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Fitting well all the data
versus

Fitting well most of the data
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A NUMERICAL

EXAMPLE
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A Prediction Model

Linear regression model:

yi = α+ βxi + εi , i = 1, 2, ..., 50

Regression residuals

ri (b0, b1) = yi − b0 − b1xi
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Least Squares (LS)

Least Squares (LS)

(
α̂LS , β̂

LS
)
= arg min

b1,b2

n=50

∑
i=1

r2i (b0, b1)

For our example, using the function lm in R, we obtain:

α̂LS = −0.9237 and β̂
LS
= 3.8808
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Least Squares Fit
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A Robust Alternative

Sorted squared residuals

r2(1) (b0, b1) ≤ r2(2) (b0, b1) ≤ · · · ≤ r2(n) (b0, b1)

Least Trimmed Squares (LTS)

(
α̂LTS , β̂

LTS
)
= arg min

b1,b2

n(1−α)

∑
i=1

r2(i ) (b0, b1)
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A Robust Alternative (continued)

For our example we set α = 0.4, so(
α̂LTS , β̂

LTS
)
= arg min

b1,b2

30

∑
i=1
r2(i ) (b0, b1)

Using the function ltsReg in the package robust in R, we obtain:

α̂LTS = 11.662 and β̂
LTS

= 1.875
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LTS and LS Fits
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Out of Sample Prediction

Predict the value of yi for a new case with covariate value xi

Use the prediction model and the estimated parameters
(

α̂, β̂
)

:

ŷi = α̂+ β̂xi
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Out of Sample Prediction (continued)

Prediction error

e
(
xi , α̂, β̂

)
= yi − ŷi

= yi − α̂− β̂xi

Absolute prediction error (APE)

APE = |yi − ŷi | =
∣∣∣e (xi , α̂, β̂)∣∣∣
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Distribution of APE

We consider the distribution of APE for the N − n out-of-sample
cases

In our example

N − n = 950

Use numerical summaries and plots to compare APE’s based on LS
and LTS
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APE Quantiles (LTS vs LS)

Comparison of α-Quantiles

δ qLTS (δ) qLS (δ)
0.01 0.05 0.22
0.05 0.32 0.55
0.25 1.69 2.58
0.50 3.55 5.72
0.75 6.31 10.41
0.95 14.87 17.98
0.99 43.21 24.42
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APE Densities (LTS vs LS)
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APE Boxplots (LTS vs LS)
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APE q-q Plots (LTS vs LS)
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Classical methods results
versus

Robust methods results
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J. W. Tukey (1979) said:

“. . . just which robust/resistant methods you use
is not important —what is important is

that you use some...”
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John Tukey said:

“ ... It is perfectly proper to use both
classical and robust/resistant methods
routinely, and only worry when
they differ enough to matter.”

“...when they differ, you should
think hard.”
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A REAL DATA

EXAMPLE
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Stack Loss Data

Data first published by Brownlee (1965)

Available in R (dataset name = stackloss)

21 daily observations of the oxidation of ammonia to nitric acid

Extensively studied in the statistical literature

Daniel and Wood, 1980, Chapters 5 and 7
Atkinson, 1985, pp. 129-136, 267-8
Venables and Ripley, 1997
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The Variables

Input Variables

Air Flow The rate flow of cooling air

Water Temperature Inlet cooling water temperature

Acid Concentration Concentration of acid

Output Variable

Stack Loss Inverse measure for the overall
effi ciency of the plant
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Classical and Robust Linear Models

Regression Coeffi cient Estimate LS MM

Intercept -39.92 -37.65

Air Flow 0.716 0.798

Water Temperature 1.300 0.577

Acid Concentration -0.152 -0.067

Residual SE 3.243 1.837
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Big differences!

“We must think hard...”
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LS Residual Plot
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Robust Residual Plot
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Thinking Hard...

Daniel and Wood (1971, Chapter 5, page 81) noticed a different
behavior in the response variable whenever the water temperature was
over 60 degrees.

The plant needs to stabilize after the water temperature reaches 60
degrees.

They concluded that observations obtained with Water Temperature
≥ 60 degrees require special attention, and should be removed from
the analysis.

These correspond to cases 1, 3, 4 and 21 directly uncovered by
the robust fit.

Ruben Zamar Dept. of Stats, UBC () Robustness September 9, 2015 29 / 45



Thinking Hard...

Daniel and Wood (1971, Chapter 5, page 81) noticed a different
behavior in the response variable whenever the water temperature was
over 60 degrees.

The plant needs to stabilize after the water temperature reaches 60
degrees.

They concluded that observations obtained with Water Temperature
≥ 60 degrees require special attention, and should be removed from
the analysis.

These correspond to cases 1, 3, 4 and 21 directly uncovered by
the robust fit.

Ruben Zamar Dept. of Stats, UBC () Robustness September 9, 2015 29 / 45



Thinking Hard...

Daniel and Wood (1971, Chapter 5, page 81) noticed a different
behavior in the response variable whenever the water temperature was
over 60 degrees.

The plant needs to stabilize after the water temperature reaches 60
degrees.

They concluded that observations obtained with Water Temperature
≥ 60 degrees require special attention, and should be removed from
the analysis.

These correspond to cases 1, 3, 4 and 21 directly uncovered by
the robust fit.

Ruben Zamar Dept. of Stats, UBC () Robustness September 9, 2015 29 / 45



Thinking Hard...

Daniel and Wood (1971, Chapter 5, page 81) noticed a different
behavior in the response variable whenever the water temperature was
over 60 degrees.

The plant needs to stabilize after the water temperature reaches 60
degrees.

They concluded that observations obtained with Water Temperature
≥ 60 degrees require special attention, and should be removed from
the analysis.

These correspond to cases 1, 3, 4 and 21 directly uncovered by
the robust fit.

Ruben Zamar Dept. of Stats, UBC () Robustness September 9, 2015 29 / 45



ANOTHER REAL DATA

EXAMPLE
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Boston Housing Dataset

Socioeconomic-Demographic data on 506 urban districts in the
Boston area, USA

Data downloaded from the R package “spdep” (dataset name =
boston)

Number of Variables = 12

Number of Cases = 506
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Boston Housing Data (Continued)

Variable Brief Description

CMEDV median values of owner-occupied housing in USD 1000
CRIM per capita crime
INDUS proportions of non-retail business acres per town
NOX nitric oxides concentration (parts per 10 million) per town
RM average numbers of rooms per dwelling
AGE proportion of owner-occupied units built prior to 1940
DIS weighted distances to five Boston employment centres
RAD an index of accessibility to radial highways per town
TAX full-value property-tax rate per USD 10,000 per town
PTRATIO pupil-teacher ratios per town (constant for all Boston tracts)
B 1000*(Bk - 0.63)^2 where Bk is the proportion of blacks
LSTAT percentage values of lower status population

Ruben Zamar Dept. of Stats, UBC () Robustness September 9, 2015 32 / 45



Exploratory Data Analysis

Compute estimates of multivariate location µ̂ and scatter matrix Σ̂

Compute (squared) Mahalanobis distances (MD) for each data point:

d2i = (xi − µ̂)′ Σ̂−1 (xi − µ̂)

Threshold: Compare the MD’s with a quantile of a χ2(p)

q = F−1
χ2
(p)
(0.99999) = 45.07615

Ruben Zamar Dept. of Stats, UBC () Robustness September 9, 2015 33 / 45



Exploratory Data Analysis

Compute estimates of multivariate location µ̂ and scatter matrix Σ̂

Compute (squared) Mahalanobis distances (MD) for each data point:

d2i = (xi − µ̂)′ Σ̂−1 (xi − µ̂)

Threshold: Compare the MD’s with a quantile of a χ2(p)

q = F−1
χ2
(p)
(0.99999) = 45.07615

Ruben Zamar Dept. of Stats, UBC () Robustness September 9, 2015 33 / 45



Exploratory Data Analysis

Compute estimates of multivariate location µ̂ and scatter matrix Σ̂

Compute (squared) Mahalanobis distances (MD) for each data point:

d2i = (xi − µ̂)′ Σ̂−1 (xi − µ̂)

Threshold: Compare the MD’s with a quantile of a χ2(p)

q = F−1
χ2
(p)
(0.99999) = 45.07615

Ruben Zamar Dept. of Stats, UBC () Robustness September 9, 2015 33 / 45



Mahalanobis Distances: Using the Sample Mean and
Covariance Matrix
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Mahalanobis Distances: Using Robust Location-Scatter
MVES-Estimates
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Think Hard...

Using a robust multivariate-location estimate (called MVE-S) we find
171 outliers

Using classical sample mean and covariance matrix we find 7 outliers

Big difference ⇒ Must think hard!

We will be back to this example

Ruben Zamar Dept. of Stats, UBC () Robustness September 9, 2015 36 / 45



NOISE AND

DATA QUALITY
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Statistical Models

Many data can be modeled as follows:

OUTPUT DATA = SIGNAL ( INPUT DATA, θ ) + NOISE
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A Closer Look at the Noise

We distinguish two types of noise

1

“TYPICAL”NOISE

2

ATYPICAL NOISE
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Sources of Typical Noise

Typical noise comes from

NATURAL FLUCTUATIONS

MEASUREMENT ERRORS

ITEM TO ITEM VARIABILITY, ETC

Not necessarily “Gaussian Noise”

Other classical parametric models such as Gamma, Weibull, Poisson,
etc
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Sources of Atypical Noise

Atypical noise comes from

OUTLIERS AND GROSS ERRORS

MEASUREMENTS OF UNEVEN QUALITY (mixture)

DATA CONTAMINATION (mixture)

MISSING DATA (declared or unsuspected)

DUPLICATIONS, ETC
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Statistical Tasks (simplified view)

Filter noise (both typical and atypical noise)

Extract the signal (point estimation)

Measure the strength of the noise (statistical inference)

Assess uncertainty in the estimates (statistical inference)

Predict future data (prediction)
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Output from Statistical Analysis

Point Estimates
θ̂

Confidence Regions

Cov
(

θ̂
)
, Confidence Region for θ

Prediction / Interpolation

̂SIGNAL ± 2× SE
(
̂SIGNAL

)
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Only Typical Noise

Typically
θ̂→ θ

and
Cov

(
θ̂
)
=
1
n
Cθ̂ → 0

Better when Cθ̂ is small =⇒ use effi cient procedures
Much attention has been given to the problem of minimizing Cθ̂
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The Effect of Atypical Noise

Atypical noise tends to produce asymptotic bias

That is
θ̂→ ∆, ∆ 6= θ

The difference between ∆ and θ is called “contamination bias” (cb)

cb
(

θ̂
)
is of order 1 while Cov

(
θ̂
)
of order 1/n

Therefore, for large n, cb
(

θ̂
)
should be a leading concern
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