null distribution of the test statistic in (10) requires special
care. As noted in Van Aelst and Willems (2011), an additional regularity condition is required for the FRB distribution
estimator to be consistent for statistics with rate of convergence higher than

√
n. The idea can be outlined as follows.

Let Θ̂n = (θ̂
′

n, θ̂
′

n,0)′ ∈ R2p denote the vector containing the regression estimators with and without the null hypothesis
restriction, and let the test statistic of interest be Ln = hn(Θ̂n), a function of these combined estimates. Note that the
function hn may depend on the sample. Then, the FRB re-computed test statistic is h∗n(Θ̂

R∗
n ). The Taylor expansion

leading to (19) implies that Θ̂
R∗
n = Θ̂

∗

n + Op(1/n) (Salibian-Barrera, Van Aelst and Willems, 2006). This order of
approximation is enough to estimate the distribution of statistics that converge with order Op(1/

√
n), but more is

needed for the FRB to work with test statistics that are of order Op(1/n), like Ln in (10). More specifically, we require
that the FRB re-calculation of the test statistic h∗n(Θ̂

R∗
n ) satisfies

h∗n(Θ̂
R∗
n ) = h∗n(Θ̂

∗

n) + op(1/n) . (23)

Using a Taylor expansion of the test statistic hn around Θ̂
∗

n we have

hn(Θ̂
R∗
n ) = h∗n(Θ̂

∗

n) + ∇h∗n(Θ̂
∗

n) (Θ̂
R∗
n − Θ̂

∗

n) + op(1/n) .

Since Θ̂
R∗
n − Θ̂

∗

n = Op(1/n), a sufficient condition for (23) to hold is that

∇h∗n(Θ̂
∗

n) = op(1) . (24)
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Note that the test statistic Ln in (10) can be written as a smooth function of the regression estimators θ̂n,0, θ̂n:

Ln(θ̂n,0 , θ̂n) = hn(θ̂n,0 , θ̂n) , (25)

for which it can be seen that condition (24) above is satisfied. Details are included in the Appendix.
Note that in the representation (25) above, we are expressing our test statistic as a function of the regression

estimators only, and do not include the scale estimators. This implies that when we use the FRB to approximate
the distribution of (10), we need to compute the scale estimates exactly using the residuals of the corresponding
bootstrapped regression estimators. Although this implies a slight increase in computational complexity over simply
using the bootstrapped scale estimators, it is negligible compared to the cost of re-computing the regression estimators
for each bootstrap sample.

4. Finite-sample behavior

To investigate the finite-sample properties of our robust ANOVA τ-tests, we conducted a simulation study. We
generated 500 samples of sizes n = 50, 100, 200 and 500 according to the linear regression model

Y = θ′0Z + ε , (26)

where θ0 ∈ R5 and Z = (1,X′)′, with X ∼ N(0, I4), independent from ε ∼ N(0, 1). The null hypothesis is H0 : θ0,4 =

θ0,5 = 0. The vector of regression parameters was set to θ0 = (θ0,1, θ0,2, . . . , θ0,5)′ = (1, 1, 1, d, 0)′, and we varied the
parameter d to obtain samples from the null (d = 0) and alternative hypotheses (d = 0.25, 0.50 and 1).

We used both the asymptotic approximation and the FRB to estimate the p-values of all robust tests in this com-
parison. In addition to the robust ANOVA tests based on Ln in (10) and S Ln in (13), we also consider the robust Wald
test (Hampel et al., 1986) and the robust scores test (Markatou and Hettmansperger, 1990). Let θ̂n,0 and θ̂n be the
estimators for the null and full model, respectively. Then, the Wald test statistic is given by

Wn = θ̂
(2)
n

′ (
Vn,(2,2)

)−1 θ̂
(2)
n , (27)

where Vn,(2,2) is the lower right submatrix of Vn = M−1
n Qn M−1

n , Mn =
∑n

i=1 ψ
′
0(ri/σ̂n)xix′i/n, Qn =

∑n
i=1 ψ

2
0(ri/σ̂n)xix′i/n,

ri = yi − x′i θ̂n, σ̂n is the scale estimator in the full model, and ψ0 = W ψ1 + ψ2 as before. In practice, we estimate the
constant W in ψ0 using its empirical counterpart.

The scores test statistic is given by
Rn = n S (0)

(2)
′

U−1
n S (0)

(2) , (28)

where

Un = Qn,(2,2) − Mn,(2,1) M−1
n,(1,1) Qn,(1,2) − Qn,(2,1) M−1

n,(1,1) Mn,(1,2) + Mn,(2,1) M−1
n,(1,1) Qn,(1,1) M−1

n,(1,1) Mn,(1,2) ,

S (0)
(2) is the corresponding subvector of the scores function computed under the null hypothesis,

S (0) =

n∑
i=1

ψ0(r(0)
i /σ̂n)xix′i/n ,

and r(0)
i = yi − x′i θ̂n,0. Under H0, both Wn and Rn have an asymptotic χ2

p−q distribution.
We also included in our study a robust likelihood-ratio type test statistic, also called drop-in dispersion test

(Ronchetti, 1982; Markatou et al., 1991). :

Hn =
2
n

∑n
i=1 ψ

′
0(ri/σ̂n)∑n

i=1 ψ
2
0(ri/σ̂n)

 n∑
i=1

ρ0

( r(0)
i

σ̂n

)
− ρ0

(
ri

σ̂n

) , (29)

where ρ0 = Wρ1 +ρ2. For τ-estimators it can be shown that the statistic nHn has an asymptotic χ2
p−q distribution under

the null hypothesis.
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(b) FRB

Figure 2: Accuracy of level. Empirical levels as a function of the sample size, when no contamination is present. The left panel
contains the results obtained by using the asymptotic χ2 approximation. Estimating the p-values using FRB yields the empirical
levels displayed in the right panel.

First we investigate the level of these tests. Figure 2 contains the empirical levels for tests with a nominal level
of 5%, when the data follow model (26) with θ0,4 = θ0,5 = 0, i.e. the null model. We see that when the sample size
increases the asymptotic approximation becomes more accurate and the observed levels approach the nominal level,
as expected. Also note that the FRB approximation consistently yields tests with empirical levels closer to the nominal
one. Moreover, the scores test and the ANOVA τ-test based on Ln are the most accurate tests while the others are too
liberal, especially for small sample sizes. In particular, note that S Ln, the ANOVA test based on S-estimators, is not
reliable at all due to the low efficiency of the S-scale estimators.

To investigate the power of the tests when the p-values are estimated using either the asymptotic approximation
or the FRB, we varied the values of the parameter d in (26). The results for samples of sizes n = 50 and n = 100
when the data do not contain outliers are displayed in Figures 3 and 4, respectively. We can see that the power of the
tests increases quickly with increasing distance d, especially for larger samples. For close-by alternatives, the power
is generally higher when using the asymptotic distribution than with FRB. However, this is a consequence of the fact
that the asymptotic tests are also more liberal, as can again be seen for the case d = 0 in these plots. For n = 100 we
can see from Figure 4 that there is little difference between the tests, except for the unreliable S Ln test. For n = 50
Figure 3 shows that the LRT and Wald tests yield higher power than the ANOVA τ-test and the scores test, but this is
again a consequence of these tests being too liberal under the null hypothesis. Comparing the ANOVA τ-test with the
scores test, we can see that the ANOVA τ-test has higher power.

To investigate the robustness of the tests, samples were then contaminated with bad leverage points. We first ran
a small numerical experiment to identify the least favourable outlier configuration for these tests. We replaced 10%
of the values of X2 with observations following a N(5, 0.12) distribution, and the corresponding response Y had a
N(η, 0.12) distribution, with η = 0, 2, 5, 7, 10, 12, 15, 20, 25, 30, 35, 40, and 45. Figure 5 shows the observed
empirical level and powers (for the closest alternative with d = 0.25) as a function of η, for n = 200, and p-values
obtained with the FRB. The results for other sample sizes and p-values computed with the asymptotic approximation
are very similar. We see that the least favourable outlier contamination appears to be around η = 12.

To investigate the effect of particularly damaging outliers on the level of these tests we placed outliers with X2 ∼

N(5, 0.12) and Y ∼ N(12, 0.12). The results are shown in Figure 6. Note that p-values estimated by FRB again yield

10



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

d

P
ow

er

●

●

●

●

●

Ln
SLn
Wald
Scores
LRT

(a) Asymptotic approximation
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(b) FRB

Figure 3: Empirical power. Empirical power levels for uncontaminated samples of size n = 50 as a function of the parameter d in
(26). The left and right panels contain the results obtained with the asymptotic χ2 approximation and with the FRB, respectively.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

d

P
ow

er

●

●

● ●

●

Ln
SLn
Wald
Scores
LRT
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Figure 4: Empirical power. Empirical power levels for uncontaminated samples of size n = 100 as a function of the parameter d in
(26). The left and right panels contain the results obtained with the asymptotic χ2 approximation and with the FRB, respectively.
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(b) Powers

Figure 5: Empirical levels and powers (for d = 0.25) for different outlier configurations, for samples of size n = 200.

empirical levels closer to the nominal level than asymptotic p-value approximations. In both cases (samples with and
without outliers) the advantage of using the FRB is more noticeable for smaller sample sizes. The scores test clearly
best maintains the level in this case. The ANOVA τ-test also gives reasonable results, especially when using FRB.
The Wald test based on FRB performs well for larger samples, but not for small samples.

To investigate the robustness of the power, Figures 7 and 8 show the results for contaminated samples of size
n = 50 and n = 100 respectively. From these plots we can see that of the tests with level closest to the nominal value,
the power curve for the ANOVA τ-test increases fastest, and hence the test rapidly achieves power comparable to the
other tests while maintaining one of the best empirical levels. Note that this experiment was done using the most-
damaging outlier configuration for the ANOVA τ-test. The scores test does not seem to perform well, especially for
smaller samples (n = 50). The good (robustness of) level of this test thus comes with a price in (robustness of) power.
Overall, we can conclude that the ANOVA τ-test shows a good performance both in terms of accuracy under the
null and power under the alternative. Moreover, in the presence of contamination this test gives a good compromise
between robustness of level and robustness of power, compared to the other robust tests.

5. Example

To illustrate our method, we consider data from a linguistics experiment, designed to study whether a reader’s
processing time when he or she encounters new and complex words (in this case: neologisms in Dutch) is affected by
having been previously exposed to it or its base. The data contains 656 observations obtained from 32 subjects. The
response variable is the logarithm of the reading latency, and there are 13 possible covariates: the logarithm of the
frequency of the lowest-level base of the neologism (RootFrequency), the estimated frequency of the word (Rating),
the frequency of the base adjective (BaseFrequency), the number of letters in the word (LengthInLetters), a measure
of the number of meanings of the words base: its number of synonym sets in WordNet (NumberOfSynsets) (Miller,
1990), the logarithm of the size of the morphological family of the word (FamilySize), the logarithm of reading latency
when exposed 1, 2, 3 and 4 trials back (RT1WordBack, RT2WordsBack, RT3WordsBack, RT4WordsBack), 1 and 2
trials later (RT1WordLater, RT2WordsLater), and for the prime word (RTtoPrime).

The data set is available in R (selfPacedReadingHeid in package languageR) and was originally analyzed by
De Vaan et al. (2007) (see also Baayen, 2008) who identified 5 observations with “extreme” values of the response

12



100 200 300 400 500

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Sample Size

Le
ve

l

50

●

●

●

●

●

Ln
SLn
Wald
Scores
LRT

(a) Asymptotic approximation
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(b) FRB

Figure 6: Robustness of level. Empirical levels as a function of the sample size, when samples contain 10% of high-leverage outliers.
The left panel contains the results obtained by using the asymptotic χ2 approximation. Estimating the p-values using FRB yields
the empirical levels displayed in the right panel.
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Figure 7: Empirical power for samples with 10% of high-leverage outliers. Empirical power levels for contaminated samples of
size n = 50 as a function of the parameter d in (26). The left and right panels contain the results obtained with the asymptotic χ2

approximation and with the FRB, respectively.
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(a) Asymptotic approximation
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Figure 8: Empirical power for samples with 10% of high-leverage outliers. Empirical power levels for contaminated samples of
size n = 100 as a function of the parameter d in (26). The left and right panels contain the results obtained with the asymptotic χ2

approximation and with the FRB, respectively.

variable (less than 5 and larger than 7), and flagged them as potential outliers. We follow a more principled approach
and first fit a linear model using a τ-regression estimator. The robust estimator identifies 6 potential outliers (approxi-
mately 10% of the observations) with residuals larger than 3.5 standard deviations in absolute value. Figure 9 shows
the corresponding outlier diagnostic plot which plots the residuals vs robust distances of the observations in the design
space, based on MM-location and scatter estimators. This plot reveals that there are 5 vertical outliers and one extreme
bad leverage point that may largely affect any nonrobust analysis. Table 1 displays the summary of the τ-regression
estimate, tuned to attain a breakdown point of 50% and 95% efficiency compared to least squares when the errors
are normal. The standard errors of the regression estimates were computed using the FRB. Interestingly, potentially
significant covariates (individual p-values less than 0.05) are the length of the word and most of the reading latencies
for previous exposure to the word or its prime, which seems to be in agreement with the researchers’ hypothesis.

We now test the hypothesis that the coefficients for all the other covariates are zero. We consider the same tests as
in the comparison in the previous section. The estimated p-values of the tests using both the asymptotic approximation
and the FRB are given in Table 2. Comparing the asymptotic χ2 with the FRB approximation for the null distribution
of the test statistics, we see that the p-values estimated by FRB are larger for all but one of the tests (the unreliable
S Ln test which is not significant in either case). Note that the asymptotic χ2 distribution does not seem to give a good
approximation for the null distribution of the scores test in this example, leading to a clearly deviating p-value. Since
the sample size is reasonably large, next to the ANOVA type τ-test, also the robust Wald and Scores test based on FRB
can be expected to give reliable results. In Table 2 we can see that the FRB based p-values of these tests are indeed
fairly close to each other and all lead to the same conclusion.

Overall, the test results suggest that there is not enough evidence to include variables in the model other than those
related to previous exposure to the word, or its length. To verify that this is a sensible conclusion, we run a small
cross-validation (CV) experiment to compare the prediction power of the full and null models. We used 500 runs of
5-fold CV. Given the presence of potential outliers in the data, to measure the quality of the predicted values we used
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Figure 9: Plot of standardized residuals versus robust Mahalanobis distances for the linguistic data. The horizontal dashed lines
indicate ±3.5 standard deviations. The vertical line corresponds to the 99.5% quantile of a χ2

13 distribution. Observations that are
beyond this line can be considered high-leverage points.

Estimate Std. Error t value Pr( > |t|)
(Intercept) -1.454 0.299 -4.856 0.00
RT4WordsBack 0.193 0.062 3.090 0.00
RT3WordsBack 0.305 0.068 4.467 0.00
RT1WordBack 0.344 0.058 5.906 0.00
RTtoPrime 0.123 0.049 2.520 0.01
RT2WordsLater 0.139 0.048 2.877 0.00
LengthInLetters 0.032 0.015 2.056 0.04
RT2WordsBack 0.069 0.059 1.175 0.24
FamilySize -0.015 0.011 -1.369 0.17
RT1WordLater 0.032 0.044 0.723 0.47
Rating -0.005 0.035 -0.131 0.90
NumberOfSynsets 0.016 0.017 0.927 0.35
BaseFrequency 0.004 0.010 0.367 0.71
RootFrequency -0.002 0.009 -0.190 0.85

Table 1: Summary of the τ-regression estimator for the linguistics data. Standard errors were estimated using the fast and robust
bootstrap.

Test Asymptotic FRB
Ln 0.22 0.32
S Ln 0.23 0.10
Wald 0.32 0.41
Scores 0.00 0.26
LRT 0.22 0.27

Table 2: Estimated p-values for the linguistics example using the asymptotic approximation and the fast and robust boostrap.
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Figure 10: Boxplots of 500 replicates of 5-fold cross-validation estimates of the trimmed mean squared prediction error (10%
trimming proportion) for the full and reduced models.

trimmed mean squared prediction errors of the form

T MS PE =
1

n − bγnc

n−bγnc∑
i=1

r2
(i) ,

for 0 ≤ γ ≤ 0.2, where r2
(1) ≤ r2

(2) ≤ . . . ≤ r2
(n) are the ordered squared residuals ri = yi − ŷi. In this way, we do

not unduly penalize a fit that does not accommodate possible outliers. Another way to interpret this is by saying
that we prefer a model that produces better predictions for a large majority of the data, possibly at the expense of
predicting a small minority of observations not well. Figure 10 contains the boxplots of the 500 trimmed mean
squared prediction errors with γ = 0.10 (based on the proportion of outliers identified above). Note that the smaller
model gives better predictions for the majority (98%) of the observations. Furthermore, the corresponding trimmed
mean squared prediction errors are more stable than those from the full model. The results for γ = 0.00, 0.01, 0.02,
0.05, 0.15 and 0.20 are very similar and lead to the same conclusion. This finding thus supports the conclusion
obtained from the p-values estimated with FRB that the discarded covariates may indeed not be necessary.

6. Conclusion

The illustrative example together with the empirical investigations show that ANOVA τ-tests for testing linear
hypotheses in regression models provide both good level and power, even in the presence of outliers, in comparison
to the available alternative robust tests. In particular, the S Ln test turned out to be very unreliable and also the Wald
test can better be avoided as it is not really reliable. The scores test showed excellent behavior in terms of the level
of the test, but this may come at a high price in terms of power, especially for smaller samples. The Ln test shows a
power behavior similar to the LRT test while being more stable in terms of level.

The Fast and Robust Bootstrap (FRB) yields a reliable estimate for the null distribution of these tests. Its advantage
over the asymptotic approximation is most noticeable for small sample sizes. These results constitute another example
of the versatility of the FRB as a feasible and robust distribution estimator, that in many cases outperforms traditional
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asymptotic approximations, while typically requiring fewer regularity assumptions. In this paper we have used a
model based bootstrap procedure by bootstrapping the residuals obtained from the fit on the original data. However,
once ‘pseudo responses’ have been obtained as in (22), bootstrapping pairs can also be used. Bootstrapping pairs
typically requires less assumptions about the distribution of the errors in the linear model, but we expect the power
of the resulting tests to be somewhat lower. Finally, note the sample sizes considered in our experiments are not very
small compared to the dimension of the data. Robust inference beyond point estimation generally requires sufficiently
large sample sizes so that the data contain enough information to obtain stable, useful inference results.

Appendix

Appendix A.1. Equivalence of (8) and (9)
Consider the null hypothesis in (8). Let Q be such that QQ′ = Σ where Σ = E(XX′). Moreover, define Ṽ = {β :

β = Q′θ, θ ∈ V} and let P ∈ Rp×p be an orthogonal matrix P = (P1,P2) such that the columns of P1 ∈ Rp×q and
P2 ∈ Rp×(p−q) contain orthogonal bases for Ṽ and Ṽ⊥, respectively. Now transform the linear model in (2) as follows:

yi = θ′0xi + εi

= θ′0Q P P′Q−1xi + εi

= γ′0zi + εi ,

where γ0 = P′Q′θ0 and zi = P′Q−1xi. Write γ0 = (γ(1)′

0 , γ(2)′

0 )′, where γ(1)
0 contains the first p coordinates of γ0.

With this change of variables the null hypothesis θ0 ∈ V is equivalent to Q′θ0 ∈ Ṽ , which is equivalent to
P′2Q′θ0 = 0 and to

H∗0 : γ(2)
0 = 0 . (A.1)

Furthermore, the alternative hypothesis Hn in (12) is equivalent to

H∗n : γ = (γ(1)
0 ,b/

√
n) , (A.2)

where γ(1)
0 = P′1Q′θ0, and b = P′2Q′a. Note that

E(zi zi) = P′Q−1QQ′ Q′ −1 P = Ip ,

where Ip denotes the p × p identity matrix. Moreover, since P′1Q′a = 0 we have

b′b = ‖P′Q′a‖2

= a′QQ′a
= a′Σa . (A.3)

Using the affine equivariance of the τ-estimates, it is easy to show that the test statistic Ln based on the sample (yi, xi),
1 ≤ i ≤ n, for the hypothesis H0 coincides with the statistic Ln based on the transformed sample (yi, zi), 1 ≤ i ≤ n, for
the hypothesis H∗0. Hence, without loss of generality, we can work with the transformed model. �

Appendix A.2. Proof of Theorem 1

Without loss of generality (see Section Appendix A.1), assume that the regression model is

yi = γ′0zi + εi ,

where γ0 ∈ Rp and E(zi zi) = Ip, and the null hypothesis is given by (A.1). Let the scale estimators sn(γ) and τn(γ)
be as in (5) and (4) with ri(γ) = yi − γ

′zi. The τ-estimator for γ0 is

γ̂n = arg min
γ∈Rp

τ2
n(γ) ,

17



and the restricted τ-estimate under (A.1) is given by γ̂n,0 = (̂γ(1)
n,0, 0

′)′ , where

γ̂(1)
n,0 = arg min

γ(1)∈Rq
τ2

n((γ(1), 0)) .

Given a function f (γ) : Rp → R, we denote by f ′(γ) the p-dimensional vector of derivatives with j-th el-
ement f ′(γ) j = ∂ f (γ)/∂γ j, and by f ′′(γ) the p × p matrix of second derivatives, with (i, j) element f ′′(γ)i, j =

∂2 f (γ)/(∂γi∂γ j). If g(γ) : Rp → Rp, then g′(γ) denotes the the p × p matrix of first derivatives, with (i, j) element
g′(γ)i, j = ∂gi(γ)/∂γ j.

For j = 1, 2, define the following quantities:

An j(γ) =

n∑
i=1

ψ j

(
ri(γ)
sn(γ)

)
zi , Bn j(γ) =

n∑
i=1

ψ j

(
ri(γ)
sn(γ)

)
ri(γ) ,

Cn j(γ) =

n∑
i=1

ψ′j

(
ri(γ)
sn(γ)

)
ri(γ)zi , Dn j(γ) =

n∑
i=1

ψ′j

(
ri(γ)
sn(γ)

)
zi z′i ,

Fn j(γ) =

n∑
i=1

ψ′j

(
ri(γ)
sn(γ)

)
r2

i (γ) , Mn j(γ) =

n∑
i=1

ρ j

(
ri(γ)
sn(γ)

)
.

The following lemma gives the gradient s′n(γ) and Hessian matrix s′′n (γ) of the function sn(γ) in (5).

Lemma 1 With the above notation, it holds that

(a) s′n(γ) = −sn(γ) An1(γ)/Bn1(γ),

(b) s
′′

n(γ) =
sn(γ)An1(γ)AT

n1(γ) + Dn1(γ)Bn1(γ) − An1(γ)CT
n1(γ)

B2
n1(γ)

+
Cn1(γ)AT

n1(γ) − Fn1(γ)An1(γ)AT
n1(γ)/Bn1(γ) + sn(γ)An1(γ)AT

n1(γ)

B2
n1(γ)

.

Proof: Part (a) follows by differentiating both sides of (5). We obtain

1
n

n∑
i=1

ψ1

(
ri(γ)
sn(γ)

)
(−zisn(γ) − s′n(γ)ri(γ)) = 0 .

Hence,

s′n(γ) = −
sn(γ) An1(γ)

Bn1(γ)
. (A.4)

To show (b), we first find the derivatives of An1(γ) and Bn1(γ) which yields

A′n1(γ) =

n∑
i=1

ψ′1

(
ri(γ)
sn(γ)

)
zi

s2
n(γ)

[−zT
i sn(γ) − s′n(γ)ri(γ)]

= −

n∑
i=1

ψ′1

(
ri(γ)
sn(γ)

) ziz′i
sn(γ)

−
1

s2
n(γ)

n∑
i=1

ψ′1

(
ri(γ)
sn(γ)

)
zis′Tn (γ)ri(γ)

= −
Dn1(γ)
sn(γ)

+
An1(γ)C

′T
n1(γ)

sn(γ)Bn1(γ)
. (A.5)
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and

B′n1(γ) =

n∑
i=1

ψ′1

(
ri(γ)
sn(γ)

)
ri(γ)
s2

n(γ)
[−zisn(γ) − s′n(γ)ri(γ)]

−

n∑
i=1

ψ1

(
ri(γ)
sn(γ)

)
zi

= −
Cn1(γ)
sn(γ)

+
Fn1(γ)An1(γ)
sn(γ)Bn1(γ)

− An1(γ). (A.6)

Moreover, differentiating (A.4) yields

s′′n (γ) = −
Bn1(s′nAT

n1(γ) + sn(γ)A′n1(γ)) − sn(γ)An1(γ)B′n1(γ)

B2
n1(γ)

,

and by inserting (A.5) and (A.6) we obtain (b). �

The following lemma gives the derivatives of the τ-scale function τ2
n(γ) in (4).

Lemma 2 (a) τ2′
n (γ) = 2sn(γ)s′n(γ)Mn2(γ) − sn(γ)An2(γ) − Bn2(γ)s′n(γ),

(b) τ2′′
n (γ) = 2s′ns′Tn Mn2(γ) + 2sns′′n M2(γ) + 2sns′n

−AT
n2

sn
−

Bn2s′Tn
s2

n


− s′nAT

n2 − snA′n2 − B′n2s′Tn − Bn2s
′′

n .

Proof: By differentiating (4) we get

τ2′
n (γ) = 2sns′n

n∑
i=1

ρ2

(
ri(γ)
sn(γ)

)
+ s2

n

n∑
i=1

ψ2

(
ri(γ)
sn(γ)

) [
−zisn(γ) − ri(γ)s′n

s2
n

]
= 2sn(γ)s′n(γ)Mn2(γ) − sn(γ)An2(γ) − Bn2(γ)s′n(γ) , (A.7)

which shows (a). By differentiating (A.7) we obtain (b). �

Lemma 3 If γ∗n → γ0 a.s., then τ2′
n (γ∗n)→ D0 Ip.

Proof: Using Lemma 4.2 of Yohai (1985) we immediately obtain that sn(γ∗n) → s0 a.s., An j(γ∗n) → 0 a.s., and
Cn j(γ∗n)→ 0 a.s.. Moreover, for j = 1, 2 we have that

Bn j(γ∗n)→ E
(
ψ j

(
u
s0

)
u
)

a.s.,

Dn j(γ∗n)→ E
(
ψ′j

(
u
s0

))
E

(
zizT

i

)
a.s. , (A.8)

Fn j(γ∗n)→ E
(
ψ′j

(
u

S 0

)
u2

)
a.s., (A.9)

Mn j(γ∗n)→ E
(
ρ j

(
u
s0

))
a.s.. (A.10)

Using Lemma 1 we have s′n(γ∗n)→ 0 a.s., and s′′n (γ∗n)→ D1/(s0B1)Ip a.s. We now use Lemma 2 (b) to obtain

τ2′′
n (γ∗n) −→

2s0D1M2

s0B1
Ip + D2Ip +

B2D1

B1
Ip a.s.

= (WD1 + D2)Ip = D0Ip .

�
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Lemma 4 Under H∗0 we have that n1/2(γ(1)
n − γ

(1)
n,0)→P 0.

Proof: Following the proof of Theorem 5.1 in of Yohai and Zamar (1986) and using that E(ziz′i) = Ip, we have

n1/2 (̂γn − γ0) =
1

D0n1/2

n∑
i=1

ψ0

(
u
s0

)
zi + op(1) .

Therefore, if z(1)
i is the vector formed with the first q components of zi we obtain that

n1/2 (̂γ(1)
n − γ

(1)
0 ) =

1
D0n1/2

n∑
i=1

ψ0

(
u
s0

)
z(1)

i + op(1) .

When H0 holds, using the same Lemma we also find that

n1/2 (̂γ(1)
n0 − γ

(1)
0 ) =

1
D0n1/2

n∑
i=1

ψ0

(
u
s0

)
z(1)

i + op(1) ,

and the result follows immediately. �

Lemma 5 Under H∗0 we have that

Ln = n
D0

2s2
0M2
γ̂(2)T

n γ̂
(2)
n + op(1) . (A.11)

Proof: Since τ2′ (̂γn) = 0, we have

τ2
n (̂γn,0) − τ2

n (̂γn) =
1
2

(̂γn,0 − γ̂n)Tτ2′′
n (γ̃n)(̂γn,0 − γ̂n), (A.12)

where γ̃n is an intermediate point between γ̂n,0 and γ̂n. Theorem 4.1 in Yohai and Zamar (1988) shows that under H0
both sequences are consistent to γ0, and hence, by Lemma 3 we have that

τ2′′
n (γ̃n)→ D0 Ip a.s. (A.13)

By Lemma 4 we have that
n1/2 (̂γn,0 − γ̂n) − n1/2(0, γ̂(2)

n )→P 0 , (A.14)

and, finally, using (A.10) we obtain
τ2

n (̂γn)→ s2
0M2 a.s. (A.15)

Equations (A.12)-(A.15) imply (A.11). �

Proof of Theorem 1: Theorem 5.1 in Yohai and Zamar (1988) shows that

n1/2 (̂γ(2)
n − γ

(2)
0 )→D Np−q(0, ϑIp−q),

where ϑ = s2
0K0/D2

0. Then, under H∗0 in (A.1) we obtain

n1/2γ̂(2)
n

ϑ1/2 →D Np−q(0, Ip−q) ,

which implies that
nγ̂(2)T

n γ̂(2)
n

ϑ
→D χ2

p−q , (A.16)

where χ2
p−q is the central chi-square distribution with p − q degrees of freedom. Using Lemma 5 we have that

2 D0 M2

K0
Ln = n

γ̂(2)T
n γ̂(2)

n

ϑ
+ op(1) , (A.17)
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which, together with (A.16), shows part (a) of the Theorem.
Under H∗n we have that

n1/2 (̂γ(2)
n − b/n1/2)
ϑ1/2 =

n1/2γ̂(2)
n − b

ϑ1/2 →D Np−q(0, Ip−q) ,

where b is as in (A.2), and then
n1/2γ̂(2)

n

ϑ1/2 →D Np−q

(
b
ϑ
, Ip−q

)
,

which implies
nγ̂(2)T

n γ̂(2)
n

ϑ
→D χ2

p−q(δ) ,

where χ2
p−q(δ) is the non-central chi-square distribution with p − q degrees of freedom and non-centrality parameter

δ =
√

b′b/ϑ. Since the sequence of hypothesis H∗n is contiguous to H∗0, (A.17) still holds, and therefore we have that

2 D0 M2

K0
Ln →

D χ2
p−q(δ) .

Finally, note that by (A.3) δ2 = a′Σa/ϑ, which completes the proof of part (b). �

Appendix A.3. Proof of Theorem 2
The test statistic Λ is asymptotically χ2

q according to (13) and up to O(1/n) we have that α(Hε,n) = 1−Hq(η1−α0 , δ(ε))
where δ(ε) = nΛ(Hε,n). Let b(ε) = −Hq(η1−α0 , δ(ε)), then we have up to O(1/n) that

α(Hε,n) − α0 = b(ε) − b(0) = ε b′(0) +
ε2

2
b′′(0) + o(ε2).

A second order von Mises expansion of Λ(Hε,n) yields

Λ(Hε,n) = Λ(H) +
ε
√

n

∫
ξ1(x) dG(x) +

1
2
ε2

n

∫∫
ξ2(x, y) dG(x) dG(y) + o(ε2/n) , (A.18)

with ξ1(x) = IF(x,Λ,H) = 0 (see e.g. Fernholz 2001, Gatto and Ronchetti 1996). From (A.18) we immediately
obtain b′(0) = κ ∂δ

∂ε
|ε=0 = nκ ∂Λ(Hε,n)

∂ε
|ε=0 = 0, and

b′′(0) = κ
∂2δ

∂ε2 |ε=0 = nκ
∂2Λ(Hε,n)

∂ε2 |ε=0 = κ

∫∫
ξ2(x, y) dG(x) dG(y).

For G = ∆y this expression reduces to b′′(0) = κξ2(y, y) = κ IF2(y,Λ,H). �

Appendix A.4. Proof of Theorem 3
The proof follows the same lines as that of Theorem 1 in Salibian-Barrera and Zamar (2002). The basic idea is

to note that τ-regression estimators are asymptotically equivalent to an M-estimator as in (6). More specifically, note
that θ̂n and σ̂n satisfy the fixed-point equation gn(θ̂n, σ̂n) = (θ̂n, σ̂n), where gn is given in (20). A Taylor expansion
around the limiting values θ0 and σ0 yields

(θ̂n, σ̂n) = gn(θ0, σ0) + ∇gn(θ0, σ0) (θ̂n, σ̂n) + Rn .

The assumed regularity conditions on the derivatives of ρ1 and ρ2 suffice to show that Rn = op(1/
√

n), from which we
obtain

√
n((θ̂n, σ̂n) − (θ0, σ0)) = (I − ∇gn(θ0, σ0))−1 √n (gn(θ0, σ0) − (θ0, σ0)) + op(1) .

Simple calculations along the same lines as in Salibian-Barrera and Zamar (2002) show that the matrix I−∇gn(θ0, σ0)corresponds
to (21). We only need to show that the bootstrap distribution of

√
n (gn(θ0, σ0) − (θ0, σ0)) is asymptotically the same

as that of
√

n (g∗n(θ̂n, σ̂n) − (θ̂n, σ̂n)). The argument is the same as that used in Salibian-Barrera and Zamar (2002),
which relies on bounding the distance between the corresponding distribution functions using the fact that θ̂n → θ0
and σ̂n → σ0 almost surely (see Bickel and Freedman, 1981). �
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Appendix A.5. Proof of (24)
In this section we show that (24) holds for the test statistic (10). It is easy to see that this also holds for (13) and for

the Wald, Scores and LRT-type tests in (27), (28) and (29), respectively. Let θ̂
∗

n,0 and θ̂
∗

n be the bootstrapped regression
estimators under the null hypothesis and without restrictions, respectively. Then,

L∗n = n

 τ̂2,∗
n,0 − τ̂

2,∗
n

τ̂2,∗
n


= n

 τ̂2
n(θ̂
∗

n,0) − τ̂2
n(θ̂
∗

n)

τ̂2
n(θ̂
∗

n)

 = hn(Θ̂
∗

n) ,

where Θ̂
∗

n = (θ̂
∗

n,0, θ̂
∗

n) are the estimators fully computed with the bootstrap sample. To simplify the notation, in what
follows we will drop the index ∗. Note that

∇hn(Θ̂n) =

 ∂hn(Θ̂n)
∂θ̂n,0

∂hn(Θ̂n)
∂θ̂n

 .
Let τ2

a = τ̂2
n(θ̂n), ri(0) = yi − x′i θ̂n,0 and r̃i(0) = ri(0)/sn(θ̂n,0). Then we have

∂hn(Θ̂n)
∂θ̂n,0

=
1
τ2

a
∇τ2

n(θ̂n,0) =
1
τ2

a

1
n b2

2 sn(θ̂n,0)∇sn(θ̂n,0)
n∑

i=1

ρ2 (r̃i(0))

+ s2
n(θ̂n,0)

n∑
i=1

ψ2 (r̃i(0))
{
−xisn(θ̂n,0) − ri(0)∇sn(θ̂n,0)

s2
n(θ̂n,0)

}]
.

By differentiating (5) it is easy to see that

∇sn(θ̂n,0) = −

∑n
i=1 ψ1(r̃i(0))xi∑n

i=1 ψ1(r̃i(0))r̃i(0)
.

Replacing this in the above expression we obtain

∂hn(Θ̂n)
∂θ̂n,0

= −
sn(θ̂n,0)
τ2

a n b2

n∑
i=1

[
Wn(θ̂n,0)ψ1(r̃i(0)) + ψ2(r̃i(0))

]
xi .

Note that the equation above is proportional to the estimating equation for θ̂n,0. Similarly,

∂hn(Θ̂n)
∂θ̂n

= −
2 τ̂2

n(θ̂n,0) τ̂n(θ̂n)∇τ̂n(θ̂n)

τ̂2
n(θ̂n)2

= −
τ̂2

n(θ̂n,0)

τ̂2
n(θ̂n)2

∇τ̂2
n(θ̂n) .

As before, we have that ∇τ̂2
n(θ̂n) is proportional to the score equations for the unrestricted estimator θ̂n. Hence

∇h∗n(Θ̂
∗

n) = op(1). �
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