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The BLUPs are not “best” when it comes to bootstrapping
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Abstract

In the setting of mixed models, some researchers may construct a semiparametric bootstrap by sampling from

the best linear unbiased predictor residuals. This paper demonstrates both mathematically and by simulation

that such a bootstrap will consistently underestimate the variation in the data in �nite samples. c© 2002

Published by Elsevier Science B.V.
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1. Introduction

Mixed models are used extensively in various settings to model continuous grouped data. Their


exibility and availability in major statistical software packages contribute to their popularity. Besides

giving point estimates of �xed e�ects and variance components in the model, these packages also

yield standard errors, con�dence intervals, and test of hypotheses for these quantities. These rely on

asymptotic results assuming a Gaussian model that may not be appropriate in some situations.

When the appropriateness of using asymptotic results is questioned, resampling procedures such as

the bootstrap can be used to estimate these quantities. In the setting of mixed models, the parametric

bootstrap (Efron and Tibshirani, 1993) is one alternative. In this method, a Monte Carlo simulation

is used to generate a large number of bootstrap samples from the assumed parametric distribution

of the data, with estimators from the data plugged in for the �xed e�ects and variance components.

Standard errors and quantiles for statistics of interest are then estimated from these bootstrap samples.

The parametric bootstrap relies heavily upon the Gaussian assumption for the random e�ects in

the mixed model. In fact, it can be shown that for inference on variance components, the parametric
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bootstrap is inconsistent if these assumptions are violated. In cases where the normality of the

random e�ects’ distribution is not strongly believed, one may wish to use a nonparametric bootstrap,

nonparametric in the sense that it does not directly depend upon the distributional assumptions on the

random e�ects. This cannot be accomplished through simple resampling, since that would treat the

data as independent, ignoring the correlation structure. Any valid nonparametric bootstrap procedure

must account for the grouping structure in the data.

In the setting of a simple linear regression, one nonparametric bootstrap method proposed by

Efron (1979,1982) is the bootstrap based on residuals. In this procedure, the bootstrap data set is

constructed using samples taken with replacement from the estimated empirical distribution of the

residuals, which are then added onto an estimate of the mean function obtained from the data. This

idea can be extended to mixed models by sampling with replacement from predictors of the random

e�ects and residuals in the model. The major issue is deciding which predictors to use. A natural

choice is the best linear unbiased predictors (BLUPs), since they are in some sense optimal, are

readily available in many statistical software packages, and have become popular in recent years

for various applications. This may lead some to consider constructing a nonparametric bootstrap by

simply resampling the BLUPs, as I and my colleagues have encountered while reviewing submitted

papers.

While the BLUPs have some properties of optimality in predicting an individual’s random e�ect,

this optimality does not transfer over to bootstrapping. A BLUP-based bootstrap will consistently

underestimate the variability in the data for small samples, which is the most likely scenario in

which it will be used. Mathematical results are presented supporting this fact, and the poor perfor-

mance of the BLUP bootstrap is demonstrated in the setting of a simple random e�ects model by

simulation.

2. BLUPs for mixed models

The standard general linear mixed model, discussed in Searle et al. (1992), can be written as

y = X� + Z
+ �; (1)

where X and Z are the design matrices for the �xed e�ects, �, and random e�ects, 
, respectively.

The residuals, �, are assumed to be mean zero random variables with covariance matrix R, and the

random e�ects 
 are assumed to be mean zero random variables with covariance matrix G. With

these assumptions, the response vector y has mean X� and covariance matrix V = ZGZ t + R.

BLUP is a method of predicting the random e�ects 
 in a linear mixed model. The BLUPs are

linear functions of the data, and are unbiased in that the expectation of the predictors, 
̂, is the

same as the expectation of the random e�ects. Note that this does not mean that E(
̂|
) = 
 for
all 
 (see Robinson, 1991). They are called predictors rather than estimators because the quantities

they represent are random variables, not �xed parameters, and they are best in the sense that they

minimize the generalized mean square error of prediction, E(
̂ − 
)tB(
̂ − 
), with B being any

positive-de�nite symmetric matrix.

There are many derivations for the BLUPs for random e�ects in a general mixed model setting

(see Robinson, 1991). The BLUPs of the random e�ects 
̂ can be obtained simultaneously along

with the best linear unbiased estimators (BLUE) of the �xed e�ects �̂ by solving Henderson’s mixed
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model equations (1950), which are

X tR−1X �̂ + X tR−1Z
̂= X tR−1y;

Z tR−1X �̂ + (Z tR−1Z + G−1)
̂= Z tR−1y: (2)

These equations can be solved to obtain plug-in formulas for �̂ and 
̂,

�̂ = (X ′V−1X )−X tV−1y; (3)


̂= GZ tV−1(y − X �̂): (4)

In practice, the covariance matrices G and R are usually unknown, and must be estimated from the

data. In this case, 
̂ are known as “estimated BLUPs”.

Although the principles discussed in this paper transfer to more complex mixed models, the

problems with the BLUP bootstrap will be illustrated using the simple random e�ects model with a

balanced design. This model can be written as

yij = � + 
i + �ij ; (5)

where i=1; : : : ; r and j=1; : : : ; n. The overall �xed mean is �, and the random e�ects 
i and residuals

�ij are independent and identically distributed N(0; �
2

) and N(0; �

2
� ), respectively, with the 
i and �ij

mutually independent.

In this case, simple calculations show that the BLUE of � and the BLUPs of 
i are

�̂ = ŷ
··
= (rn)−1

r
∑

i=1

n
∑

j=1

yij ; (6)


̂i =

(

n�2


n�2
 + �
2
�

)

( �y i· − �y
··
): (7)

BLUP predictors for the residuals would simply be �̂ij = yij − �y i·.

3. The BLUP bootstrap

Following is one algorithm for a BLUP-based bootstrapping procedure for the simple balanced

random e�ects model. Algorithms could be constructed for more complex mixed models using a

similar approach.

(1) Fit mixed model to the data to obtain maximum likelihood (ML) estimates for �, �̂, restricted

maximum likelihood (REML) estimates for �2
 and �
2
� , and estimated BLUPs for the random

e�ects 
i and residuals �ij.

(2) Take a sample of size r with replacement from the estimated BLUPs {
̂1; : : : ; 
̂r}. Call these 

∗

i .

(3) Take a sample of size r×n with replacement from the predictors for the residuals {�̂11; : : : ; �̂ij}.
Alternatively, the residuals could be kept in groups by individuals, so that for each individual,
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a random i∗ is selected from {1; : : : ; r}, then a sample of size n is taken with replacement from
{�̂i∗1; : : : ; �̂i∗n}. Call these samples �

∗

ij.

(4) Construct the bootstrap data set according to the structure of the model, i.e. y∗ij = �̂ + 

∗

i + �
∗

ij.

(5) Fit the mixed model to the bootstrap data, obtaining estimates of � and the variance components

�2
 and �
2
� .

(6) Return to step (2), iterate B times.

This approach seems to be a natural generalization of Efron’s “bootstrapping the residuals”, and

is a procedure that some may use in an ad hoc fashion as a nonparametric bootstrap for mixed

models. I and my colleagues have encountered some researchers employing this method without jus-

ti�cation while reviewing papers submitted to statistical journals. In reality, this method is actually a

“semiparametric” bootstrap, since it depends on the structure of the model, but not the distributional

assumptions. Use of this method implies an underlying con�dence in the assumption that the em-

pirical distributions of the estimated BLUPs e�ectively mimic the distribution of the random e�ects

in the model, an assumption that is not true. It is untrue even if the variance components in the

model are known and we can obtain the actual BLUPs. The BLUPs are, of course, mean zero, but

for the simple balanced random e�ects model, straightforward calculations (see the appendix) show

that their variance is given by

Var(
̂i) =

(

n�2


n�2
 + �
2
�

)

(1− r−1)�2
 ; (8)

Var(�̂ij) = (1− n
−1)�2� : (9)

We see clearly that the variances of the BLUPs are biased downwards as estimators of the variance

components. This e�ect is more pronounced for small sample sizes in r or n, and for cases where

the residual variance �2� is much larger than �
2

 , such that �

2
� is not negligible compared with n�

2

 .

This bias will cause the BLUP bootstrap to underrepresent the variation in the data, resulting in

con�dence bounds for the �xed e�ects that are too narrow, and con�dence bounds for the variance

components that are miscentered. While it is true that this problem disappears asymptotically, it is in

the small sample cases that people may be most likely to use such a bootstrap procedure. A similar

phenomenon can be shown for more general mixed models using the results of Speed (1991) and

McGilchrist and Yau (1995).

4. Simulation

A simulation study was performed to examine the performance of the BLUP bootstrap for the

simple balanced random e�ects model for some di�erent sample sizes. In all cases, the �xed mean

� was assumed to be zero without loss of generality, and the variance components �2
 and �
2
� were

assumed to be one.

Under each scenario, 500 data sets were generated, and 90% con�dence intervals were constructed

for the �xed mean and both variance components using standard asymptotic results and the BLUP

bootstrap. In performing the BLUP bootstrap, B = 500 bootstrap samples were taken. Calculations

were done using the lme function in S-PLUS. The asymptotic con�dence intervals were the default
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Table 1

Coverage probabilities from simulation (500 runs) of nominal 90% con�dence intervals using (1) asymptotic results and

(2) the BLUP bootstrap (B = 500)

n= 5 n= 10 n= 30

r Method � �2
 �2� � �2
 �2� � �2
 �2�

1 0.840 0.966 0.946 0.850 0.992 0.960 0.808 0.962 0.978

5 2 0.868 0.728 0.748 0.866 0.648 0.820 0.810 0.584 0.930

1 0.866 0.994 0.968 0.846 0.982 0.990 0.866 0.972 0.980

10 2 0.846 0.704 0.738 0.806 0.672 0.872 0.842 0.670 0.926

1 0.894 0.990 0.966 0.884 0.974 0.976 0.892 0.980 0.980

30 2 0.858 0.724 0.608 0.862 0.750 0.774 0.886 0.794 0.920

intervals give by lme, which are approximate con�dence intervals that rely on the empirical informa-

tion matrices and conditional t-tests (see Pinheiro and Bates, 2000). In the bootstrap procedures, the

residuals were sampled in groups, as described in step (3) above, as this improved their performance.

On each bootstrap data set, ML estimators were used for the �xed e�ects, and REML estimators for

the variance components.

Table 1 contains the coverage probabilities of the 90% intervals using the two methods for the

simulated conditions. First, note the performance of the asymptotic results. The con�dence intervals

on the mean have undercoverage problems for the smaller sample sizes (r = 5 and 10). For both

variance components, the asymptotic con�dence intervals are extremely wide and overconservative,

resulting in coverage much greater than the nominal 90%. It is clear why some would search for

alternatives to these asymptotic results for mixed models, especially for smaller sample sizes.

Use of the BLUP bootstrap does not correct these problems, however. We see that, for the �xed

mean, the BLUP bootstrap has undercoverage problems similar to the asymptotic results, while

the intervals for the variance components have severe undercoverage problems. For the variance

component �2
 , the undercoverage was extreme for all sample sizes considered, while for the residual

variance �2� , the undercoverage was seen for n=5 and 10, but not for n=30. The BLUP bootstrap

intervals for the variance components were miscentered, as expected from our theoretical results. In

at least 96% of the intervals for �2
 and 91% of the intervals for �2� not containing the true value,

the true variance component was to the right of the upper con�dence bound.

A question remains: When, if ever, could the BLUP bootstrap be used as an alternative to the

asymptotic results and obtain reasonable coverage? The answer depends on the parameter of interest.

In inference for �, r is the important quantity to consider. For the smallest sample size considered,

r = 5, the BLUP bootstrap had comparable or slightly better properties than the asymptotic results,

and could reasonably be used. However, for moderate to large sample sizes, r ¿ 10, the asymptotic

results dominate the BLUP bootstrap. For �2� , our simulations (some not shown) indicate that the

undercoverage is not bad for n¿ 15. For �2
 , there are undercoverage problems that persist even

in quite large sample sizes. A simulation done at r = 50, n = 50 (not shown) yielded a coverage

of 0.845.
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5. Conclusion

Bootstrapping the BLUPs seems like a natural extension of Efron’s “bootstrapping the residuals”

to mixed models, and is likely to be tried by some researchers as a nonparametric bootstrapping

method. In this paper, it has been demonstrated that in the setting of a simple balanced random

e�ects model, this procedure results in underestimation of the variation in the data, causing standard

error estimates biased downwards and intervals with undercoverage problems. These problems are

most evident in smaller samples, which is the setting in which the procedure is most likely to be

used. This e�ect transfers to more general mixed models as well. The BLUPs, while readily available

and optimal for prediction, are not optimal in a bootstrap, and should not be blindly used.
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Appendix A

This appendix gives the details behind the calculations of the variances of the BLUPs for the

simple random e�ects models. Given the representation of the BLUPs for the random e�ects 
i in

(7), their variance is

Var(
̂i) =

(

n�2


n�2
 + �
2
�

)2

Var( �y i· − �y
··
): (A.1)

By substituting the parameters from the model given by (5) and simplifying, we see that

Var( �y i·− �y
··
)=Var(
i− �


·
)+Var( ��i·− ��··), which simpli�es to n

−1(1− r−1)(n�2
 +�
2
� ). Substituting

back into (A.1) yields (8).

The variance of the BLUPs for the residuals is Var(yij− �y i·)=Var(�ij− ��i·), which is (1−n
−1)��,

just as in (9).
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