A Child’s Garden
of Likelihood

Many approaches to statistical inference begin with an estimate
motivated by intuition {e.g. the sample proportion) or by some
essentially ad hoc principle, like least squares. It is then
customary to use probability theory based on the assumption of
random sampling to assess reliability. By contrast, likelihood
methods make use of assumptions about random sampling to not only
provide measures of reliability in the form of confidence and
significance levels, but to provide the estimates in the first place.

One Parameter Problems

In the simplest situation one wishes to make inference regarding a
single unknown parameter, 8, based on a sample of observations,
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e.q. Let © represent the concentration of cells (say in cells/1) of some organism
in some preparation, Counting cells directly is often impractical, so
estimates are sometimes based on a "dilution series”, In a dilution series,
the initial preparation is split into smaller "aliquots™ which are then
cultured separately, to detect if amy cells are present in the aliquot, The
result for a particular aliquot is then either positive or negative, i.e, a
binary outcome,

T mpling distribution of the data

If we assume “random mixing" in the dilution processes (analogous to
sampling variability in a true sampling experiment) the distribution
of the zi=number of cells in aliquot i will be Poisson. (Recall the
the probability function for a Poisson variate z, with pn=g(z), is
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zi depend on the dilution factor, and will satisfy pi=9xxi, where xj

represents the fractional size of the ith aliquot relative to the
initial preparation.

Priz;pl = g ). In the present experiment, the expected values for



Suppose that we record yi=0 (negative) or 1 {positive), i=1,...,n and that
the size of the aliquots cultured are Xj, i=1,...,n. The yi’s can be
thought of as random variables, with j=Pr{yj=1} depending on 6 and
Xi. The probability that yj equals O is just the probability that zj
equals 0, which based on the Poisson formula is simply e~ ¥j. Thus
we have

Pr{yi=0} = e-9%; and Ti=Pr{yi=1}=1-e-%%;,
For any given value of 8, probabilities for a particular set of

outcomes yi, i=1,..n can be worked out by calculating and
multiplying the relevant probabilities from the above.

The likelihood for © and the maximum likelihood estimate, &

The above expression provides probabilities for arbitary outcomes as
they depend on the unknown value of the parameter. Having
observed particular outcomes, however, it can be viewed as
providing a vehicle for inference concerning that parameter.

Suppose that ten 10 ml aliquots were obtained (i.e. xj all = .01) and that
6 of the aliquots cultured positive. This gives rise to the following
likelihood

LiK(8 ; UysUay «ees Yn) = (2-8/100)4 x (1-o-0/100)6

Note that in this example we don’t need to know the individual yj'3 since the
likelihood only depends on their total, T (in this case T=6), Here T is
called a sufficient statistic, since it's all we need to form the likelihood,

This likelihood just tabulates the probabilities for the observed data, as
they depend on hypothetical values of the unknown parameter. The
graph on the top of the next page shows the likelihood for our
example.
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Based on the graph ve see that the probability of our observed outcome
is marimized at 8= 92, roughly. This is a plausible best estimate
for 8. In general, the value of 8, denoted by 8, that maximizes the
probability of the observed data (as determined by the sampling
distribution postulated for the data) is called the maximum
likelihood estimate. The exact value for the above data is 6=91.6.

In addition, the curve of probabilities below may also be view as a
plausible basis for "ruling out” certain values of @ providing
probabilities that are "too low". By formalizing this intuitive
notion, we can derive likelihood based significant tests and
confidence intervals.

Likelihood based inference procedures

The development above has only brought us to the point of determining a
point estimate, namely the m.l.e. Tests and confidence intervals
can be derived by considering the sampling distribution of the m.l.e.
In most situations, the exact distribution of the m.l.e. will be
intractable {too mathematically complicated), so we resort to
approximate results. A particularly nice feature of likelihood
inference, is that in general, when sample sizes are large, the
sampling distribution of the m.l.e. will be approximately normal,
with mean 6. This implies that m.l.e.’s are approximately unbiased
estimates of their "target” parameters.



Likelihood theory also provides estimated standard errors based on the
“peakedness” of the likelihood at the value of the m.l.e. A numerical
measure of this peakedness is the negative of the 2nd derivative of
the logarithm of the likelihood, which is referred to as the Fisher
information, and sometimes denoted 1(8). An approximate standard
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error for 8 is = { note that this is small when the information
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is large).

Jignificance tests can be based on the z-statistic,

8-8 — o
2= ey = VU (6-8y),
and confidence intervals take the usual form,
8 + (critical z-value) se(8).
In our example, the Fisher information takes the form
I(8) = 10-3*(n-T)/T,
yhich for the data at hand is .0007, yielding an estimated standard
error for our estimate of 38.7

The 1og likelihood and the likelihood ratio test

Because the likelihood is typically formed as a product, it is often
convenient to take is logarithm (base e), converting the product to a
sum. In the example above, the log likelihood, 1{8 ; Yy,Yzy...,yn) takes
the general form (after omitting irrelevant terms)

1O 5 Yp,Ypsensldn) = (n-T)x (-8/100) + Txloge(1-e-6/100)
An alternative method for approximate inference which has been shown

to be more reliable than that based on the asymptotic normality of
the m.l.e. arises from the fact that the quantity

A = = 2% {U8;41,Yz5esYn) = U B34 1,UzseesUn) }

has a distribution which is approximately X2, in large samples.
Mote that this quantity is not observable since it depends on the
“true” value of 8. By replacing & with some hypothetical value, 8y,
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one arrives at a test statistic, D, which can be referred to X2y,
tables. This test is sometimes referred to as the likelihood ratio
test, because D is essentially the logarithm of the ratio of the
likelihood evaluated &, and 8.

The deviance that GLIM prints is essentially - 2 x {l(é;g,,gz,...,gn}}.
Thus the change in deviance test is really a likelihood ratio test.

Multi-parameter Problems

Much of the discussion above generalizes directly to the case when there
is more than one parameter of interest. In principle, there is no
additional complication in allowing the sampling distribution of the
data to depend on more than one quantity. For example, suppose we
have solutions 1 and 2, with cell counts, 8,=8 and 8,=p8, to
determine. (The “practical” interpretation of p is that it is the ratio
of the counts). If we have results yii, i=1,...,n1 and
Yzi, i=1,...,n2, from the two solutions respectively, with
corresponding concentrations, Xti, i=1,...,n1 and X2i, i=1,...,n2 then
the joint probability of the data can be formed as a product, leading
to the joint likelihood, which we’ll denote Lik(8,p ; data ).

To determine the m.lL.e.’s, 6 and p, we must maximize the value on the
likelihood surface, above the plane of possible © and p values. A
typical likelihood surface looks like:

Liki{e,p ; data )




In this example, as in most practical example, & and p are
asymptotically normal, with means corresponding to their "target”
parameters. Approximate standard errors are obtainable by
consideration of the shape of the likelihood surface at (8,p), and
give rise to tests and C.I.’s for © and p considered separately.

An altogether new issue that arises is that of joint inference for the
tyo parameters. Joint hypothesis tests pertain to hypotheses of
the form

Hg: ©=9g & p=pg VS Ha: 828, & P#Pa

giving rise to significance levels for assessing the evidence against
Hg- A joint confidence region is a region of plausible (8,p) values in
the (8,p) plane, as determined from the data. Joint confidence
regions are typically (ideally} ellipsoidal in shape.
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Joint inference procedures differ from separate inference procedures in
some non-intuitive ways, arising out of certain features of sampling
variation. One key feature that is sometimes present is correlation
between the m.l.e.’s, & and p. The practical importance of
correlation arises from noting the the correlation of the errors of
estimation, 6-6 and p-p, is the same as that of & and p. Thus if €
and p are postively correlated, it is the case that values of 8 that
overestimate © will tend to be associated with values of p that
overestimate p. The oblique nature of the confidence region in the
plot above arises out of negative correlation.

Correlated estimates are also responsible for certain “paradoxes™ in
joint testing. For example, it is not uncommon to fail to have
evidence against either of the separate null hypotheses, Hy:0=0, or



Ho:p=py, but to be able to reject the joint null, Hy: ©=8; & p=py.
This situation is best understood by reference to the corresponding
confidence region far © and p. Again the plot above is relevant.
Once sees that the confidence region is not able to “rule out” all
points with 8=8; or p=py, but does rule out the point (84,py).

The mathematical treatment of correlation is most easy to deal with in
relation to the multivariate normal distribution, which is the multi-
dimensional generalization of the normal distribution. For example,
a bivariate normal distribution is plotted below. Large sample
theory shows that the joint distribution of a set of m.l.e.’s will
tend to be multivariate normal.

When a set of estimates has a multivariate normal distribution, their
separate (marginal) behaviour is normal, with their respective
means and standard errors, but their joint behavior is determined as
well by their correlations, which can be specified in a correlation
matriz. The likelihood surface provides an estimated correlation
matrix just as it provides estimated standard errors, based on the
geometry of the surface around the m.l.e. Joint hypothesis tests
and confidence intervals can be deduced from this information.

In addition to inference based on asymptotic multivariate normality, the
likelihood ratio test has analogues in the multiparameter situation.
First we take logs, yielding

1{8,p ; data) = log{Lik(6,p;data)}.
we can then define the guantity
A= -2x {1(8,p;data)- 1(8, p;data) }

which has sampling distribution which is ¥2, . By substituting 8,
and py values, one obtains a test statistic for Hy: 8=6; & p=p; .



