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Confounding and Collapsibility 
in Causal Inference 
Sander Greenland, James M. Robins and Judea Pearl 

Abstract. Consideration of confounding is fundamental to the design 
and analysis of studies of causal effects. Yet, apart from confounding in 
experimental designs, the topic is given little or no discussion in most 
statistics texts. We here provide an overview of confounding and related 
concepts based on a counterfactual model for causation. Special attention 
is given to definitions of confounding, problems in control of confound- 
ing, the relation of confounding to exchangeability and collapsibility, and 
the importance of distinguishing confounding from noncollapsibility. 

Key words and phrases: Bias, causation, collapsibility, confounding, con- 
tingency tables, exchangeability, observational studies, odds ratio, rela- 
tive risk, risk assessment, Simpson's paradox. 

Much of epidemiologic and social science research 
is devoted to estimation of causal effects and test- 
ing causal hypotheses using nonexperimental data. 
In such endeavors, issues of confounding will (or 
should) invariably arise. Unfortunately, the word 
"confounding" has been used to refer to at least 
three distinct concepts. In the oldest usage, con- 
founding is a type of bias in estimating causal ef- 
fects. This bias is sometimes informally described as 
a mixing of effects of extraneous factors (called con- 
founders) with the effect of interest. This usage pre- 
dominates in nonexperimental research, especially 
in epidemiology and sociology. In a second and more 
recent usage, "confounding" is a synonym for "non-
collapsibility," although this usage is often limited 
to situations in which the parameter of interest is 
a causal effect. In a third usage, originating in the 
experimental-design literature, "confounding" refers 
to inseparability of main effects and interactions un- 
der a particular design. The term "aliasing" is also 
sometimes used to refer to the latter concept; this 
usage is common in the analysis-of-variance litera- 
ture. 
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The three concepts of confounding are not always 
distinguished properly. In particular, the concepts 
of confounding as a bias in effect estimation and 
as noncollapsibility are often treated as identical. 
We here provide an historical overview of these two 
concepts and the distinctions among them. Because 
these distinctions require a formal model for causal 
effects, we begin with a discussion of the counterfac- 
tual model of causation. We then trace the history 
of the concept of confounding from the writings of 
J. S. Mill to its modern counterfactual formaliza- 
tion. We discuss how approaches to control of con- 
founding fit into this formalization; we give special 
attention to the relation of confounding to exchange- 
ability and randomization. We then shift our focus 
to concepts of collapsibility and describe how the 
counterfactual model distinguishes noncollapsibility 
from confounding. Our penultimate section covers 
some miscellaneous issues that arise when consider- 
ing confounding in studies of interventions. We end 
with a recommendation to include more thorough 
discussion of confounding in basic statistics educa- 
tion, given the importance of the concept in causal 
inference. 

1. THE COUNTERFACTUAL APPROACH 
TO CAUSE AND EFFECT 

1. I  Overview 

The concepts of cause and effect are central to 
most areas of scientific research. Thus, it may be 
surprising that consensus about basic definitions 
and methods for causal inference is limited, despite 
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some three centuries of debate. A brief review can- 
not do justice to all the history and details of this 
debate, nor to all the schools of thought on causa- 
tion. We therefore focus on one conceptualization 
that has proved useful in the analysis of confound- 
ing. This counterfactual or potential-outcomes ap-
proach has become common in philosophy, statistics 
and epidemiology. 

Since the early eighteenth century, philosophers 
noted serious deficiencies in common definitions of 
causation. For example, Webster's New Twentieth- 
Century Dictionary (1979) offered "that which pro- 
duces an effect or result" as a definition of "cause," 
but "to cause" is among the definitions of "produces." 
Informal definitions of "effect" suffer from the same 
circularity, because "effect" as a verb is merely a 
synonym for "cause," while "effect" as a noun is de- 
fined as a "result," which is in turn defined as an 
"effect" in causal contexts. 

Hume (1739, 1748) offered another view of cau- 
sation that pointed a way out of the circularity of 
common definitions: 

We may define a cause to be an object, followed 
by another,. . .where, if the first object had not 
been, the second had never existed (Hume, 1748, 
page 115). 

Thus, by focusing on specific instances of causa- 
tion, we say that an event A caused an event B if 
occurrence of A was necessary for occurrence of B 
under the observed background circumstances (e.g., 
see Simon and Rescher, 1966; Lewis, 1973a). Essen- 
tially the same concept of causation can be found 
in the works of J. S. Mill (1843, 1862) and R. A. 
Fisher (1918) (both quoted in Rubin, 1990), as well 
as in later works in statistics and related fields (So- 
bel, 1995). A typical example is from MacMahon and 
Pugh (1967, page 12), who state that ". . . an associ- 
ation may be classed as presumptively causal when 
it is believed that, had the cause been altered, the 
effect would have been changed" (italics added). The 
italicized phrases emphasize that the alteration of 
the antecedent condition ("cause") and the subse- 
quent change in the outcome ("effect") are contrary 
to what was in fact observed; that is, they are coun-
terfactual. 

The preceding definition falls short of the formal- 
ism necessary for derivation of statistical methods 
for causal inference. Such a formalism and deriva- 
tion first appeared in the statistics literature in 
Neyman (1923). The basic idea is as follows: sup- 
pose that N units (e.g., individuals, populations, 
objects) are to be observed in an experiment that 
will assign each unit one of K + 1 treatments xo, 
X I , .. . ,xK. The outcome of interest for unit i is 

the value of a response variable Yi. Suppose that 
Yi will equal yik if unit i is assigned treatment 
xh. Usually, one treatment level, say xo, is desig- 
nated the reference treatment against which other 
treatments are to be evaluated; typically, xo is "no 
treatment," a placebo or a standard treatment. We 
define the causal effect of xk(k 1) on Yi relative 
to xo (the referent) to be yik - yio. (If the response 
variable is strictly positive, we may instead define 
the causal effect as yik/yio or log yih - log yio.) In 
words, a causal effect is a contrast between the out- 
comes of a single unit under different treatment 
possibilities. 

Neyman's formalism is sometimes referred to as 
the potential-outcomes model of causation, and has 
reappeared in various guises (e.g., see Cox, 1958, 
Chapter 2; Copas, 1973; Rubin, 1974; Hamilton, 
1979). Defining effects as contrasts of potential out- 
comes yih gives precise meanings to words such as 
"cause," "effect," and "affect." For example, "chang- 
ing X from xo to xk affects Yin is an assertion that 
yik- yio# 0. Note, however, that because only one 
of the potential outcomes yik can be observed in 
any one unit, an individual effect yik - yio cannot 
be observed. 

Counterfactual analysis can be viewed as a spe- 
cial type of latent-variable analysis, in which yih re- 
mains latent for any individual i who did not receive 
treatment k (e.g., see the volume edited by Berkane, 
1997). The potential outcomes model can also be de- 
rived from a structural equations approach familiar 
in the social sciences. Here, one models the response 
variable Y as one output of a series of mechanisms, 
where each mechanism is an input-output device 
whose behavior follows a given equation (Simon and 
Rescher, 1966). The potential response yik is then 
simply the solution for Y of the system of equations 
when X is "set" to xk; a change from xo to xk has no 
effect if X does not appear in the system, or more 
generally, if the solution is the same regardless of 
whether X is set to xo or xh (Balke and Pearl, 1994; 
Robins, 1995a; Pearl, 1995; Galles and Pearl, 1998). 

There are several crucial restrictions that the po- 
tential outcomes definition places on the notion of 
causal effects (and hence, cause). Appendix 1 dis-
cusses four of them in detail. In Appendix 2, we 
discuss some difficulties that arise in defining po- 
tential outcomes when competing risks are present. 

1.2 Probabilistic Extensions 

There are several probabilistic extensions of coun- 
terfactual approaches. One is based on considering 
the sampling distribution of fixed potential out-
comes, that is, the joint distribution F(yo, . . . , yK) 
of yio, . . . ,yiK in a population of units. We may 
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also consider conditional distributions of potential 
outcomes in subpopulations defined by covariates 
such as age, sex and received treatment. Popula- 
tion effects can be defined as differences in average 
population response under different treatments, or 
more generally as differences among the marginal 
distributions F(yo), . . . ,F(yK). Statistical proce-
dures for inferences about these effects follow from 
randomization assumptions about treatment as-
signment mechanisms and from assumptions of 
independencies between units (Cox, 1958). The ba- 
sic ideas were developed by Neyman (1923) and 
Fisher (1935); some key elaborations were given 
by Copas (1973) and Rubin (1974, 1978). We will 
discuss these ideas below. 

Another extension considers parameters of prob- 
ability distributions (rather than events) as the 
potential outcomes; this extension addresses objec- 
tions to treating the unit outcomes as deterministic 
entities once treatment is given (Greenland, 1987; 
Robins, 1988; Robins and Greenland, 1989). For ex- 
ample, we could consider the difference between 
the probability that a given atom emits a pho-
ton in the second following absorption of a photon 
("treatment 1")and the probability of emission in 
the same second if no photon had been absorbed 
("treatment 0"). This probability difference is the 
effect of photon absorption on the atom relative to 
no absorption. In quantum mechanics, this prob- 
ability difference (effect) is well defined whether 
or not a photon is actually emitted (e.g., see Feyn- 
man, 1963). Yet, according to the Bohr-Heisenberg 
("Copenhagen") interpretation of quantum theory, 
the emission indicator (Yi= 1 if the atom emits 
a photon in the following second; 0 if not) is un- 
defined under counterfactual alternatives to the 
actual history of the atom and is not even defined 
under the actual history of the atom if no emission 
measurement is made. 

1.3 Objections to Counterfactuals 

Counterfactual approaches are sometimes criti- 
cized because, in considering causes of past events, 
they invoke distributions for events that never oc- 
curred and hence cannot be observed. As a conse- 
quence, some important features of these distribu- 
tions remain empirically untestable, and thus some 
causal inferences based on counterfactuals will de- 
pend entirely on untestable assumptions (Dawid, 
1998). 

It is our view that this property of counterfactual 
inferences reflects a strength of counterfactual ap- 
proach, rather than a weakness. It is an unfortunate 
but true fact that many important causal questions 
are simply not answerable, at least not without 

employing assumptions that are untestable given 
current technology, Examples of such assumptions 
include assumptions of no confounding, as dis-
cussed in the following sections, assumptions about 
independence of unit-specific susceptibilities or re- 
sponses, and various distributional assumptions 
(Copas, 1973; Rubin, 1978, 1991; Holland, 1986; 
Heckman and Hotz, 1989; Robins and Greenland, 
1989; Sobel, 1995; Rosenbaum, 1995; Copas and Li, 
1997). Inferences from counterfactual approaches 
properly reflect this harsh epistemic reality when 
they display sensitivity to such assumptions. 

More constructively, the counterfactual approach 
also aids in precise formulation of assumptions 
needed to identify causal effects statistically, which 
in turn can aid in developing techniques for meet- 
ing those assumptions. The basic example on which 
we will focus is the assumption of exchangeabil- 
ity of response distributions under homogeneous 
treatment assignment, which is met when treat- 
ment is successfully randomized, or, more generally, 
when treatment assignment is independent of the 
potential outcomes y , k .  

2. CONFOUNDING 

2.1 Background 

Counterfactual approaches to causal inference 
emphasize the importance of randomization in 
assuring identifiability of causal effects (Ney-
man, 1923; Rubin, 1978, 1990, 1991; Greenland 
and Robins, 1986; Robins, 1986; Greenland, 1990; 
Rosenbaum, 1995). In observational studies, how- 
ever, no such assurance is available, and issues of 
confounding become paramount. 

One of the earliest systematic discussions of "con- 
founded effects" is Chapter X of Mill (18431, "Of Plu- 
rality of Causes, and the Intermixture of Effects" 
(although in Chapter I11 Mill lays out the primary 
issues and acknowledges Francis Bacon as a fore- 
runner in dealing with them). There, Mill listed a 
requirement for an experiment intended to deter- 
mine causal relations: 

. . . none of the circumstances [of the experiment] 
that we do know shall have effects susceptible of 
being confounded with those of the agents whose 
properties we wish to study [emphasis added]. 

It should be noted that, in Mill's time, the word 
"experiment" referred to an observation in which 
some circumstances were under the control of the 
observer, as it still is used in ordinary English, 
rather than to the notion of a comparative trial. 
Nonetheless, Mill's requirement suggests that a 
comparison is to be made between the outcome 
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of his experiment (which is, essentially, an uncon- 
trolled trial) and what we would expect the outcome 
to be if the agents we wish to study had been ab- 
sent. If the outcome is not that which one would 
expect in the absence of the study agents, his re- 
quirement insures that the unexpected outcome was 
not brought about by extraneous circumstances. If, 
however, those circumstances do bring about the 
unexpected outcome, and that outcome is mistak- 
enly attributed to effects of the study agents, the 
mistake is one of confounding (or confusion) of the 
extraneous effects with the agent effects. 

Much of the modern literature follows the same 
informal conceptualization given by Mill. Terminol- 
ogy is now more specific, with "treatment" used to 
refer to an agent administered by the investigator 
and "exposure" often used to denote an unmanipu- 
lated agent. The chief development beyond Mill is 
that the expectation for the outcome in absence of 
the study exposure is now almost always explicitly 
derived from observation of a control group that is 
untreated or unexposed. For example, Clayton and 
Hills (1993, page 133) state that, in observational 
studies, 

. . . there is always the possibility that an impor- 
tant influence on the outcome.. . differs system- 
atically between the comparison [exposed and un- 
exposed] groups. It is then possible [that] part of 
the apparent effect of exposure is due to these 
differences, [in which case] the comparison of the 
exposure groups is said to be confounded. [em- 
phasis in the original] 

As discussed below, confounding is also possible 
in randomized experiments, because of systematic 
elements in treatment allocation, administration, 
and compliance and because of random differences 
between comparison groups (Fisher, 1935, page 
49; Rothman, 1977; Greenland and Robins, 1986; 
Greenland, 1990). 

2.2 Formalization 

Attempts to quantify the above notion of con-
founding can be traced at least as far back as the 
work of Karl Pearson and George Yule on spuri- 
ous correlation, but these attempts ran afoul of the 
absence of a formal model for causal effects; see 
Aldrich (1995) for a review of this work. Various 
mathematical formalizations of confounding have 
since been proposed. Perhaps the one closest to 
Mill's concept is based on the counterfactual model 
for effects. Suppose our objective is to determine 
the effect of applying a treatment or exposure xl 
on a parameter p of the distribution of the outcome 
y in population A, relative to applying treatment 

or exposure xo. That is, we wish to contrast the 
marginal distributions FA(yl) and FA(yO) of the 
potential outcomes under treatments 1and 0, using 
some parameter (summary) p of the distributions. 
For example, population A could be a cohort of 
breast-cancer patients, treatment xl could be a new 
hormone therapy, xo could be a placebo therapy, 
and the parameter p could be the expected survival 
or the five-year survival probability in the cohort; 
p could also be a vector or even a function, such 
as an entire survival curve. The population A is 
sometimes called the target population or index pop- 
ulation; the treatment xl is sometimes called the 
index treatment and the treatment xo is sometimes 
called the control or reference treatment. 

Suppose that p will equal pA1if x1 is applied to 
population A, and will equal pAoif x0 is applied 
to that population; the causal effect of xl relative to 
xo is defined as the change from pAOto pA1,which 
could be measured by pAl- pAO if(or by pA1/pAO 
p is strictly positive). If A is observed under treat- 
ment xl, p will equal pA1,which is observable or es- 
timable, but pAowill be unobserved. Suppose, how- 
ever, we expect pAOto equal pBo,where pBOis the 
value of the outcome p observed or estimated for 
a population B that was administered treatment 
xo. The latter population is sometimes called a con- 
trol or reference population. We say confounding is 
present if, in fact, pAo# pBo, for then there must 
be some difference between populations A and B 
(other than treatment) that is responsible for the 
discrepancy between pAoand pBo. 

If confounding is present, a naive (crude) asso- 
ciation parameter obtained by substituting pBOfor 
pAoin the effect measure will not equal the causal 
parameter, and the association parameter is said 
to be confounded. For example, if pBO# pAo, then 
pAl-pBo,which measures the association of treat- 
ments with outcomes across the populations, is con- 
founded for pA1- pAo,which measures the effect of 
treatment xl on population A. Thus, saying an as- 
sociation parameter such as pAl -pBo is confounded 
for a causal parameter such as pA1-pAois synony- 
mous with saying the two parameters are not equal. 

The above formalization has several interesting 
implications. One is that confounding depends on 
the outcome parameter. For example, suppose pop- 
ulations A and B would have different five-year 
survival probabilities pAOand pBounder placebo 
treatment xo, so that pA1- pBOis confounded for 
the actual effect pA1- pAOof treatment on five- 
year survival. It is then still possible that ten-year 
survival v under the placebo would be identical in 
both populations; that is, vAo could still equal vBo, SO 

that vAl -vBo is not confounded for the actual effect 
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of treatment on ten-year survival. (We should gen- 
erally expect no confounding for 200-year survival, 
because no treatment is likely to raise the 200-year 
survival probability of human patients above zero.) 

Another important implication is that confound- 
ing depends on the target population of inference. 
The preceding example, with A as the target, had 
different five-year survivals pAoand pBofor A and 
B under placebo therapy, and hence pA1- pBOwas 
confounded for the effect pA1-pAOof treatment on 
population A. A lawyer or ethicist may also be inter- 
ested in what effect the treatment would have had 
on population B. Writing pB1for the (unobserved) 
outcome of B under treatment, this effect on B may 
be measured by pB1-pBo.Substituting pA1for the 
unobserved pB1yields pA1- pBo.This measure of 
association is confounded for pB1- pBO(the effect 
of treatment xl on five-year survival in population 
B) if and only if pAl # pB1.Thus, the same mea- 
sure of association pAl - pBomay be confounded 
for the effect of treatment on neither, one or both of 
populations A and B. 

A third implication is that absence of confounding 
(pAO= pBO),which is a population condition, is not 
sufficient to identify the sharp null hypothesis of no 
causal effects at the unit level (yi l  = yiofor all units 
i) because causal effects of treatment may cancel out 
(Greenland and Robins, 1986). For example, suppose 
the outcome parameter p is expected response and 
response is binary, with half of units in A and half in 
B having yi l  = 1, yio = 0 and half having yil = 0, 
yio = 1. Then pA1= pAo= pBo= 112, SO that 
there is no confounding and no identifiable effect 
of treatment on the outcome distribution; nonethe- 
less, every unit is affected by treatment. Neyman 
(1935) and Stone (1993) make the analogous point 
that randomization does not identify the sharp null 
hypothesis. 

A noteworthy aspect of the above definition of con- 
founding is that it does not involve the notion of 
probabilistic independence, and makes no reference 
to individual units or probability distributions other 
than through the summary p. This is in sharp con- 
trast to concepts of randomization, exchangeability 
and ignorability, as well as certain definitions of "no 
confounding," which we will discuss in Sections 3.1, 
3.3 and 6.4. 

2.3 Components of Associations 

We may write the difference in the outcome pa- 
rameters of populations A and B as 

which shows that ~ A ~ - / L B Ois a mix of the true treat- 
ment effect pA1- pAOand a bias term pAo- pBo 

(Groves and Ogburn, 1928; Kitagawa, 1955). Non- 
identifiability of the true effect pA1- pAofollows 
if the bias pAo- pBois not identifiable, as is the 
case in typical epidemiologic studies (Greenland and 
Robins, 1986). 

By rearranging (1)we may obtain pAO- pBOas a 
measure of confounding in pAl- pBO: 

When the outcome parameters p are risks (proba- 
bilities), epidemiologists use instead the analogous 
ratio 

as a measure of confounding (Cornfield et al., 1959; 
Bross, 1967; Miettinen, 1972); pAO/pBO some-is 
times called the confounding risk ratio. The latter 
term is somewhat confusing, as it is sometimes 
misunderstood to refer to the effect of a particu- 
lar confounder on risk. This is not so, although the 
ratio does reflect the net effect of the differences 
in the confounder distributions of populations A 
and B. 

2.4 Confounders 

The above formalization of confounding invokes 
no explicit differences (imbalances) between popula- 
tions A and B with respect to circumstances or co- 
variates that might affect p (Greenland and Robins, 
1986). It seems intuitively clear that, if pAoand pBo 
differ, then A and B must differ with respect to fac- 
tors that affect p. This intuition has led some au- 
thors to define confounding in terms of differences 
in covariate distributions among the compared pop- 
ulations (e.g., Stone, 1993). Nonetheless, confound- 
ing as we have defined it is not an inevitable conse- 
quence of covariate differences; A and B may differ 
profoundly with respect to covariates that affect p, 
and yet confounding may be absent. In other words, 
a covariate difference between A and B is a neces- 
sary but not sufficient condition for confounding, be- 
cause the effects of the various covariate differences 
may balance out in such a way that no confounding 
is present. 

Suppose now that populations A and B differ 
with respect to certain covariates that affect p and 
that these differences have led to confounding of an 
association measure for the effect measure of in- 
terest. The responsible covariates are then termed 
"confounders" of the association measure. In the 
above example, with pA1- pBoconfounded for the 
effect p ~ 1- pAo,the factors that led to pAo# pBo 
are the confounders. A variable cannot be a con- 
founder (in this sense) unless (1) it can causally 
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affect the outcome parameter p within treatment 
groups, and (2) it is distributed differently among 
the compared populations (e.g., see Yule, 1903, who 
however uses terms such as "fictitious association" 
rather than "confounding"). The two necessary con- 
ditions (1)and (2) are sometimes offered together 
as a definition of a confounder. Nonetheless, coun- 
terexamples show that the two conditions are not 
sufficient for a variable with more than two lev- 
els to be a confounder as defined above; one such 
counterexample is given below. 

While definitions of "confounder" similar to that 
just given are common in epidemiology texts (e.g., 
see Kelsey, Whittemore, Evans and Thompson, 
1996; Rothman and Greenland, 1998), they are 
not universal. Some authors (e.g., Miettinen and 
Cook, 1981; Robins and Morgenstern, 1987) de- 
fine a confounder more broadly, as any variable for 
which adjustment is helpful in reducing bias in ef- 
fect estimation; variables that are confounders by 
virtue of their effects on the outcome parameter 
are then called causal confounders. Such broad def- 
initions of confounders stem from recognition that 
confounding may be dealt with by stratification on 
variables that are not themselves causes of the out- 
come. Examples include surrogates for such causes 
(Kelsey et al., 1996) and determinants of treatment 
(Rosenbaum and Rubin, 1983). 

2.5 Regression Formulations 

For simplicity, the above presentation has focused 
on comparing two groups and two treatments. The 
basic concepts extend immediately to considera-
tion of multiple groups and treatments. Pairwise 
comparisons may be represented using the above 
formalization without modification. Although the 
comparisons may be made nonparametrically, it 
is instructive to examine their representation in 
terms of familiar regression models. 

As an illustration, suppose that the treatment 
level x may range over a continuum or a multidi- 
mensional space (in the latter case x and p are row 
and column vectors), and that population j is given 
treatment x j, even though it could have been given 
some other treatment. Under the causal model 

(4) pj(x) = a j  + xp for all j, 

the absolute effect of xl versus xo on p in population 
1is 

(5) PI(XI) ~ ( x o )(XI- xo)P- = 

(In the earlier notation, j = A, B, so that p1(x1) 
was pA1 and p1(xO) was pAO.)Substitution of 

po(xo), the value of p in population 0 under treat- 
ment xo, for pl(xo) yields 

which is biased by the amount 

Thus, under this model, no confounding for P will 
occur if the intercepts a j  are constant across popu- 
lations, so that pj(x) = a + xP. 

When constant intercepts cannot be assumed and 
nothing else is known about the intercept magni- 
tudes, it may be possible to represent our uncer- 
tainty about a via the mixed effects model 

Here, a j  has been decomposed into a + ej, 
where c j  has mean zero, and the confounding 
in pl(xl) - po(xo) has become an unobserved ran- 
dom variable - EO. Correlation of the random 
effects ( E ~ )  with the treatments (xj) leads to bias 
in estimating p. This bias may be attributed to 
or interpreted as confounding for j3 in the regres- 
sion analysis. Confounders are now covariates that 
"explain" the correlation between E and x j. In par- 
ticular, confounders reduce the correlation of x j  
and c j  when entered in the model and so reduce 
the bias in estimating p. 

3. CONTROL OF CONFOUNDING 

3.1 Control Via Design 

Perhaps the most obvious way to avoid confound- 
ing in estimating pAl-pAOis to obtain a reference 
population B for which ~ . L B Ois known to equal pAo. 
Among epidemiologists, such a population is some- 
times said to be comparable to or exchangeable with 
A with respect to the outcome under the reference 
treatment. In practice, such a population may be 
difficult or impossible to find. Thus, an investigator 
may attempt to construct such a population, or to 
construct exchangeable index and reference popula- 
tions. These constructions may be viewed as design-
based methods for the control of confounding. 

Restriction and matching. Perhaps no approach 
is more effective for preventing confounding by a 
known factor than restriction. For example, gender 
imbalances cannot confound a study restricted to 
Women. Nonetheless, restriction on many factors 
can reduce the number of available subjects to un- 
acceptably low levels and may greatly reduce the 
generalizability of results as well. Matching the 
treatment populations on confounders overcomes 
these drawbacks and, if successful, can be as effec- 
tive as restriction. For example, gender imbalances 
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cannot confound a study in which the compared 
groups have identical proportions of women. Un- 
fortunately, differential losses to observation may 
undo the initial covariate balances produced by 
matching. Another problem is that matches may 
become difficult or impossible to find if one attempts 
to match on more than a few factors. 

Randomization. Neither restriction nor matching 
prevents (although they may diminish) imbalances 
on unrestricted, unmatched or unmeasured covari- 
ates. In contrast, randomized treatment allocation 
(randomization) offers a means of dealing with con- 
founding by covariates not explicitly accounted for 
by the design. It must be emphasized, however, that 
this solution is only probabilistic and subject to se- 
vere practical constraints. For example, protocol vi- 
olations and loss to follow-up may produce system- 
atic covariate imbalances between the groups (and 
consequent confounding), and random imbalances 
may be severe, especially if the study size is small 
(Fisher, 1935; Rothman, 1977). Blocked randomiza- 
tion can help ensure that random imbalances on 
the blocking factors will not occur, but it does not 
guarantee balance of unblocked factors. Thus, even 
in a perfectly executed randomized trial, the no-
confounding condition pAo= pBois not a realis- 
tic assumption for inferences about causal effects. 
Successful randomization simply insures that the 
difference pAo- pBo, and hence the degree of con- 
founding, has expectation zero and converges to zero 
under the randomization distribution; it also pro- 
vides a permutation distribution for causal infer- 
ences (Fisher, 1935; Cox, 1958, Chapter 5). 

Exchangeability. Under randomization, the pa- 
rameters pAoand pBo(and pA1and pBlas well) are 
outcomes of a random process and so can be treated 
as random variables. Successful randomization ren- 
ders pAo and pBOunconditionally exchangeable 
in the usual probabilistic sense (Cornfield, 1976); 
in other words, the unconditional joint distribu-
tion FO(uA, uB) of pAo, pBois symmetric, so that 
FO(uA,uB) = FO(uB, uA) for any possible pair of 
values UA,U B  for pAo, pBOThis exchangeabil- 
ity permits derivation of inferential procedures for 
(say) pA1- pAobased on substituting pBofor pAo 
and then allowing for random differences between 
pAOand pBo(Robins, 1988). It applies regardless of 
what the parameter p represents; that is, random- 
ization yields exchangeability for all parameters 
of the outcome distribution. From a Bayesian per- 
spective, pAoand pBocan always be treated as 
random variables. Thus, a practical and sufficient 
design-based approach to confounding is to find or 
construct comparison groups such that pAOand pBo 
are exchangeable. 

Now consider the regression formulation (8). Here 
again, it is neither realistic nor necessary to assume 
absence of confounding to make inferences about the 
effect parameter p. Rather, it is sufficient to find 
a population such that the random effects c j  are 
exchangeable (so that any correlation of x j  and c j  
is random), as would arise if treatment levels were 
randomized. This approach is often described in epi- 
demiology as searching for a "natural experiment," 
that is, a situation in which a compelling argument 
can be made that the exposure was effectively ran- 
domized by natural circumstances. Of course, any 
inferences may be sensitive to assumptions about 
the distribution of the random effects (e.g., normal- 
ity), and the structural form of the model (e.g., lin- 
earity); such concerns lead naturally to randomiza- 
tion tests for effects (Fisher, 1935; Cox, 1958; Copas, 
1973). 

3.2 Control Via Analysis 

Design-based methods are often infeasible or in- 
sufficient to produce exchangeability. Thus, there 
has been an enormous amount of work devoted to 
analytic adjustments for confounding. With a few 
exceptions, these methods are based on observed co- 
variate distributions in the compared populations. 
Such methods will successfully control confounding 
only to the extent that enough confounders are ad- 
equately measured and employed in the analysis. 
Then, too, many methods employ parametric mod- 
els at  some stage, and their success thus depends 
on the faithfulness of the model to reality. There 
is a tension between the demands of adjusting for 
enough covariates and the dependence of the anal- 
ysis on modeling assumptions. This issue cannot be 
covered in depth here, but a few basic points are 
worth noting. 

The simplest methods of adjustment begin with 
stratification on confounders. A covariate cannot be 
responsible for confounding within a stratum that is 
internally homogeneous with respect to the covari- 
ate. This is so, regardless of whether the covariate 
was used to define the stratum. For example, gender 
imbalances cannot confound observations within a 
stratum composed solely of women. It would seem 
natural, then, to control confounding due to mea- 
sured factors by simply stratifying on them all. Un- 
fortunately, one would then confront the well-known 
sparse-data problem: given enough factors, few if 
any strata would have subjects in both treatment 
groups, thereby making comparisons inefficient or 
impossible (Robins and Greenland, 1986). 

One solution to this problem begins by noting 
that within-stratum homogeneity is unnecessary to 
prevent confounding by a covariate. Within-stratum 
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balance is sufficient, because comparisons within a 
stratum cannot be confounded by a covariate that 
is not associated with treatment within the stra- 
tum. Hence, a given stratification should be suffi- 
cient to control confounding by a set of covariates if 
the covariates are balanced across the strata, that 
is, unassociated with treatment within the strata. 
Rosenbaum and Rubin (1983) showed that, subject 
to any modeling restrictions used for score estima- 
tion, balance in probability for a set of covariates 
could be achieved by exact stratification on the esti- 
mated propensity score, where the propensity score 
is defined as the probability of treatment given the 
covariates in the combined (treated and untreated) 
study population. They further showed that this 
score was the coarsest score that would produce bal- 
ance in probability. Stratification on the estimated 
propensity score thus reduces adjustment for mul- 
tiple covariates to stratification on a single variable 
and lowers the risk of sparse-data problems if the 
model used for propensity scoring is correct. Unfor- 
tunately, in sparse data there may be little power to 
test whether the model is correct. 

The most common method for avoiding sparse- 
data problems is to impose parametric constraints 
on the regression of the outcome on the treatment 
and covariates; such strategies are described in 
many textbooks (e.g., see Clayton and Hills, 1993; 
Kelsey et al., 1996; Rothman and Greenland, 1998). 
Hybrid methods which combine regressions on 
treatment and outcome have also been developed; 
see Robins and Greenland (1994) and Rosenbaum 
(1995) for examples. Nonetheless, theoretical re-
sults indicate that no approach can completely 
solve sparse-data problems, insofar as sample size 
will always limit the number of degrees of free- 
dom available for covariate adjustment and model 
testing (Robins and Ritov, 1997). 

3.3 Sufficient Control 

Without randomization, the evaluation of within- 
stratum or residual confounding becomes a major 
concern. For this purpose, we define a stratification 
as sufficient for estimation of stratum-specific causal 
effects if, within strata, ~ A Oand p~~ are exchange- 
able. In a parallel fashion, we define a set of vari- 
ables as sufficient for control of confounding if si- 
multaneous (joint) stratification on all the variables 
is sufficient in the sense just described. (We note in 
passing that this is a weaker condition than that 
of "covariate sufficiency" as used in Stone, 1993.) 
Randomization ensures sufficiency of the set of mea- 
sured variables not affected by treatment. In the ab- 
sence of randomization, however, causal inferences 
become dependent on and sensitive to the assump- 

tion that the set of variables available for analy- 
sis is sufficient. It almost always remains logically 
possible that this set is insufficient because some 
confounder essential for sufficiency has not been 
recorded; thus, causal inferences from observational 
studies almost always hinge on subject-matter pri- 
ors ("judgements") about what may be missing from 
the set. Sensitivity of results to possible unmea-
sured confounders can be assessed via formal sen- 
sitivity analysis (Rosenbaum, 1995; Copas and Li, 
1997; Robins, Rotnitzky, and Scharfstein, 1999). 

There are some systematic ways of deriving the 
implications of background assumptions. For exam- 
ple, assumptions about the directions and absences 
of causal relations among variables (measured and 
unmeasured) can be conveniently encoded in a 
causal graph or path diagram, in which arrows 
(directed arcs) represent cause-effect relations. 
Conditional on the assumptions underlying the 
graph, the question of sufficiency of a set of vari- 
ables (such as the set of measured variables) can 
be easily answered using a simple graphical algo- 
rithm called the "back-door test" (Pearl, 1995). The 
same algorithm allows one to determine whether 
subsets of a sufficient set are themselves sufficient. 
By stepwise deletion and testing, we may thus 
identify minimally sufficient subsets (that is, suf- 
ficient subsets with no sufficient proper subsets). 
The need for such identification arises, for exam- 
ple, in epidemiologic studies in which numerous 
"lifestyle" covariates (diet, physical activity, smok- 
ing and drinking habits, etc.) are measured and 
are potential confounders of the effect under study. 
Here, the total set of covariates may be sufficient 
for control as defined above, but impractical to con- 
trol in its entirety, even when using propensity 
score or outcome-regression methods (Greenland, 
Pearl and Robins, 1999). 

Graphical identification of sufficient subsets oper- 
ates on background assumptions, rather than data. 
An analogous statistical approach is given by the 
following result (Robins, 1997). 

THEOREM.A subset S of a sufficient set is itself 
sufficient if the remainder subset R (those variables 
i n  the original set but not i n  S )  can be decomposed 
into disjoint subsets R 1  and R 2  such that both 

(9) R I U X I S  and R 2 U Y I R 1 , X , S ;  

that is, R 1  is independent of treatment X given S ,  
and R 2  is independent of the outcome Y given R1, 
treatment X ,  and S .  When such a decomposition ex- 
ists, R 1  can be taken to be the largest subset of R 
satisfying R 1  11 XIS .  
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Any set identified as sufficient by the back-door 
test must satisfy the conditions of Robins's theorem, 
although the converse is not true (Robins, 1997). 
As an example of the theorem, suppose X is mea- 
sured breast-implant exposure, Y is time to breast 
cancer from an index time, S contains diet and ex- 
ercise variables, R contains alcohol-drinking and 
smoking variables with R1 = drinking and R2 = 
smoking variables, and SU R is sufficient. Then the 
drinking and smoking variables can be omitted if 
the drinking and implant variables are independent 
conditional on the diet and exercise variables, and 
the smoking and breast cancer variables are inde- 
pendent conditional on the drinking, implant, diet 
and exercise variables. These conditions are testable 
using observed data; for example, smoking has not 
been found to be associated with breast cancer upon 
extensive control of other lifestyle variables, while 
the association of drinking and implants could be 
examined in certain existing data bases. 

Stone (1993, page 459) defined "no confounding 
given S" as fulfillment of the above condition (9) 
with R1 equal to all unobserved covariates that af- 
fect the response (outcome). This "no-confounding" 
definition neither implies nor is implied by our def- 
inition, but Stone showed that it does imply that 
S is sufficient for control. The above theorem is a 
generalization of Stone's result, in that it imposes 
no causal constraints on R1 or R2; for example, it 
does not assume that R1 contains all (or even any) 
covariates that affect response. 

A set S that is sufficient for estimating stratum- 
specific effects will also be sufficient for estimating 
a summary measure of the effect of treatment on 
the entire target population. Nonetheless, because 
confounding may "average out" across strata, the 
converse is not true: a set S may be sufficient for 
estimating a summary effect even though insuffi- 
cient for estimating stratum-specific effects (Green- 
land and Robins, 1986). This notion will be formal- 
ized in the next subsection. 

3.4 Residual Confounding 

Suppose that we subdivide the total study pop- 
ulation (A + B) into K strata indexed by k. Let 
p ~ l kbe the parameter of interest in stratum k of 
populations A and B under treatment xl. The ef- 
fect of treatment xl relative to xo in stratum k may 
be defined as p ~ l k- p ~ o kOr pAlk/pAOk. The Con- 
founding that remains in stratum k is called the 
residual confounding in the stratum, and is mea- 
sured by p ~ o k- 01. pAOk/pBOk.p ~ o k  Note that a suf- 
ficient stratification has E(pAOk - pBOk)= 0 for all 
k by virtue of the exchangeability of pAokand p~ok ,  

yet may have random residual confounding within 
strata. 

Residual confounding may be summarized in a 
number of ways, for example, by standardization 
or other weighted-averaging methods (Miettinen, 
1972; Rothman and Greenland, 1998). As an il-
lustration, suppose the strata represent age-sex- 
specific subgroups, and the proportion of the stan- 
dard population that falls in age-sex stratum k is 
pk.  Then the effect of xl versus xo on A standard-
ized to (weighted by) the distribution pl ,  . . . ,pK is 

whereas the standardized difference comparing A 
to B is 

The overall residual confounding in DAB is thus 

which may be recognized as the standardized dif- 
ference comparing A and B when both are given 
treatment xo, using pl ,  . . . ,pK as the standard 
distribution. With this formulation, a stratification 
can be considered sufficient for inference on DAA if 
C PkpAok and C I, PkpBok are exchangeable. 

4. COLLAPSIBILITY 

4.1 Collapsibility in Contingency Tables 

Consider the I x J x K contingency table repre- 
senting the joint distribution of three discrete vari- 
ables X,  Y, Z,  the I x J marginal table represent- 
ing the joint distribution of X and Y, and the set 
of conditional I x J subtables (strata) representing 
the joint distributions of X and Y within levels of 
Z. Generalizing Whittemore (1978) (who considered 
log-linear model parameters), we say a measure of 
association of X and Y is strictly collapsible across 
Z if it is constant across the strata (subtables) and 
this constant value equals the value obtained from 
the marginal table. 

Noncollapsibility (violation of collapsibility) is 
sometimes referred to as Simpson's paradox, af- 
ter a celebrated article by Simpson (1951). This 
phenomenon had been discussed by earlier au-
thors, including Yule (1903); see also Cohen and 
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Nagel (1934). Some statisticians reserve the term 
Simpson's paradox to refer to the special case 
of noncollapsibility in which the conditional and 
marginal associations are in opposite directions, as 
in Simpson's numerical examples. Simpson's alge- 
bra and discussion, however, dealt with the general 
case of inequality. The term "collapsibility" seems 
to have arisen in later work; see Bishop, Fienberg 
and Holland (1975). 

Table 1provides some simple examples. The dif- 
ference of probabilities that Y = 1(the risk differ- 
ence) is strictly collapsible. Nonetheless, the ratio of 
probabilities that Y = 1(the risk ratio) is not col- 
lapsible because the risk ratio varies across the Z 
strata, and the odds ratio is not collapsible because 
its marginal value does not equal the constant con- 
ditional (stratum-specific) value. Thus, collapsibility 
depends on the chosen measure of association. 

Now suppose that a measure is not constant 
across the strata, but that a particular summary of 
the conditional measures does equal the marginal 
measure. This summary is then said to be collapsi-
ble across Z .  As an example, in Table 1the ratio of 
risks standardized to the marginal distribution of 
Z is 

equal to the marginal (crude) risk ratio. Thus, this 
measure is collapsible in Table 1. Various tests 
of collapsibility and strict collapsibility have been 
developed; see Whittemore (1978); Asmussen and 
Edwards (1983); Ducharme and LePage (1986); 

TABLE1 
Examples of collapsibility and noncollapsibility i n  a three-way 

distribution 

Marginal 

X = l  X=O 

0.30 0.20 
0.20 0.30 

Risksa 0.80 0.60 0.60 0.40 
Risk differences 0.20 0.20 

Risk ratios 1.33 1.50 

Odds ratios 2.67 2.25 

Greenland and Mickey (1988) and Geng (1989) for 
examples. 

4.2 Regression Formulation 

The above definition of strict collapsibility extends 
to regression contexts. Consider a generalized linear 
model for the regression of Y on three regression 
vectors W, X, Z :  

The regression is said to be collapsible for -/3 over Z 
if -/3 = -p* in the regression omitting Z, 

and is noncollapsible if P # P* (Clogg, Petkova and 
Shihadeh, 1992). Thus, if theregression is collapsi- 
ble for /3 over Z and P is the parameter of inter- 
est, Z need not be measured to estimate p. If Z 
is measured, however, tests of p = P* can be con- 
structed (Hausman, 1978; Clogg PetTkova and Shi- 
hadeh, 1992; Clogg, Petkova and Haritou, 1995). 

The preceding definition generalizes the original 
contingency table definition to arbitrary variables. 
There is a technical problem with the above regres- 
sion definition, however: If the first (full) model is 
correct, it is unlikely that the second (reduced) re- 
gression will follow the given form; that is, most 
families of regression models are not closed under 
deletion of Z. If, for example, Y is Bernoulli and g 
is the logit link function, so that the full regres- 
sion is first-order logistic, the reduced regression 
will not follow a first-order logistic model except in 
special cases. One way around this dilemma (and 
the fact that neither of the models is likely to be ex- 
actly correct) is to define the model parameters as 
the asymptotic means of the maximum-likelihood 
estimators. These means are well defined and inter- 
pretable even if the models are not correct (White, 
1994). 

It may be obvious that, if the full model is correct, 
-6 = 0 implies collapsibility for P and y over Z. Sup-
pose, however, that neither p nor 3 i s  zero. In that 
case, marginal independenceof the regressors does 
not ensure collapsibility for /3 over Z except when g 
is the identity or log link (Ggil, Wieand and Pianta- 
dosi, 1984; Gail, 1986); conversely, collapsibility can 
occur even if the regressors are associated (Whitte- 
more, 1978); see the example below. Thus, it is not 
generally correct to equate collapsibility over Z with 
simple independence conditions, although useful re- 
sults are available for the important special cases of 
linear, log-linear, and logistic models (e.g., see Gail, 
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1986; Wermuth, 1987, 1989; Robinson and Jewell, 
1991; Geng, 1992; Guo and Geng, 1995). 

4.3 Other Collapsibility Concepts 

The literature on graphical probability models 
distinguishes a number of properties that have 
been referred to as types of collapsibility; see Fry- 
denberg (1990), Whittaker (1990, Section 12.5) 
and Lauritzen (1996, Section 46.1) for examples. 
Both definitions given above are special cases of 
parametric collapsibility (Whittaker, 1990). 

5. CONFOUNDING AND NONCOLLAPSIBILITY 

5.1 The Divergence 

Much of the statistics literature does not distin- 
guish between the concept of confounding as a bias 
in effect estimation and the concept of noncollapsi- 
bility; for example, Becher (1992) defines confound- 
ing as p # p* in models (13) and (14), in which case 
the elemenG of Z are called confounders; similarly, 
Guo and Geng (1995) define Z to be a noncon-
founder if P = P*.  Nonetheless, the two concepts 
are distinct: confounding may occur with or without 
noncollapsibility and noncollapsibility may occur 
with or without confounding (Miettinen and Cook, 
1981; Greenland and Robins, 1986; Wickrama- 
ratne and Holford, 1987). Mathematically identical 
conclusions have been reached by other authors, 
albeit with different terminology in which noncol- 
lapsibility corresponds to "bias" and confounding 
corresponds to "covariate imbalance" (Gail, 1986; 
Hauck, Neuhaus, Kalbfleisch and Anderson, 1991). 

Noncollapsibility without confounding. Table 2 
gives the response distributions under treatments 
xl and xo for a hypothetical target population A 
and the response distribution under treatment xo 
for a hypothetical reference population B. Suppose 
A receives treatment xl, B receives xo, and we wish 
to estimate the effect that receiving xl rather than 
xo had on A. If we take the odds of response as the 
outcome parameter p, we get pA1= 0.6/(1 - 0.6) = 

1.50, and pAo = pBo = 0.4/(1 - 0.4) = 0.67. 
Hence, there is no confounding of the odds ratio: 
pA1/pAO = 1.50/0.67 = 2.25. Nonethe- = pA1/pBO 
less, the covariate Z is associated with response in 
A and B. Furthermore, the odds ratio is not collapsi- 
ble: within levels of Z,  the odds ratios comparing 
A under treatment xl to either A or B under xo 
are (0.8/0.2)/(0.6/0.4) = (0.4/0.6)/(0.2/0.8) = 2.67, 
higher than the unconditional (crude) odds ratio of 
2.25 obtained when Z is ignored. 

The preceding example illustrates a peculiar 
property of the odds ratio as an effect measure: 
treatment xl (relative to x0) elevates the odds of 

TABLE2 
Distribution of responses for hypothetical index population A 
under treatments x l  and xo, and for reference population B 

under treatment xo: Example of noncollapsibility without 
confounding of the odds ratio 

PopulationA 

Response probability if 

Stratum X = x l  X = x O  Stratum size 

Z = 1  0.8 0.6 1,000 

Z = O  0.4 0.2 1,000 

Unconditional 0.6 0.4 


Population B 

Response probability if 

Stratum X =xl X =xo Stratum size 

Z = 1 *a 0.6 1,000 

Z = O  :$a 0.2 1,000 

Unconditional * a  0.4 


aNot used in example. 

response by 125% in population A, yet within each 
stratum of Z it raises the odds by 167%. If Z is 
associated with response conditional on treatment 
but unconditionally unassociated with treatment, 
the stratum-specific odds ratios must be farther 
from 1than the unconditional odds ratio if the lat- 
ter is not 1 (Gail, 1986; Hauck et al., 1991). This 
phenomenon is often interpreted as a "bias" in the 
unconditional odds ratio, but in fact there is no bias 
if one takes care to not misinterpret the uncondi- 
tional effect as an estimate of the stratum-specific 
or individual effects (Miettinen and Cook, 1981; 
Greenland, 1987). 

Confounding without noncollapsibility. To create 
a numerical example in which the odds ratio is col- 
lapsible and yet is confounded for the overall effect, 
we need only modify Table 2 slightly, by changing 
the stratum size for Z = 0 in population B to 1,500. 
With this change, the proportion with Z = 1in pop- 
ulation B drops from 0.5 to 0.4, the unconditional re- 
sponse probability in population B under treatment 
xo becomes 0.4(0.6)+0.6(0.2) = 0.36, and the uncon- 
ditional response odds pBoin population B under 
xo becomes 0.36/(1 - 0.36) = 0.5625. Thus, /LBO = 
0.5625 < 0.67 = ~ A O ,with consequent confounding 
of the odds ratio: pA1/pAO,the true effect that xl 
had on the odds in population, equals 2.25 (as be- 
fore), which is less than the unconditional odds ra- 
tio pA1/pBO1.50/0.5625 2.67. Nonetheless, this = = 
unconditional odds ratio equals the stratum-specific 
odds ratios, which are unchanged from the previous 
example. 
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5.2 Conditions for Equivalence More generally, consider a situation in which the 

The example in Table 2 shows that, when p is 
the odds of the outcome, pAO may equal /LBO (no 
confounding) even when the odds ratio is not col- 
lapsible over the confounders. Conversely, the mod- 
ified example shows that we may have pAO # /LBO 

even when the odds ratio is collapsible. A proba-
bilistic explanation of the discrepancy between non- 
confounding and collapsibility is that pAOwill equal 
/LBO whenever Z is sufficient for control and is un- 
conditionally unassociated with treatment, as in Ta- 
ble 2, whereas collapsibility of the odds ratio will 
occur whenever Z is unassociated with treatment 
conditional on response, as in the modified exam- 
ple (Bishop, Fienberg and Holland, 1975). Thus, the 
discrepancy is just a consequence of the nonequiva- 
lence of unconditional and conditional associations. 

If the effect measure is the difference or ratio 
of response proportions, results of Gail (1986) im- 
ply that this measure will be collapsible over Z 
if Z has the same distribution in A and B (that 
is, if Z and treatment are unconditionally unas-
sociated). It follows that, when examining such 
measures, the above phenomena (noncollapsibility 
without confounding and confounding without non- 
collapsibility) cannot occur if Z is sufficient for 
control. More generally, when the effect measure 
can be expressed as the average effect on popula- 
tion members [e.g., under the linear causal model 
(4)1, the conditions for noncollapsibility and con-
founding will be identical, provided the covariates 
in question form a sufficient set for control. In 
such cases, noncollapsibility and confounding be- 
come equivalent, which may explain why the two 
concepts are often not distinguished. The nonequiv- 
alence of the two concepts for odds ratios simply 
reflects the fact that the unconditional effect of a 
treatment on the odds is not the average treatment 
effect on population members (Greenland, 1987). 

5.3 Regression Formulations 

The preceding conclusions correspond to well-
known results for correlated-outcome regression. 
For example, the difference between the stratum- 
specific and crude odds ratios in Table 2 corre-
sponds to the differences between cluster-specific 
and population-averaged (marginal) effects in bi- 
nary regression (Neuhaus, Kalbfleisch and Hauck, 
1991): the clusters of correlated outcomes corre-
spond to the strata, the cluster effects correspond 
to the covariate effects, the cluster-specific treat- 
ment effects correspond to the stratum-specific log 
odds ratios, and the population-averaged treatment 
effect corresponds to the crude log odds ratio. 

full regression model [model (13)l is intended to rep- 
resent causal effects of the regressors on Y. Noncol-
lapsibility over Z (that is, P # P*) does not cor- 
respond to confounding of effects-unless g is the 
identity or log link. That is, it is possible for P to 
unbiasedly represent the effect of manipulating W 
within levels of X and Z, and, at  the same time, 
for p* to unbiasedly represent the effect of manip- 
ulating W within levels of X ,  even though P* # P. 
Table 2 demonstrates this point for logistic mode& 
and shows that noncollapsibility in a logistic model 
does not always signal a bias. The divergence be- 
tween /3 and p* corresponds to the distinction be- 
tween d~ster-<~ecific and population-averaged ef- 
fects: the cluster-specific model corresponds to the 
full model (13) in which Z is an unobserved univari- 
ate cluster-specific random variable independent of 
-W and X,with mean zero and unit variance; 42 is 
then the vector of random-effects variances. 

6. CONFOUNDING IN INTERVENTION 
STUDIES: FURTHER ISSUES 

In this section we briefly discuss some special 
issues of confounding that arise in studies of in- 
terventions, such as clinical trials and natural 
experiments. 

6.1 Adjustment in Randomized Trials 

Some controversy has existed about adjustment 
for random covariate imbalances in randomized 
trials. Although Fisher asserted that randomized 
comparisons were "unbiased," he also pointed out 
that they could be confounded in the sense used 
here (e.g., see Fisher, 1935, page 49). Fisher's use 
of the word "unbiased" was unconditional on alloca- 
tion, and therefore of little guidance for analysis of 
a given trial. Some arguments for conditioning on 
allocation are given in Greenland and Robins (1986) 
and Robins and Morgenstern (1987). Other argu- 
ments for adjustment in randomized trials have 
been given by Rothman (1977); Miettinen and Cook 
(1981) and Senn (1989). 

6.2 Intent-to-Treat Analysis 

In a randomized trial, noncompliance can eas-
ily lead to confounding in comparisons of the 
groups actually receiving treatments xl and xo. 
One somewhat controversial solution to noncom-
pliance problems is intent-to-treat analysis, which 
defines the comparison groups A and B by treat- 
ment assigned rather than treatment received. 
Detractors of intent-to-treat analysis consider it 
an attempt to define away a serious problem, es- 
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pecially when treatment received is the treatment 
of scientific interest. Supporters of intent-to-treat 
analysis emphasize that intent-to-treat tests (tests 
of assigned-treatment effects) remain valid tests 
of received-treatment effects under broader condi- 
tions than conventional tests of received-treatment 
effects. See the volume edited by Goetghebeur 
and van Houwelingen (1998) for discussions of 
these and related issues, including alternatives to 
intent-to-treat analysis. 

A crucial point is that confounding can affect 
even intent-to-treat analyses. For example, appar- 
ently random assignments may not be random, as 
when blinding is insufficient to prevent the treat- 
ment providers from protocol violations or when 
there is differential loss to follow-up. Even when 
these problems do not occur, random imbalances 
remain possible. A more subtle problem is that 
noncompliance can produce bias away from the 
null in an intent-to-treat analysis of equivalence 
trials. With noncompliance, the sharp null hypoth- 
esis (of equivalence of the two treatments) does not 
by itself imply that the distribution of outcomes 
will be the same in both treatment arms, because 
noncompliance represents movement into a third 
untreated state that does not correspond to any 
assigned treatment (Robins, 1998). To illustrate, 
suppose treatments A and B are both 100% effec- 
tive and thus completely equivalent with respect to 
their effect on the outcome, so that the equivalence 
null is satisfied. Suppose, however, that treatment 
A causes a harmless but unpleasant flushing sen- 
sation, whereas treatment B does not, and as a 
consequence compliance is 70% for A but 100% 
for treatment B. Then the intent-to-treat test will 
reject the null hypothesis of equivalence solely be- 
cause of the lower compliance with treatment A. 
Thus, in this example, noncompliance confounds 
the intent-to-treat analysis away from the correct 
null hypothesis of equivalence. 

6.3 Choice of Target 

In observational epidemiologic studies, the usual 
goal is to estimate the effect that treatment had on 
the treated group, pAl - pAo, or would have had on 
the untreated group, pB1- pBo, depending on the 
ultimate policy objectives; for example, pAl- pAo 
may be of interest as a measure of harm caused by 
the treatment. However, in randomized trials there 
are several reasons for orienting the estimation goal 
toward comparison of the expected outcome of the 
entire (treated + untreated) study group if every- 
one had been treated, p+l = (pA1+pB1)/2, and the 
expected outcome of this group if no one had been 
treated, p + ~= (pAO+ pB0)/2 (Robins, 1988). Both 

these outcomes are counterfactual, and so analysis 
requires substituting the estimable pair (pAl, pBO) 
for ( P + ~ ,P + ~ ) .  Consequently, the no-confounding 
condition becomes pA1= p+l and /LBO = p + ~or, 
equivalently, pAl= p ~ 1and pAo= /LBO.This con- 
dition is not realistic, but it is also not necessary. 
Inferential procedures for (say) p+l - p + ~can be 
derived from the randomization-induced uncondi- 
tional exchangeability of pA1 with p ~ 1and of pAo 
with /LBO. 

One advantage of focusing on p+l - p + ~rather 
than pA1 - pB1 is that standard inferential proce- 
dures for treatment effects on risks yield conserva- 
tively valid inferences for p+l- p + ~(Copas, 1973; 
Robins, 1988; see also Neyman, 1935). Another ar- 
gument for focusing on p+l and p + ~  applies if the 
entire cohort is a random sample from a specified 
target population: in that situation p+l - p + ~will 
in expectation be closer to the treatment effect in 
the target than p ~ 1- pBO,because the former will 
deviate from the target effect only because of sam- 
pling variability, whereas the latter will incorporate 
randomization variability as well (Robins, 1988). 

6.4 lgnorability and Confounding 

It is sometimes possible to evaluate a treatment- 
assignment mechanism even though the mechanism 
is not under control; examples include the way util- 
ity companies assign water and power sources 
to homes. In these settings, the mechanism may 
clearly not be random but may nonetheless satisfy 
weaker conditions that allow inferences about the 
effect of interest. 

As an example, suppose one is interested in 
just one particular outcome variable, such as time 
to death. A treatment-assignment mechanism is 
strongly ignorable for the outcome variable if (1) 
the treatment-assignment variable X it defines is 
independent of the vector y = (yo,yl ,  . . . ,yK )  of 
potential outcomes, and (2) each unit has nonzero 
probability of assignment to each treatment level 
(Rosenbaum and Rubin, 1983). Standard random- 
ization methods are strongly ignorable for all 
outcomes when noncompliance and censoring are 
absent or purely random. 

Like randomization, strongly ignorable treat-
ment assignment insures that parameters of the 
population-specific distributions of potential out-
comes will be exchangeable across populations. For 
example, suppose we have two treatment levels 
(xo, xl), a strongly ignorable assignment mecha- 
nism, and (as above) we label the xl- and xo-treated 
groups by A and B; then, absent any other infor- 
mation related to pAOor pB1, the pair (pA1, pAO) 
should be exchangeable with the pair (pB1, pBO). 



42 S. GREENLAND, J. M. ROBINS AND J. PEARL 

For most purposes, however, only component-
specific exchangeability of pAl with p~~ or ~ A O  
with ~ B Ois needed (Greenland and Robins, 1986; 
Robins, 198713); this condition is implied by but 
does not imply "weak ignorability," in which con- 
dition (1)above is replaced by the condition that 
X is independent of each component of y consid- 
ered separately, rather than jointly (Stone, 1993). 
Ignorability (strong or weak) is thus stronger than 
needed for identification of the causal parameter 
PA1 - ~ A O .  

Rubin (1991) has referred to an assignment 
mechanism that satisfies condition (1)(i.e., assigns 
treatment independently of y) as "unconfounded." 
Following Fisher (1935), we prefer to call such a 
mechanism "unbiased," because traditional usage 
of "unconfounded refers to the actual allocation 
produced by the mechanism. Rubin's usage, like 
Stone's (1993) definition of "no confounding," does 
not allow for random allocation errors; as discussed 
earlier for randomization, however, random varia- 
tion in unbiased mechanisms can by chance produce 
confounded allocations. 

7. CONCLUSION 

Concepts of confounding have been discussed by 
philosophers and scientists for centuries. It is only 
in more recent decades, however, that precise for- 
mal definitions of these concepts have emerged 
within statistical theory. These developments have 
revealed the distinction between counterfactual and 
collapsibility-based concepts of confounding. This 
distinction deserves mention in basic statistics ed- 
ucation, because the counterfactual definition of 
confounding is nonparametric and specific to causal 
inference, whereas collapsibility depends on the 
choice of association parameter and requires no 
reference to causality or effects. 

Our discussion has assumed that both the treat- 
ment variable and the confounders can be fully char- 
acterized by fixed covariates. Further subtleties can 
arise when these variables are time-dependent; see 
Robins (1986, 1987a, b, 1997) and Pearl and Robins 
(1995). We also have not considered issues of con- 
founding in separating direct and indirect effects; 
for discussions, see Robins (1986, 1997), Robins and 
Greenland (1992, 1994), Pearl and Robins (1995) 
and Pear1 (1997). 

We wish to end on the cautionary note that 
confounding is but one of many problems that 
plague studies of cause and effect. Biases of com- 
parable or even greater magnitude can arise from 
measurement errors, selection (sampling) biases, 
and systematically missing data, as well as from 

model-specification errors. Even when confounding 
and other systematic errors are absent, individual 
causal effects will remain unidentified by statis- 
tical observations (Greenland and Robins, 1988; 
Robins and Greenland, 1989). It remains a seri-
ous challenge to create a statistical theory that can 
encompass all these problems coherently and also 
yield practical methods for data analysis. 

APPENDIX 1: RESTRICTIONS IMPOSED BY 
THE POTENTIAL-OUTCOMES APPROACH 

First, causal effects are defined only for compar-
isons of treatment levels. To state that "drinking 
two glasses of wine a day lengthened Smith's life 
by four years" is meaningless by itself. A reference 
level (e.g., no wine at all) must be at least implicit 
to make sense of the statement. Smith might have 
lived even longer had she consumed one rather than 
two glasses per day, in which case the statement 
would be false relative to one glass a day. As given, 
the statement could refer to no wine or four glasses 
per day or any other possibility. 

Second, the definition assumes that yik, the out- 
come of unit i under treatment k, remains conceptu- 
ally meaningful even if unit i is not given treatment 
k. That is, the analyst must be prepared to treat 
yio,. . . ,yiK as parameters unaffected by treatment 
assignment. Treatment assignment only determines 
which one of these K + 1 parameters we observe 
[that is, the realization of Yi (Rubin, 1974, 1978, 
1991)l; the other K parameters remain latent traits 
of individual i .  In the philosophy literature, analysis 
of this assumption is one of the core tasks of coun- 
terfactual logic (Simon and Rescher, 1966; Lewis, 
1973a; Galles and Pearl, 1998; see also the discus- 
sion of Holland, 1986). The statement "if xk had 
been administered, the response Yi of unit i would 
have been yik" is called a counterfactual conditional 
(Lewis, 1973b; Stalnaker, 1968); it asserts that Yi 
would have equaled yik if xk had been administered 
to unit i ,  even if xk had not i n  fact been adminis- 
tered to unit i .  

Third, the effects captured by the above counter- 
factual definition are net effects, in that they in- 
clude all indirect effects and interactions not specif- 
ically excluded by treatment definitions. For exam- 
ple, Smith's consumption of two glasses of wine per 
day rather than none may have given her four extra 
years of life solely because one night at a formal din- 
ner it made her feel unsteady and she had a friend 
drive her home; had she not drunk, she would have 
driven herself, skidded on a patch of ice, hit a tree 
and been killed. This sort of indirect effect is not one 
we would wish to capture when studying biologic ef- 
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fects of wine use. It is nonetheless included in our 
measure of effect (as well as any estimate) unless we 
amend our treatment definition to include holding 
constant all "risky" activities that take place during 
Smith's life. Such an amendment is sometimes (sim- 
plistically) subsumed under the clause of "all other 
things being equal (apart from treatment)," but can 
be a serious source of ambiguity when the inter- 
vention that enforces the amendment is not well 
defined. 

Consider next an illustration in which redefini- 
tion of the treatment is not an option. Suppose the 
objective is to estimate the effect of coffee use on 
risk of myocardial infarction (MI). If coffee had not 
been used by members of a cohort of current users, 
some of these members might have instead taken 
up or increased smoking to achieve their desired 
level of stimulation. Thus, coffee use may well have 
prevented or reduced smoking and so indirectly re- 
duced MI risk. Would we want this indirect effect 
of coffee included in our target effect parameter? 
The answer to this question depends on the research 
goals, rather than statistics. If the answer is no-we 
wish only to estimate direct physiologic effect of cof- 
fee use, apart from its influence on smoking habits-
we would have to redefine our reference level to one 
of no increased smoking, as well as no coffee use. 

A fourth restriction, which may be considered an 
aspect of the third, is that the definition assumes 
that treatments not applied to a unit could have 
been applied. Suppose Smith would not and could 
not stop daily wine consumption unless forced phys- 
ically to do so. The effect of her actual two-glass- 
a-day consumption versus the counterfactual "no 
wine" would now be undefined without amending 
the treatment definition to include forcing Smith to 
drink no wine, for example, by removing all alcohol 
from public availability. 

Some authors account for the preceding restric- 
tion by requiring that the counterfactual definition 
of "effect" applies only to "treatment variables." The 
latter are defined informally as variables subject to 
intervention or to manipulation of their levels (e.g., 
see Holland, 1986). One may sense an echo of the 
circularity (as in ordinary definitions of cause and 
effect), for the notion of manipulation embodies hav- 
ing an effect on treatment levels (i.e., on xK) and 
is itself somewhat ambiguous. Further ambiguity 
arises because ordinary and useful notions of cause 
do not impose such restrictions; for example, the 
statement "trisomy 21 causes Down's Syndrome" is 
meaningful, even though no method for intervention 
on trisomy 21 is known. Nonetheless, it has been 
argued that one strength of the counterfactual ap- 
proach is its explication of the ambiguities inherent 

in defining cause and effect (Lewis, 1973a; Holland, 
1986; Rubin, 1990). Although some authors impose 
no restrictions on the definition of cause (e.g., Lewis, 
1973a), in our presentation we assume that we are 
dealing only with causes that can be manipulated, 
such as drug treatments. 

Implicit in most discussions of potential outcomes, 
including the present one, is that the outcome yik 
of unit i under treatment xk does not depend on 
the treatment given to any other unit. This postu- 
late is often called the assumption of no interference 
among units, or the stability assumption (Cox, 1958; 
Rubin, 1978, 1990). Chapter 2 of Cox (1958) gives a 
careful discussion of conditions that lead to interfer- 
ence in experimental trials. In epidemiologic stud- 
ies, interference arises readily when the outcome is 
contagious; here, phenomena such as herd immu- 
nity may lead to complex dependencies of subject- 
specific outcomes on the entire population distribu- 
tion of treatment. In such situations, the potential 
outcomes of a single unit must at least be written 
yi,, where w ranges over all (K + l ) N  possible allo- 
cations of the K + 1treatments among the N pop-
ulation units; further complexities arise if depen- 
dencies among the unit specific outcomes must be 
directly modeled (Halloran and Struchiner, 1995). 

APPENDIX 2: DEFINING POTENTIAL 

OUTCOMES WHEN COMPETING 


RISKS ARE PRESENT 


The definition of potential outcomes can be espe- 
cially difficult in survival analysis when competing 
risks are present. Consider again Smith's drinking. 
Suppose she contracted cancer at age 70 and drank 
two glasses of wine a day, but would have instead 
died of a myocardial infarction at age 68 if she had 
drunk no wine. How could we define her counter- 
factual age-at-cancer given no wine? Without such 
a definition, the effect of two glasses of wine versus 
none would be undefined. 

One school of thought maintains that, to of-
fer a definition, one must have an unambiguous 
concept of the manner in which competing risks 
would be removed, as well as the counterfactual 
time of the outcome event. These requirements are 
not met by conditioning on "absence of compet- 
ing risks": Such hypothetical absence is itself not 
a treatment or other well-defined counterfactual 
state, even though standard probability calcula-
tions (as used in product-limit estimates) make it 
appear otherwise (Kalbfleisch and Prentice, 1980, 
page 166; Prentice and Kalbfleisch, 1988). To deal 
with this problem, one must specify a treatment 
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that would prevent the competing risks, as well as 
the treatment xk  of primary interest. 

An opposing view maintains that it can be sci- 
entifically useful to assume that a potential out- 
come yik  remains a well-defined quantity even if a 
competing risk would occur and prevent its observa- 
tion under treatment xh (Robins, 1986, 1987a; Slud, 
Byar and Schatzkin, 1988). In such a case, y ik is the 
time the outcome would have occurred if no compet- 
ing risks occurred before y ik .  That is, we imagine 
that the causal mechanism leading to the outcome 
would have taken its course to a particular value yik  
had it not been interrupted by the competing risk. 
Returning to our example, we could imagine that, 
if Smith had drunk no wine, her pathophysiologic 
state at age 68 (when she died from a myocardial in- 
farction) would have been such as to produce a ma- 
lignant tumor after just one more year. Under this 
admittedly very hypothetical scenario, we could say 
that her drinking extended her age-at-cancer by one 
year because she in fact contracted cancer at age 70. 
Note that this latent-outcome model does not imply 
that the competing risks are independent. 

A third approach to the competing-risk problem 
is based on extending the ordinary definitions of ef- 
fect in absence of competing risks to encompass in- 
stances in which the outcome is undefined under one 
or more treatments. For details, see Robins (1995b). 
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