SPLIT PLOT ANALYSIS
df <- read.csv("splt.txt", header = TRUE)
y <- unlist(df[paste("y", 1:4, sep = "")])
coat <- factor(unlist(df[paste("a", 1:4, sep = "")]), labels = paste("C", 1:4))
temp <- factor(rep(df$Temp, 4), labels = c(360, 370, 380))
plot <- factor(rep(df$plot, 4), labels = paste("Plot", 1:6))
boxplot(split(y, coat))
boxplot(split(y, temp))
boxplot(split(y, plot))
twoway.boxplot(y, coat, temp)
library(lme4)
anova(lmer(y ~ temp * coat + (1 | plot)))
## Analysis of Variance Table
## Df Sum Sq Mean Sq F value
## temp 2 682 341 2.74
## coat 3 4289 1430 11.48
## temp:coat 6 3270 545 4.38
summary(aov(y ~ temp * coat + Error(plot)))
##
## Error: plot
## Df Sum Sq Mean Sq F value Pr(>F)
## temp 2 26519 13260 2.75 0.21
## Residuals 3 14440 4813
##
## Error: Within
## Df Sum Sq Mean Sq F value Pr(>F)
## coat 3 4289 1430 11.48 0.002 **
## temp:coat 6 3270 545 4.38 0.024 *
## Residuals 9 1121 125
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(lm(y ~ plot + coat))
## Analysis of Variance Table
##
## Response: y
## Df Sum Sq Mean Sq F value Pr(>F)
## plot 5 40959 8192 27.99 4.2e-07 ***
## coat 3 4289 1430 4.88 0.015 *
## Residuals 15 4391 293
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(lm(y ~ temp * coat))
## Analysis of Variance Table
##
## Response: y
## Df Sum Sq Mean Sq F value Pr(>F)
## temp 2 26519 13260 10.23 0.0026 **
## coat 3 4289 1430 1.10 0.3860
## temp:coat 6 3270 545 0.42 0.8518
## Residuals 12 15561 1297
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1