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A Minimal Characterization of the Covariance Matrix 

By R. Grtibel I 

Summary:  Let X be a k-dimensional random vector with mean vector ~ and non-singular covariance 
matrix Z. We show that among all pairs (a, A), a ~ IR k, /x ~ IRkxk positive definite and sym- 
metric and E ( X - a ) ' A - - 1  ( X -  a) = k, (ta, ~) is the unique pair which minimizes det A. This moti- 
vates certain robust estimators of location and scale. 

Let X be a k-dimensional  random vector with EIIXII 2 < 0 %  let l a = E X  denote its 

mean  vector and Y~ = E ( X -  l a ) ( X -  la)' its covariance matrix (we regard vectors a E N. k 

as columns and write a '  for the transpose of  a). It is well known  t h a t / l  is the best 

L2-approximand for X in the sense that a ~ E l l X - a l l  2 has a unique (global) m i n i m u m  

in a =/a, a simple argument  being 

E I I S -  all = = E ( X -  U + U - a ) ' ( X  - U + U - a) = E ( X  - U ) ' ( X  - I~) + I1• - all z • 

Since E ( X  - / . t ) ' (X  - /~ )  = tr ( E ( X  - / a ) ( X  - / ~ ) ' )  the m i n i m u m  is the sum of  the diago- 

nal elements of  2;, so there is no interpreta t ion of  the full covariance matrix in this 

approach. 

22 is positive semi-definite and symmetric.  Assume for the rest o f  the paper that 

X is genuinely  k-dimensional ,  i.e. not  concentra ted on  a hyperplane.  Then  2; is posi- 

tive definite so that the  ellipsoid E(/l, 2~) is non-degenerate where for all a E N. k and 

all positive definite symmetr ic  k x k-matrices A 

E(a, a) = (x ~ ~k:  (x - a ) ' a - *  (x - a )  ~< 1). 
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Note that the volume of  E(a, A) is a strictly increasing function of  det A. Within a 

family {E(a, ~A): a > 0 )  the unique ellipsoid which has X on its boundary is ob- 
tained for c~ = ( X - a ) ' A - I ( X - a ) .  As the following theorem shows E(/2, 2;) is the 

unique minimum volume ellipsoid which assigns mean k to this factor. It thereby 
provides us with a simultaneous characterization of  mean and covariance. 

Theorem: Let X be a k-dimensional random vector with EIIXII 2 < oo mean tt and 

non-degenerate covariance matrix 2;. Then among all pairs (a, A), where a C p k, 

A positive definite and symmetric and 

E ( X - - a ) ' A - I ( X - - a )  = k (1) 

(it, ~) is the unique pair which minimizes det A. 

Proof: Let 2;--1/2 be a symmetric matrix with 2 ; - - 1 / 2 ~ - - 1 / 2 ~  = I  where I denotes 

the k x k identity matrix (2;-l iE exists since 2; is positive definite and symmetric). 

Put Y= 2 ; - l /Z (x - tO .  Then 

E ( X -  la)'2;-l ( X -  la) = E Y ' Y  = tr (EYY ' )  

= tr (2; -1/2E[(X - Id)(X -/.t)' ] 2;-1/2) 

= tr (1) = k, 

so (/a, N) satisfies (1). 

This transformation also shows that we now may assume g = 0, 2; = I. 
Let A be an arbitrary symmetric and positive definite k x k-matrix. Then there exist 

an orthogonal matrix U and Xl ~> X2/> ... ~> Xk > 0 such that 

A = Udiag (Xl, ..., Xk)U' 

and det £x = 3,1X 2 ... Xk, Z~ - 1  = U diag (Xi -x . . . . .  Xka)U '. Now suppose (a, A) is such 

that (1) holds. We put Z = U ' ( X - a ) .  Then 
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E ( X  - 17)tA - 1 ( X  - el) = E Z '  diag (hi- 1 . . . . .  h~ 1 )Z 

= ~; 'EZ~ +... + ~ I E Z 2  

tc k 
~ - l v a r Z i +  Z ~TI(EZi) 2. 

i=1  i=1  

Since EZ = -  U'a and c o v ( Z ) = I  (1) implies X] -1 + . . .  +X~ 1 < k  if a 4 : 0  and then 

det A > 1 by the familiar inequality relating geometric and arithmetic mean. So any 

solution of  (1) with a 4= 0 does not minimize det A since by the first part of  the proof 

(0 , I )  is a solution. If a = 0 then the sum of  the XTX's gives k which by the condition 

on equality of geometric and arithmetic mean leaves open two possibilities: either 
they all equal 1 or their product is strictly less than 1. Again, the second case would 

not minimize det A and we arrive at A = UIU' = I, i.e. (0, I )  is the unique solution. [] 

We may regard the solution of  the problem 

"find (a, A) with det A = min! under the constraint E(X-a) ' / ' , -1  (X  - a )  : k" 

as a function T of  the underlying distribution function F of  the random vector X. The 
theorem then says that T is well-defined on M = ( F :  f [[x[[ZF(dx) < oo) and that 

T(F) = (/1, Z) on M. Given a sequence X1, )(2 . . . .  o f  independent and identically dis- 
tributed random variables with distribution function F a sequence of  estimators for 

T(F) can be obtained by putting Tn = T(Fn) where Fn denotes the empirical distribu- 

tion function corresponding to X1, . . . ,Xn- Applying the theorem to the empirical 

distribution we see that this leads to the familiar estimates o f  mean and covariance, 

namely the sample mean and the sample covariance. These are known to be highly 

non-robust, e.g. a single wrong observation can move the estimate over an arbitrarily 

long distance. We may explain this by the form of  the above constraint which leads 

us to try 

E f ( ( X -  a ) ' A -  1 ( X -  a)) = c 

instead where f :  IR+ ~ ~ +  is some function growing less rapidly than the identity 

and the constant c is chosen appropriately. Obviously, any such procedure - if it 

makes sense, we may e.g. have to replace "=" by "~<" - will result in an affine equi- 

variant estimator, i.e. an estimator which behaves like sample mean and covariance 

under affine transformation of  the data. 
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Indeed, a radical choice o f f  such as 

f (x )  = { 0, x ~ < l '  

1, x > l ,  

leads to the minimum volume ellipsoid estimators introduced by Rousseeuw (see 

also Hampel/Ronchett i /Rousseeuw/Stahel  and Davies), given data Xl . . . .  xn we esti- 

mate location and scale by Ii n and En where ~(/J , ,  ~n)  is the ellipsoid o f  minimum 

volume containing at least a fraction 1 - c of  these points. 
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