## Interpreting Logistic Coefficients Create the Confounded Data Set and Save. ```{r,eval=FALSE} # eval=FALSE so the data is not over-written on re-running the script df <- read.csv("~/teach/550/www/lab.csv") df$LabTest <- as.integer(as.character(df$LabTest)) df <- df[!is.na(df$LabTest),] labTest <- df[!duplicated(df$ID),"LabTest"] lab1 <- sample(labTest,200,replace=TRUE) lab2 <- sample(labTest,200,prob=labTest,replace=TRUE) l1 <- 2 - lab1/8 l2 <- 5 - lab2/8 p1 <- 1/(1+exp(-l1)) p2 <- 1/(1+exp(-l2)) ys <- runif(400) < c(p1,p2) gp <- rep(1:2,rep(200,2)) df <- data.frame(dvt=yes.no(ys),Trt=factor(gp,labels=c("Long","Short")), Test=c(lab1,lab2)) save(df,file="DVT.covar.rda") ``` ```{r,echo=FALSE,message=FALSE,results='markup',fig.height=4, fig.width=5,fig.show="asis"} load("DVT.covar.rda") source("~/tmp/rbfuns.R") attach(df) compare.ps(Trt,dvt) boxplot(split(Test,Trt),main="Unbalanced Distribution") ttest(split(Test,Trt)) lgfit <- glm( dvt ~ Trt + Test, family=binomial) summary(lgfit) fits <- fitted(lgfit) plot(Test,fits,main="Fitted Probabilities",ylab="Probability", xlab="Initial Lab Test") print(coefTable(lgfit,trans=exp),digits=5) ```