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A Minimal Characterization of the Covariance Matrix

By R. Griibel!

Summary: Let X be a k-dimensional random vector with mean vector u and non-singular covariance
matrix £. We show that among all pairs (@, A), a € ]Rk, ac Rkxk positive definite and sym-
metric and E(X —a) A~ Y (X -a) =k, (u, ) is the unique pair which minimizes det A. This moti-
vates certain robust estimators of location and scale.

Let X be a k-dimensional random vector with E||X|> <o, let u=EX denote its
mean vector and = = E(X — u)(X — )’ its covariance matrix (we regard vectors ¢ € R¥
as columns and write 2’ for the transpose of ). It is well known that u is the best
L2-approximand for X in the sense that ¢ = £|X —a|[* has a unique (global) minimum
in @ = u, a simple argument being

ElX-al? =EX~p+p-a)X-p+u-a)=EX-w)' (X - +llu-al?.

Since E(X — ) (X — ) = tr (E(X — w)(X — u)") the minimum is the sum of the diago-
nal elements of Z, so there is no interpretation of the full covariance matrix in this
approach.

Y is positive semi-definite and symmetric. Assume for the rest of the paper that
X is genuinely k-dimensional, i.e. not concentrated on a hyperplane. Then Z is posi-
tive definite so that the ellipsoid E(, ) is non-degenerate where for all € R¥ and
all positive definite symmetric k x k-matrices A

E@, A)={x€RF: (x—a)a Y x—a) <1}
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Note that the volume of E(g, A) is a strictly increasing function of det A. Within a
family {E(a, «d): o >0} the unique ellipsoid which has X on its boundary is ob-
tained for a=(X —a)' A~ (X —a). As the following theorem shows E(u, X) is the
unique minimum volume ellipsoid which assigns mean k to this factor. It thereby
provides us with a simultaneous characterization of mean and covariance.

Theorem: let X be a k-dimensional random vector with E||X]|2 <, mean u and
non-degenerate covariance matrix X. Then among all pairs (a2, A), where a € R¥,
A positive definite and symmetric and

EX-a)A'(X-a)=k )
(u, Z) is the unique pair which minimizes det A.

Proof: Let 72 be a symmetric matrix with L~Y2g-U23 = where I denotes
the k x k identity matrix (X2 exists since Z is positive definite and symmetric).
Put Y = £7Y2(X ). Then

EX-wZ Y (X-w=EY'Y=tr(EYY")
=tr (STV2E[(X (X ~w)']1Z71?)

=tr(/)=k,

so (u, X) satisfies (1).

This transformation also shows that we now may assume u =0, Z=1.

Let A be an arbitrary symmetric and positive definite k x k-matrix. Then there exist
an orthogonal matrix U and Ay 2 X, 2 ... 2 A, > 0 such that

A=Udiag (A, ..., AU’

and det A=XAp ... A, A7 = U diag (AT!, ..., Az 1) U'. Now suppose (g, A) is such
that (1) holds. We put Z = U'(X —a). Then
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EX-a)A~ (X -a) =EZ diag(\7L, ... \z1)Z

=AT1EZ2 + 40\ EZE

k
= 2 Alvarz + § AT MEZ)?.
i=1 i=1

Since EZ=—U'a and cov(Z) =1 (1) implies A7} +... + \z! <k if ¢ #0 and then
det A>1 by the familiar inequality relating geometric and arithmetic mean. So any
solution of (1) with @ # 0 does not minimize det A since by the first part of the proof
(0,1 is a solution. If @ =0 then the sum of the A7 !’s gives k which by the condition
on equality of geometric and arithmetic mean leaves open two possibilities: either
they all equal 1 or their product is strictly less than 1. Again, the second case would
not minimize det A and we arrive at A = UIU' =1, i.e. (0, I) is the unique solution. O

We may regard the solution of the problem
“find (a, A) with det A = min! under the constraint E(X —a)’' A=Y (X —a) = k"

as a function T of the underlying distribution function F of the random vector X. The
theorem then says that T is well-defined on M= {F: [ |Ix||?F(dx)<°°} and that
T(F)=(u, Z) on M. Given a sequence X, X3, ... of independent and identically dis-
tributed random variables with distribution function F a sequence of estimators for
T(F) can be obtained by putting 7,, = T(F},) where F,, denotes the empirical distribu-
tion function corresponding to X, ..., X,,. Applying the theorem to the empirical
distribution we see that this leads to the familiar estimates of mean and covariance,
namely the sample mean and the sample covariance. These are known to be highly
non-robust, e.g. a single wrong observation can move the estimate over an arbitrarily
long distance. We may explain this by the form of the above constraint which leads
us to try

Ef(X-a)'A ' (X-a))=c

instead where f: R, —> R, is some function growing less rapidly than the identity
and the constant ¢ is chosen appropriately. Obviously, any such procedure — if it
makes sense, we may e.g. have to replace “=" by ‘< — will result in an affine equi-
variant estimator, i.e. an estimator which behaves like sample mean and covariance
under affine transformation of the data.
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Indeed, a radical choice of f such as

0, x<xl1,

fle)=
1, x>1,

leads to the minimum volume ellipsoid estimators introduced by Rousseeuw (see
also Hampel/Ronchetti/Rousseeuw/Stahel and Davies), given data xy, ... x,, we esti-
mate location and scale by ji, and £, where E(ji,, £,) is the ellipsoid of minimum
volume containing at least a fraction 1 — ¢ of these points.
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