Robustness - Module 2

Ruben Zamar Dept. of Stats, UBC

September 20, 2015

Introduction

 To introduce the main concepts and ideas we first consider the location-dispersion model

$$y_i = \mu + \sigma \varepsilon_i$$

- ε_1 , ..., ε_n are i.i.d. random variables with common **symmetric** distribution F_0 .
- ullet Wish to estimate μ .
- $oldsymbol{\sigma}$ is an unknown nuisance parameter.

Dispersion-Location Model

• The parametric model:

$$F_{\mu,\sigma}(y) = F_0\left(\frac{y-\mu}{\sigma}\right)$$

The likelihood function

$$L(\mu,\sigma) = \prod \frac{1}{\sigma} f_0\left(\frac{y_i - \mu}{\sigma}\right),$$

The log likelihood function

$$I(\mu, \sigma) = \log \left[L(\mu, \sigma) \right] = -n \log \left(\sigma \right) + \sum \log \left[f_0 \left(\frac{y_i - \mu}{\sigma} \right) \right]$$

ML-Estimate

 \bullet $(\widehat{\mu}, \widehat{\sigma})$ minimizes the log-likelihood

$$I(\mu, \sigma) \le I(\widehat{\mu}, \widehat{\sigma}), \text{ for all } \mu \text{ and } \sigma > 0.$$

• The ML estimating equations:

$$\frac{1}{n}\sum\left(-\frac{f_0'\left(\left(y_i-\mu\right)/\sigma\right)}{f_0\left(\left(y_i-\mu\right)/\sigma\right)}\right) = 0$$

$$\frac{1}{n}\sum\left(-\frac{f_0'\left[\left(y_i-\mu\right)/\sigma\right]\left(\left(y_i-\mu\right)/\sigma\right)}{f_0\left[\left(y_i-\mu\right)/\sigma\right]}\right) = 1$$

Ruben Zamar

ML-Estimate (continued)

• The score functions:

$$\psi(y) = -\frac{f_0'(y)}{f_0(y)}$$
 (location score)
$$\chi(y) = -\frac{f_0'(y)y}{f_0(y)} = \psi(y)y$$
 (dispersion score)

• The ML estimating equations:

$$\frac{1}{n} \sum \psi \left(\frac{y_i - \mu}{\sigma} \right) = 0$$

$$\frac{1}{n} \sum \chi \left(\frac{y_i - \mu}{\sigma} \right) = 1$$

Ruben Zamar

Example (normal case)

$$f_0(y) = \varphi(y) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}y^2}$$

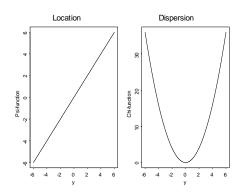
$$\psi(y) = -\frac{d}{dy} \log \varphi(y)$$

$$= -\frac{d}{dy} \left[-\frac{1}{2} \log (2\pi) - \frac{1}{2} y^2 \right] = y$$

$$\chi(y) = \psi(y)y = y^2$$

Ruben Zamar Dept. of Stats, UBC

Normal Score Functions



 $\hat{\mu}$ and $\hat{\sigma}$ satisfy the equations:

$$\frac{1}{n}\sum\psi\left(\frac{y_i-\mu}{\sigma}\right)=\frac{1}{n}\sum\frac{y_i-\mu}{\sigma}=0$$

$$\frac{1}{n}\sum \chi\left(\frac{y_i-\mu}{\sigma}\right) = \frac{1}{n}\sum \left(\frac{y_i-\mu}{\sigma}\right)^2 = 1.$$

Hence

$$\widehat{\mu}=ar{y}$$
, the sample mean,

$$\widehat{\sigma} = \sqrt{\frac{1}{n} \sum_{i} (y_i - \bar{y})^2} = s$$
, the sample standard deviation.

Ruben Zamar Dept. of Stats, UBC

Example: the Double Exponential Model

$$f_0(y) = e^{|-y|}$$

$$\log\left[f_0(y)\right] = -\left|y\right|$$

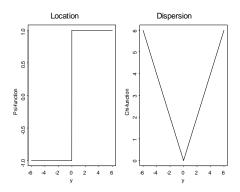
$$\psi(0) = \chi(0) = 0$$

and for $y \neq 0$,

$$\psi(y) = \frac{d}{dy}|y| = \operatorname{sign}(y),$$

$$\chi(y) = \operatorname{sign}(y)y = |y|$$

Double Exponential Score Functions



The Estimating Equations

$$\frac{1}{n} \sum sign\left(\frac{y_i - \mu}{\sigma}\right) = \frac{1}{n} \sum sign\left(y_i - \mu\right) = 0$$

$$\Rightarrow \hat{\mu} = Med(y_i) \quad \text{(the median)}$$

$$rac{1}{n}\sum\left|rac{y_i-\widehat{\mu}}{\sigma}
ight|~=~1$$
 $\Rightarrow~~\widehat{\sigma}=rac{1}{n}\sum\left|y_i-\widehat{\mu}
ight|~$ (median absolute deviation)

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

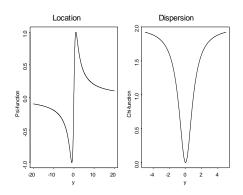
Example: The Cauchy Model

$$\mathit{f}_{0}(\mathit{y}) = 1/\left(\pi(1+\mathit{y}^{2})
ight)$$
 ,

$$\log\left(f_0(y)\right) = c - \log\left[\left(1 + y^2\right)\right]$$

$$\psi(y) = 2y/(1+y^2)$$
 and $\chi(y) = 2y^2/(1+y)$.

The Cauchy Score Functions



Asymptotic Properties of ML-Estimates

Under mild regularity conditions:

Consistent:

$$\left(\begin{array}{c} \widehat{\mu} \\ \widehat{\sigma} \end{array} \right) \ o \ \left(\begin{array}{c} \mu \\ \sigma \end{array} \right) \quad \text{a.s.}$$

Asymptotically normal

$$\sqrt{n}\left[\left(\begin{array}{c}\widehat{\mu}\\\widehat{\sigma}\end{array}\right)-\left(\begin{array}{c}\mu\\\sigma\end{array}\right)\right] \quad \rightarrow \quad N\left(\mathbf{0},\Sigma\right)$$

Asymptotically efficient

$$\Sigma = [I(\mu,\sigma)]^{-1}$$
 ,
$$I(\mu,\sigma) = ext{Fisher information matrix}$$

$$I\left(\mu,\sigma
ight) \;\; = \;\; rac{1}{\sigma^2} \left(egin{array}{c} E\left[\psi'\left(rac{y-\mu}{\sigma}
ight)
ight] & 0 \\ 0 & E\left[\chi'\left(rac{y-\mu}{\sigma}
ight)\left(rac{y-\mu}{\sigma}
ight)
ight] \end{array}
ight)$$

- 4 ロ ト 4 昼 ト 4 差 ト - 差 - 夕 Q @

Robust Location-Dispersion Model

- In some applications it is not reasonable to assume that all the observations come from $F_{\mu,\sigma}(y)$
- Contamination neighborhood:

$$F(y) = (1 - \epsilon)F_0\left(\frac{y - \mu}{\sigma}\right) + \epsilon G(y)$$

 $0 < \epsilon < 1/2$, G unknown

- $(1-\epsilon)100\%$ of the observations come from $F_{\mu,\sigma}(y)$
- The remaining $\epsilon 100\%$ observations come from an unknown (contamination) distribution G(y)

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ◆○

The Robustness Paradigm

- The goal of robust estimates is to estimate the parameters of the central distribution, $F_{\mu,\sigma}\left(y\right)$
- \bullet Since ϵ is usually small, there are very few observations coming from ${\it G}$
- Robust methods do not attempt to estimate all the components of the mixture distribution F.

Location-Dispersion M-Estimates

- Introduced by Huber in his influential 1964 paper.
- Similar to ML-estimates, M-estimates satisfy estimating equations.
- The key difference: the estimating equation for the M-estimate is not related to the data density and likelihood function.
- Separation between "data assumptions" and "estimation method": the main idea behind M-estimates.

M-Estimates Estimating Equations

$$\frac{1}{n}\sum\psi\left(\frac{y_i-\mu}{\sigma}\right)=0$$

$$\frac{1}{n}\sum\chi\left(\frac{y_{i}-\mu}{\sigma}\right)=E_{F_{0}}\left[\chi\left(y\right)\right]$$

- ullet ψ is odd and non-decreasing
- χ is even and non-decreasing on $[0, \infty)$

Computational Issues

Unfortunately, the following questions do not have a positive/easy answer.

- Does a solution to the simultaneous estimating equation exist?
- Is the solution unique (provided it exists)?
- Is there a computing algorithm to efficiently and safely solve the estimating equation?
- Does the computing algorithm converge?

M-Estimates of Location with Fixed Dispersion

Solve the equation:

$$\frac{1}{n}\sum \psi\left(\frac{y_i-t}{\hat{\sigma}_n}\right)=0$$

where $\hat{\sigma}_n = \hat{\sigma}(y_1, y_2, \dots, y_n)$ is a given dispersion estimate

- To achieve robustness $\psi(y)$ must be bounded
- $\hat{\sigma}_n$ must be a robust dispersion estimate, used to calibrate the size of the location residuals.

• A popular choice for $\hat{\sigma}_n$ is the MAD, defined as

$$\hat{\sigma}_n = \frac{\text{Med}\{|y_1 - m|, |y_2 - m|, ..., |y_n - m|\}}{\Phi^{-1}(3/4)}$$
 $m = \text{Med}\{y_i\}$

• $1/\Phi^{-1}(3/4) \approx 1.5$ (for consistency under Normal model)

Calculated by the function mad in R

```
> x=rnorm(1000); sd(x); mad(x)
[1] 1.030051
[1] 1.051008

> x=c(rnorm(900),rt(100,1)); sd(x); mad(x)
[1] 2.782721
[1] 0.9926197
```

Equivariance Considerations

In general, dispersion estimates must have the following properties:

- S1. Scale Equivariance: $\hat{\sigma}_n(ay_1, ay_2, ..., ay_n) = |a| \hat{\sigma}_n(y_1, y_2, ..., y_n)$, for all a in R
- S2. Location Invariance:

$$\hat{\sigma}_n(y_1+b,y_2+b,\ldots,y_n+b)=\hat{\sigma}_n(y_1,y_2,\ldots,y_n),$$
 for all b in R

Equivariance Considerations

Location estimates $\hat{\mu} = \hat{\mu}(y_1, y_2, \dots, y_n)$ must satisfy the following properties:

- L1. Scale Equivariance: $\hat{\mu}(ay_1, ay_2, ..., ay_n) = a\hat{\mu}(y_1, y_2, ..., y_n)$, for all a in R.
- L2. Location Equivariance:

$$\hat{\mu}(y_1 + b, y_2 + b, \dots, y_n + b) = \hat{\mu}(y_1, y_2, \dots, y_n) + b,$$
 for all b in R .

Computation of Location M-Estimates

- To compute robust location estimate we must solve the non-linear equation by numerical means.
- We will discuss two algorithms:

Re-weighting: it is easy to code and doesn't require the calculation of the derivative of the location-score function.

Newthon-Raphson: converges faster and therefore is usually preferred.

Reweighting

Set

$$a = \lim_{y \to 0} \frac{\psi(y)}{y}$$

and define

$$w(y) = \begin{cases} \psi(y)/y & y \neq 0 \\ a & y = 0 \end{cases}$$

We can write

$$\sum \frac{\psi\left(\frac{y_i - \hat{\mu}_n}{\hat{\sigma}_n}\right)}{\left(\frac{y_i - \hat{\mu}_n}{\hat{\sigma}_n}\right)} \left(\frac{y_i - \hat{\mu}_n}{\hat{\sigma}_n}\right) = 0$$

$$\sum w\left(\frac{y_i-\hat{\mu}_n}{\hat{\sigma}_n}\right)\left(\frac{y_i-\hat{\mu}_n}{\hat{\sigma}_n}\right)=0,$$

or equivalently

$$\hat{\mu}_{n} = \frac{\sum w\left(\frac{y_{i} - \hat{\mu}_{n}}{\hat{\sigma}_{n}}\right) y_{i}}{\sum w\left(\frac{y_{i} - \hat{\mu}_{n}}{\hat{\sigma}_{n}}\right)}.$$
(1)

Ruben Zamar Dept. of Stats, UBC

Reweighting Algorithm

Step 1 Set $\hat{\mu}_n^{(0)} = \text{Median}(y_i)$.

Step 2 Let

$$w_i^{(m)} = w \left(\frac{y_i - \hat{\mu}_n^{(m)}}{\hat{\sigma}_n} \right), \qquad i = 1, \ldots, n.$$

Step 3 Set

$$\hat{\mu}_{n}^{(m+1)} = \frac{\sum y_{i} \ w_{i}^{(m)}}{\sum w_{i}^{(m)}}$$

Step 4 Stop when

$$\left|\hat{\mu}_n^{(m+1)} - \hat{\mu}_n^{(m)}\right| / \hat{\sigma}_n \leq \delta.$$

Newton-Raphson

We wish to find a solution t^* for the equation

$$g(t)=0, (2)$$

Suppose we have an approximate solution, $t^{(k)}$, at step k.

Instead of directly solving (2) we solve the linear approximation

$$g(t^{(k)}) + g'(t^{(k)})(t - t^{(k)}) = 0.$$
 (3)

We get

$$t^{(k+1)} = t^{(k)} - \frac{g(t^{(k)})}{g'(t^{(k)})}.$$
 (4)

- This procedure critically depends on an initial estimate (approximation) $t^{(0)}$
- $t^{(0)}$ should be close to the solution t^* .

In the location case we have

$$g(m) = \frac{1}{n} \sum \psi \left(\frac{y_i - m}{\hat{\sigma}_n} \right)$$

and

$$g'(m) = -rac{1}{n\hat{\sigma}_n}\sum \psi'\left(rac{y_i-m}{\hat{\sigma}_n}
ight)$$

Ruben Zamar Dept. of Stats, UBC

Newton-Raphson Algorithm

The algorithm has the following steps:

Step 1 Set
$$\hat{\mu}_n^{(0)} = \text{Median}(y_i)$$
.

Step 2 Set

$$\hat{\mu}^{(k+1)} = \hat{\mu}^{(k)} - \frac{\sum \psi\left(\frac{y_i - \hat{\mu}^{(k)}}{\hat{\sigma}_n}\right)}{\sum \psi'\left(\frac{y_i - \hat{\mu}^{(k)}}{\hat{\sigma}_n}\right)} \hat{\sigma}_n.$$

Step 3 Stop when

$$\left|\hat{\mu}_n^{(m+1)} - \hat{\mu}_n^{(m)}\right| / \hat{\sigma}_n \leq \delta.$$

4□ > 4□ > 4 = > 4 = > = 90

A S Y M P T O T I C R E S U L T S

Notation

Let

$$\lambda_F(t) = \mathsf{E}_F \left\{ -\psi \left(\frac{y-t}{\sigma(F)} \right) \right\} \quad , \quad \sigma_F^2(t) = \mathsf{Var}_F \left\{ \psi \left(\frac{y-t}{\sigma(F)} \right) \right\}$$

and

$$\lambda_n(t) = -\frac{1}{n} \sum \psi \left(\frac{y_i - t}{\hat{\sigma}_n} \right). \tag{5}$$

Assumptions

- **A.0** The distribution function F is symmetric about μ
- **A.1** $\hat{\sigma}_n$ is consistent, that is $\hat{\sigma}_n \to \sigma(F)$ a.s. [F].
- **A.2** $\sqrt{n} (\hat{\sigma}_n \sigma(F))$ is bounded in probability, that is, $\sqrt{n} (\hat{\sigma}_n \sigma(F)) = 0_p(1)$.
- **A.3** $\sigma_F^2(t)$ is continuous on a neighborhood of μ and $0 < \sigma_F^2(\mu) < \infty$.
- **A.4** $\lambda_F(\mu)=0$, $\lambda_F(t)$ is continuously differentiable on a neighborhood of μ and $\lambda_F'(\mu)>0$.

Asymptotic Results

Suppose that A.0 - A.4 hold. Then:

$$\hat{\mu}_n \to \mu$$
 a.s. $[F]$

and

$$\sqrt{n}(\hat{\mu}_n - \mu) \rightarrow_d \mathsf{N}\left(0,\mathsf{AV}(\psi,F)\right)$$
 ,

with

$$\mathsf{AV}(\psi,F) = \frac{\mathsf{E}_F\left\{\psi^2\left(\frac{y-\mu}{\sigma(F)}\right)\right\}}{\left(\lambda_F'(\mu)\right)^2}.$$

Suppose that

$$F\left(y\right) = F_0\left(\frac{y-\mu}{\sigma}\right)$$

and that

$$\hat{\sigma}_n \to \sigma(F) = \sigma$$

In this case

$$E_{F}\left\{\psi^{2}\left(\frac{y-\mu}{\sigma}\right)\right\} = \frac{1}{\sigma} \int_{-\infty}^{\infty} \psi^{2}\left(\frac{y-\mu}{\sigma}\right) f_{0}\left(\frac{y-\mu}{\sigma}\right) dy$$
$$= \int_{-\infty}^{\infty} \psi^{2}(y) f_{0}(y) dy = E_{F_{0}}\left\{\psi^{2}(y)\right\}$$

Ruben Zamar

Example 1: Sample Median

$$\psi(y) = sign(y)$$

$$\lambda_{F}(t) = -E_{F} \left\{ sign\left(\frac{y-t}{\sigma}\right) \right\}$$

$$= P_{F}(y \le t) - P_{F}(y > t)$$

$$= P_{F}(y \le t) - [1 - P_{F}(y \le t)] = 2F(t) - 1$$

$$= 2F(t) - 1$$

Hence

$$\lambda_{F}^{\prime}\left(\mu
ight)=\left.rac{d}{dt}\left[2F\left(t
ight)-1
ight]
ight|_{t=\mu}=2f\left(\mu
ight)$$

Since

$$E_F\left\{sign^2\left(\frac{y-\mu}{\sigma}\right)\right\}=1$$

we have

$$\mathit{AV}\left(\mathsf{Median},\mathit{F}_{\mu,\sigma}\right) = \frac{1}{4\mathit{f}^{2}\left(\mu\right)} = \frac{1}{4\left(1/\sigma^{2}\right)\mathit{f}_{0}^{2}\left(\frac{\mu-\mu}{\sigma}\right)} = \frac{\sigma^{2}}{4\mathit{f}_{0}^{2}\left(0\right)}$$

Ruben Zamar

If $\psi(y)$ is continuous, almost everywhere differentiable,

$$\begin{split} \lambda_F'(\mu) &= \left. \frac{d}{dt} \lambda_F(t) \right|_{t=\mu} \\ &\left. \frac{d}{dt} E_F \left\{ -\psi \left(\frac{y-t}{\sigma} \right) \right\} \right|_{t=\mu} \\ &= \left. -E_F \left\{ \frac{d}{dt} \psi \left(\frac{y-t}{\sigma} \right) \right\} \right|_{t=\mu} \\ &= \left. \frac{1}{\sigma} E_F \left\{ \psi' \left(\frac{y-\mu}{\sigma} \right) \right\} = \frac{1}{\sigma} E_{F_0} \left\{ \psi' \left(y \right) \right\} \end{split}$$

- 4 ロ ト 4 昼 ト 4 差 ト - 差 - 夕 Q @

Hence, under regularity assumptions (smooth ψ function)

$$AV(\psi, F) = \sigma^{2} \frac{E_{F_{0}} \{\psi^{2}(y)\}}{[E_{F_{0}} \{\psi'(y)\}]^{2}}$$

NOTE: AV $(\psi, F_{\mu,\sigma})$ doesn't depend on μ . It depends on σ^2 only as a multiplicative factor.

◄□▶◀圖▶◀불▶◀불▶ 불 쒸٩○

To fix ideas, we will consider the Gaussian case:

$$F_{\mu,\sigma}(y) = \Phi\left(\frac{y-\mu}{\sigma}\right)$$

$$f_{\mu,\sigma}(y) = \frac{1}{\sigma} \varphi\left(\frac{y-\mu}{\sigma}\right)$$

Example 2: Sample Mean

$$\psi\left(y\right)=y\quad\left(\text{very smooth}\right)$$

Use the formula

$$AV(\psi, F) = \sigma^{2} \frac{E_{F_{0}} \{\psi^{2}(y)\}}{[E_{F_{0}} \{\psi'(y)\}]^{2}}$$

$$E_{\Phi}\left\{ \psi'\left(y\right)\right\} = 1$$

$$E_{\Phi}\left\{\psi^{2}\left(y
ight)\right\} = E_{\Phi}\left\{y^{2}\right\} = 1$$

$$\mathit{AV}\left(\mathsf{Mean},\mathsf{Normal}\right) = rac{1}{\left(1/\sigma
ight)^2} = \sigma^2$$

Ruben Zamar Dept. of Stats, UBC Robustness September 20, 2015 44 / 87

Example 3: Huber's Optimal Psi-Function

$$\psi_{c}\left(y
ight) \;\; = \;\; \left\{ egin{array}{ll} y & -c < y < c \\ \\ c \; \mathit{sign}\left(y
ight) & \mathrm{otherwise} \end{array}
ight.$$

Since $\psi_{c}\left(y\right)$ is continuous and almost everywhere differentiable we can use the formula

$$AV(\psi, F) = \sigma^2 \frac{E_{F_0} \{\psi^2(y)\}}{[E_{F_0} \{\psi'(y)\}]^2}$$

$$E_{\Phi} \left\{ \psi_{c}' \left(y \right) \right\} = \int_{-c}^{c} \varphi \left(y \right) dy$$
$$= \Phi \left(c \right) - \Phi \left(-c \right)$$
$$= 2\Phi \left(c \right) - 1$$

$$E_{\Phi} \left\{ \psi_{c}^{2} (y) \right\} = 2c^{2} (1 - \Phi(c)) + 2 \int_{0}^{c} y^{2} \varphi(y) dy$$

$$\int_{0}^{c} y^{2} \varphi(y) dy = -\int_{0}^{c} y \varphi'(y) dy$$

$$= -\left[y \varphi(y) \Big|_{0}^{c} - \int_{0}^{c} \varphi(y) dy \right]$$

$$= -c \varphi(c) + \Phi(c) - \frac{1}{2}$$

In summary

$$E_{\Phi}\left\{\psi_{c}'\left(y\right)\right\} = 2\Phi\left(c\right) - 1$$

$$E_{\Phi}\left\{\psi_{c}^{2}\left(y\right)\right\} = 2\left[c^{2}\left(1 - \Phi\left(c\right)\right) - c\varphi\left(c\right) + \Phi\left(c\right) - \frac{1}{2}\right]$$

Therefore,

$$\begin{array}{ll} \mathit{AV}(\psi_{c},\mathsf{Normal}) & = & \sigma^{2}\frac{E_{\Phi}\left\{\psi_{c}^{2}\left(y\right)\right\}}{\left[E_{\Phi}\left\{\psi_{c}^{\prime}\left(y\right)\right\}\right]^{2}} \\ \\ & = & \sigma^{2}\frac{2\left[c^{2}\left(1-\Phi\left(c\right)\right)-c\phi\left(c\right)+\Phi\left(c\right)-\frac{1}{2}\right]}{\left[2\Phi\left(c\right)-1\right]^{2}} \end{array}$$

Ruben Zamar

ML-Estimate

In this case

$$\psi_{F_{\mu,\sigma}}(y) = -rac{f_0'\left(rac{y-\mu}{\sigma}
ight)}{f_0\left(rac{y-\mu}{\sigma}
ight)},$$

We will use the formula:

$$AV(\psi_{F_{\mu,\sigma}}, F_{\mu,\sigma}) = \sigma^{2} \frac{E_{F_{\mu,\sigma}} \left\{ \psi_{F_{\mu,\sigma}}^{2} \left(\frac{y-\mu}{\sigma} \right) \right\}}{\left(E_{F_{\mu,\sigma}} \left\{ \psi_{F_{\mu,\sigma}}^{\prime} \left(\frac{y-\mu}{\sigma} \right) \right\} \right)^{2}}.$$

Recall the (ML theory) result

$$I_{\mu}\left(F_{\mu,\sigma}\right) = E_{F_{\mu,\sigma}}\left\{\left(\frac{\partial}{\partial\mu}\log\left[\frac{1}{\sigma}f_{0}\left(\frac{y-\mu}{\sigma}\right)\right]\right)^{2}\right\}$$

$$= \quad - \textit{E}_{\textit{F}_{\mu,\sigma}} \left\{ \frac{\partial^2}{\partial \mu \partial \mu} \log \left[\frac{1}{\sigma} \textit{f}_0 \left(\frac{\textit{y} - \mu}{\sigma} \right) \right] \right\}$$

Ruben Zamar Dept. of Stats, UBC

That is:

$$I_{\mu}\left(F_{\mu,\sigma}\right) = \frac{1}{\sigma^{2}}E_{F_{\mu,\sigma}}\left\{\psi_{F_{\mu,\sigma}}^{2}\left(\frac{y-\mu}{\sigma}\right)\right\}$$

$$= \quad \frac{1}{\sigma^2} \textit{E}_{\textit{F}_{\mu,\sigma}} \left\{ \psi'_{\textit{F}_{\mu,\sigma}} \left(\frac{y - \mu}{\sigma} \right) \right\}$$

Hence

$$AV(\psi_{F_{\mu,\sigma}}, F_{\mu,\sigma}) = \sigma^{2} \frac{E_{F_{\mu,\sigma}} \left\{ \psi_{F_{\mu,\sigma}}^{2} \left(\frac{y-\mu}{\sigma} \right) \right\}}{\left(E_{F_{\mu,\sigma}} \left\{ \psi_{F_{\mu,\sigma}}^{\prime} \left(\frac{y-\mu}{\sigma} \right) \right\} \right)^{2}}$$

$$= \frac{\frac{1}{\sigma^{2}} E_{F_{\mu,\sigma}} \left\{ \psi_{F_{\mu,\sigma}}^{2} \left(\frac{y-\mu}{\sigma} \right) \right\}}{\left(\frac{1}{\sigma^{2}} E_{F_{\mu,\sigma}} \left\{ \psi_{F_{\mu,\sigma}}^{\prime} \left(\frac{y-\mu}{\sigma} \right) \right\} \right)^{2}}$$

$$= \frac{I_{\mu}(F_{\mu,\sigma})}{\left(I_{\mu}(F_{\mu,\sigma}) \right)^{2}} = \frac{1}{I_{\mu}(F_{\mu,\sigma})}$$

Relative Asymptotic Efficiency

• Suppose that T_1 and T_2 are asymptotically normal under F:

$$\sqrt{n} \left(T_1 - \mu \right) \rightarrow {}_d N \left(0, v_1^2 \left(F \right) \right)$$

$$\sqrt{n} (T_2 - \mu) \rightarrow dN (0, v_2^2 (F))$$

• The asymptotic efficiency of T_1 relative to T_2 is given by:

$$EFF(T_1, T_2, F) = \frac{v_2^2(F)}{v_1^2(F)}$$

ullet For example, if $v_1^2\left(F
ight)=1.052632$ and $v_2^2\left(F
ight)=1$ we have

$$EFF(T_1, T_2, F) = \frac{1}{1.052632} = 0.95$$

Comparison of the Mean and Median

We consider

$$F(y) = \frac{1}{\sigma} f_0\left(\frac{y-\mu}{\sigma}\right)$$

- $f_0(y) = \text{scaled student t-distribution with 3, 5, 10, 20, 100 degrees}$ of freedom.
- Scaled so that

$$Var_{F_0}(y)=1$$

Since

$$\mathit{Var}\left(t_{(v)}
ight) = rac{v}{v-2}, \quad v = \quad ext{degrees of freedom}$$

We take

$$y = \sqrt{\frac{v-2}{v}}t_{(v)}$$

$$f\left(t\right) = \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\nu\pi}\Gamma\left(\frac{\nu}{2}\right)} \left(1 + \frac{t^2}{\nu}\right)^{-(\nu+1)/2} \qquad \left(t_{(\nu)}\right)$$

$$f_0\left(y\right) = \sqrt{\frac{v}{v-2}} \frac{\Gamma\left(\frac{v+1}{2}\right)}{\sqrt{v\pi}\Gamma\left(\frac{v}{2}\right)} \left(1 + \frac{t^2}{v-2}\right)^{-(v+1)/2} \qquad \text{(scaled } t_{(v)} \text{)}$$

$$4\left[f_0'\left(0\right)\right]^2 = 4\frac{v}{v-2}\left(\frac{\Gamma\left(\frac{v+1}{2}\right)}{\sqrt{v\pi}\Gamma\left(\frac{v}{2}\right)}\right)^2$$

Ruben Zamar Dept. of Stats, UBC Robustness September 20, 2015 55 / 87

We have shown that

$$AV (Median, F) = \frac{\sigma^2}{4 [f'_0(0)]^2}$$
 $AV (Mean, F) = \sigma^2$

Therefore

$$EFF\left(Median, Mean, F\right) = 4\left[f_0'\left(0\right)\right]^2$$

Relative efficiency of the median relative to the mean

Degrees								
of Freedom	1	2	3	4	5	10	20	1000
Relative								
Efficiency	∞	∞	1.62	1.12	0.96	0.76	0.69	0.64

ESTIMATES VIEWED AS FUNCTIONALS

Empirical Distribution

• Empirical distribution function

$$F_n(y) = \frac{1}{n} \sum_{i=1}^n I(y_i \leq y)$$

• If $y_1, y_2, ..., y_n$ are iid F then

$$\lim_{n\to\infty}\sup_{y\in R}\left|F_{n}\left(y\right)-F\left(y\right)\right|~=~0~~\text{(Glivenko-Cantelli)}$$

Estimating Functional

 Many estimates do not depend on the order in which the observations are inputted

$$T_n = T(y_1, y_2, ..., y_n) = T(y_{(1)}, y_{(2)}, ..., y_{(n)})$$
 $y_{(1)} < y_{(2)} < \cdots < y_{(n)}$ (order statistic)

- Examples: mean, median, M-estimates, regression LS estimates, etc.
- In this case we can write

$$T_n = T(F_n)$$

Examples

Sample mean

$$\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i = E_{F_n}(y) = Ave(F_n)$$

• Sample median

$$m = F_n^{-1}\left(\frac{1}{2}\right)$$
 (informally)
 $m_1 = \sup\left\{y: F_n\left(y\right) \le \frac{1}{2}\right\}$ (upper median)
 $m_2 = \inf\left\{y: F_n\left(y\right) \ge \frac{1}{2}\right\}$ (lower median)
 $m = \frac{m_1 + m_2}{2} = Med\left(F_n\right)$

Ruben Zamar Dept. of Stats, UBC

Examples

Location M-estimates

$$T_n$$
 solves : $\frac{1}{n}\sum_{i=1}^n\psi\left(rac{y_i-t}{\widehat{\sigma}\left(F_n
ight)}
ight)=0$ $T\left(F_n
ight)$ solves : $E_{F_n}\left(\psi\left(rac{y-t}{\widehat{\sigma}\left(F\right)}
ight)
ight)=0$

Dispersion M-estimates

$$S_n$$
 solves :
$$\frac{1}{n} \sum_{i=1}^n \chi\left(\frac{y_i - m(F_n)}{s}\right) = b, \quad b = E_{F_0}\left\{\chi(y)\right\}$$

$$S(F_n)$$
 solves : $E_{F_n}\left\{\chi\left(\frac{y_i-m(F_n)}{s}\right)\right\}=b$

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - からぐ

The Functional

- The functional T(F) is defined for all empirical distribution function F_n
- We extend the definition over a larger set of distribution functions by substituting F_n by F.
- If the functional *T* is continuous we have:

$$\lim_{n\to\infty} T(F_n) = T(F) \text{ a.s. } [F]$$

when the data are iid [F].

Examples

The sample mean:

$$T(F) = E_F(y)$$
, provided $E_F(|y|) < \infty$

The sample median:

$$T(F) = F^{-1}(1/2)$$
, provided upper med $(F) =$ lower med (F)

Location M-Estimates:

$$T\left(F
ight)$$
 solves : $E_{F}\left\{\psi\left(rac{y-t}{S\left(F
ight)}
ight)
ight\}=0$, $S\left(F
ight)$ is a disp. functional.

(ロ) (型) (差) (差) 差 から(®)

Measuring Robustness

- Let T(F) be an estimating functional
- Suppose T(F) is defined on a set of distributions including
 - Empirical distributions F_n [in this case $T_n = T(F_n)$]
 - The robustness neighborhood

$$\mathcal{F}_{\epsilon} = \left\{ F : F\left(y\right) = \left(1 - \epsilon\right) F_{\theta}\left(y\right) + H\left(y\right) \right\}$$

 \bullet A robust estimate should satisfy $T\left(F\right)\approx T\left(F_{\theta}\right)$ when ε is small

- 4 ロ ト 4 御 ト 4 恵 ト 4 恵 ト - 恵 - り 9 0 0

Examples

Let F be a contaminated normal distribution:

$$F\left(y
ight)=\left(1-\epsilon
ight)N\left(\mu,\sigma^{2}
ight)+\epsilon ext{Unif}\left(d-h,d+h
ight), \hspace{0.5cm} d>\mu,h>0$$

The sample mean is not robust:

The sample median is robust:

$$extit{Med}\left(extit{N}\left(\mu,\sigma^2
ight)
ight) = \mu, \hspace{0.5cm} \mu \leq extit{Med}\left(extit{F}
ight) \leq \mu + \sigma\Phi\left(rac{1}{2\left(1-\epsilon
ight)}
ight)$$

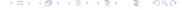
In fact:

$$(1-\epsilon)\Phi\left(rac{y-\mu}{\sigma}
ight)+\epsilon H\left(y
ight)=rac{1}{2}$$

$$\Phi\left(\frac{y-\mu}{\sigma}\right) = \frac{1/2 - \varepsilon H(y)}{1 - \varepsilon} \Rightarrow y \le \mu + \sigma \Phi^{-1}\left(\frac{1}{2(1 - \varepsilon)}\right)$$

So,

$$\left| \operatorname{Med} \left[\operatorname{N} \left(\mu, \sigma^2 \right) \right] - \operatorname{Med} \left(F \right) \right| \leq \sigma \Phi^{-1} \left(\frac{1}{2 \left(1 - \epsilon \right)} \right)$$



Maxbias and Related Measures

- Let $F(\mathbf{y}; \boldsymbol{\theta})$ be a parametric family, $\boldsymbol{\theta} \in \Theta$.
- ullet y and $oldsymbol{ heta}$ can be vector valued
- Let

$$\mathcal{F}_{\epsilon} = \left\{ F\left(\mathbf{y}\right) : F\left(\mathbf{y}\right) = \left(1 - \epsilon\right) F\left(\mathbf{y}; \boldsymbol{\theta}\right) + \epsilon H\left(\mathbf{y}\right) \right\}$$

- ullet Consider an appropriate distance d on the parameter space Θ
 - **Example**: $\theta = (\mu, \sigma)$, the parameter of interest is μ :

$$d\left(\widehat{\mu},\mu
ight)=rac{\left|\widehat{\mu}-\mu
ight|}{\sigma}$$
 (location-scale invariant)

• **Example**: $\theta = (\mu, \sigma)$, the parameter of interest is σ :

$$d\left(\widehat{\sigma},\sigma
ight) \;\;=\;\; \left|rac{\widehat{\sigma}-\sigma}{\sigma}
ight| \;\;\; ext{(location-scale invariant)}$$
 $=\;\; \left|rac{\widehat{\sigma}}{\sigma}-1
ight|$

Contamination bias:

$$b_{T}\left(\varepsilon,F\right)=d\left[T\left(F\right),T\left(F_{\theta}\right)\right],\quad F\in\mathcal{F}_{\varepsilon}$$

Contamination maxbias

$$B_{T}\left(\epsilon
ight) = \sup_{F \in \mathcal{F}_{\epsilon}} d\left[T\left(F
ight), T\left(F_{ heta}
ight)
ight]$$

The Breakdown Point (BP)

ullet The BP of an estimating functional T(F) is defined as follows

$$BP_{T}=\sup\left\{ \epsilon:B_{T}\left(\epsilon\right)<\infty\right\}$$

- Example: $BP_{Mean} = 0$
- Example: $BP_{median} = 1/2$
- Example: $BP_{MAD} = 1/2$
- **Example:** T is a location estimate with bounded ψ and dispersion $\widehat{\sigma}$. Then

$$BP_T = BP_{\widehat{\sigma}}$$

If $\widehat{\sigma} = MAD$ then $BP_T = 1/2$

The Gross Error Sensitivity (GES)

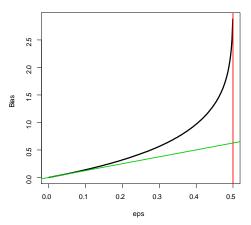
The Gross-Error-Sensitivity (GES) is defined as follows:

$$GES_{T} = \frac{d}{d\epsilon}B_{T}\left(\epsilon\right)\bigg|_{\epsilon=0} = B_{T}'\left(0\right)$$

Therefore

$$B_{T}\left(\epsilon\right)=\epsilon\,GES_{T}+o\left(\epsilon\right)$$

Maxbias and Related Measures



The Gross Error Sensitivity (GES)

The Gross-Error-Sensitivity (GES) is defined as follows:

$$GES_{T} = \frac{d}{d\epsilon}B_{T}\left(\epsilon\right)\bigg|_{\epsilon=0} = B_{T}'\left(0\right)$$

Therefore

$$B_{T}\left(\epsilon\right)=\epsilon\,\mathsf{GES}_{T}+o\left(\epsilon\right)$$

The Influence Function (IF)

- Introduced by Frank Hampel in his 1967 Ph.D. dissertation (together with the BP and GES)
- The IF is an asymptotic and infinitesimal concept
- Measures the asymptotic impact of a vanishingly small fraction of outliers located at a fixed position y

Notation

• Consider a central parametric model

$$F_{\theta}(\mathbf{x})$$

and a Fisher Consistent estimate T:

$$T(F_{\theta}) = \theta$$

Consider the "point mass contamination" distribution

$$F_{\epsilon}\left(\mathbf{x}
ight)=\left(1-\epsilon
ight)F_{ heta}\left(\mathbf{x}
ight)+\Delta_{\mathbf{y}}\left(\mathbf{x}
ight)$$

Definition of IF

The IF of the estimate T at \mathbf{y} and F_{θ} is defined as:

$$IF_{T}\left(\mathbf{y},F_{\theta}\right) = \lim_{\epsilon \to 0} \frac{T\left(F_{\epsilon}\right) - T\left(F_{\theta}\right)}{\epsilon} = \left. \frac{d}{d\epsilon} T\left(F_{\epsilon}\right) \right|_{\epsilon=0}$$

provided the limit exists.

Ruben Zamar

Example 1: The IF for the Sample Mean

• The central parametric model:

$$F_{\mu,\sigma}(x) = \Phi\left(\frac{x-\mu}{\sigma}\right)$$

• The estimate:

$$T(F) = AVE(F) = E_F(X)$$

Clearly

$$\mathit{AVE}\left(\mathit{F}_{\mu,\sigma}\right) = \mu \quad ext{(Fisher Consistent)}$$

The point mass contamination distribution:

$$F_{\epsilon}(x) = (1 - \epsilon) F_{\mu,\sigma}(x) + \Delta_{y}(x)$$

$$IF_{AVE}(y, F_{\mu,\sigma}) = \lim_{\epsilon \to 0} \frac{AVE(F_{\epsilon}) - AVE(F_{\mu,\sigma})}{\epsilon}$$

$$= \lim_{\epsilon \to 0} \frac{AVE((1 - \epsilon) F_{\mu,\sigma}(x) + \Delta_y(x)) - AVE(F_{\mu,\sigma})}{\epsilon}$$

$$= \lim_{\epsilon \to 0} \frac{(1 - \epsilon) E_{F_{\mu,\sigma}}(X) + \epsilon y - E_{F_{\mu,\sigma}}(X)}{\epsilon}$$

$$= \lim_{\epsilon \to 0} \frac{(1 - \epsilon) \mu + \epsilon y - \mu}{\epsilon} = \lim_{\epsilon \to 0} \frac{\epsilon (y - \mu)}{\epsilon} = y - \mu$$

- (ロ) (個) (差) (差) (差) の(C)

Example 2: The IF for Location M-Estimates

• The central parametric model:

$$F_{\mu,\sigma}(x) = \Phi\left(\frac{x-\mu}{\sigma}\right)$$

• The estimate T(F) satisfies the estimating equation:

$$E_{F}\left\{\psi\left(\frac{X-T\left(F\right)}{S\left(F\right)}\right)\right\}=0$$

Fisher Consistency:

$$E_{F_{\mu,\sigma}}\left\{\psi\left(rac{X-\mu}{S\left(F
ight)}
ight)
ight\}=0 \quad ext{(by symmetry)}$$

The point mass contamination distribution:

$$F_{\epsilon}(x) = (1 - \epsilon) F_{\mu,\sigma}(x) + \Delta_{y}(x)$$

Derivation of the IF for Location M-Estimates

 $T(F_{\epsilon})$ satisfies the equation:

$$E_{F_{\varepsilon}}\left\{\psi\left(\frac{X-T\left(F_{\varepsilon}\right)}{S\left(F_{\varepsilon}\right)}
ight)
ight\} \ = \ 0$$

$$E_{(1-\epsilon)F_{\mu,\sigma}+\epsilon\Delta_{y}}\left\{\psi\left(\frac{X-T(F_{\epsilon})}{S(F_{\epsilon})}\right)\right\} = 0$$

$$(1 - \epsilon) E_{F_{\mu,\sigma}} \left\{ \psi \left(\frac{X - T(F_{\epsilon})}{S(F_{\epsilon})} \right) \right\} + \epsilon \psi \left(\frac{y - T(F_{\epsilon})}{S(F_{\epsilon})} \right) = 0$$

NOTATION

Set

$$\dot{T}(F_{\epsilon}) = \frac{d}{d\epsilon}T(F_{\epsilon})$$

and

$$\dot{S}(F_{\epsilon}) = \frac{d}{d\epsilon} S(F_{\epsilon})$$

Hence

$$\mathit{IF}_{\mathit{T}}\left(\mathbf{y},\mathit{F}_{\theta}\right)=\dot{\mathit{T}}\left(\mathit{F}_{\theta}\right) \quad \text{ and } \quad \mathit{IF}_{\mathit{S}}\left(\mathbf{y},\mathit{F}_{\theta}\right)=\dot{\mathit{S}}\left(\mathit{F}_{\theta}\right)$$

$$\left(1-\epsilon\right)E_{F_{\mu,\sigma}}\left\{\psi\left(\frac{X-T\left(F_{\epsilon}\right)}{S\left(F_{\epsilon}\right)}\right)\right\}+\epsilon\psi\left(\frac{y-T\left(F_{\epsilon}\right)}{S\left(F_{\epsilon}\right)}\right) \ = \ 0$$

Differentiating both sides with respect to ϵ :

$$-E_{F_{\mu,\sigma}}\left\{\psi\left(\frac{X-T\left(F_{\epsilon}\right)}{S\left(F_{\epsilon}\right)}\right)\right\}-$$

$$(1-\epsilon) E_{F_{\mu,\sigma}} \left\{ \psi' \left(\frac{X-T(F_{\epsilon})}{S(F_{\epsilon})} \right) \frac{\dot{T}(F_{\epsilon}) S(F_{\epsilon}) + \dot{S}(F_{\epsilon}) (X-T(F_{\epsilon}))}{S^{2}(F_{\epsilon})} \right\}$$

$$+\psi\left(\frac{y-T(F_{\epsilon})}{S(F_{c})}\right)+\epsilon\frac{d}{d\epsilon}\psi\left(\frac{y-T(F_{\epsilon})}{S(F_{c})}\right) = 0$$

Ruben Zamar Dept. of Stats, UBC 83 / 87

Evaluating the derivative at $\epsilon=0$:

$$-\overbrace{E_{F_{\mu,\sigma}}\left\{\psi\left(\frac{X-\mu}{S\left(F_{\mu,\sigma}\right)}\right)\right\}}^{=0}$$

$$-(1-\epsilon) E_{F_{\mu,\sigma}} \left\{ \psi' \left(\frac{X-\mu}{S(F_{\mu,\sigma})} \right) \frac{IF_{T}(y,F_{\mu,\sigma})}{S(F_{\mu,\sigma})} \right\}$$
$$+\psi \left(\frac{y-\mu}{S(F_{\mu,\sigma})} \right) = 0$$

Therefore

$$IF_{T}\left(y,F_{\mu,\sigma}\right) = S\left(F_{\mu,\sigma}\right) \frac{\psi\left(\frac{y-\mu}{S\left(F_{\mu,\sigma}\right)}\right)}{E_{F_{\mu,\sigma}}\left\{\psi'\left(\frac{X-\mu}{S\left(F_{\mu,\sigma}\right)}\right)\right\}}$$

If the dispersion estimate S(F) is Fisher consistent we have

$$IF_{T}\left(y,F_{\mu,\sigma}\right) = \sigma \frac{\psi\left(\frac{y-\mu}{\sigma}\right)}{E_{F_{\mu,\sigma}}\left\{\psi'\left(\frac{X-\mu}{\sigma}\right)\right\}}$$

Ruben Zamar

Three Heuristic Results

1)

$$E_{F_{\mu,\sigma}}\left\{IF_{T}^{2}\left(Y,F_{\mu,\sigma}\right)\right\} = \sigma^{2}\frac{E_{F_{\mu,\sigma}}\left\{\psi^{2}\left(\frac{y-\mu}{\sigma}\right)\right\}}{\left[E_{F_{\mu,\sigma}}\left\{\psi'\left(\frac{X-\mu}{\sigma}\right)\right\}\right]^{2}} = AV\left(T,F_{\mu,\sigma}\right)$$

2)

$$\sup_{y} \mathit{IF}_{T}\left(y, F_{\mu, \sigma}\right) \ = \ \frac{\sigma \psi\left(\infty\right)}{E_{F_{\mu, \sigma}}\left\{\psi'\left(\frac{X - \mu}{\sigma}\right)\right\}} = \mathit{GES}\left(T, F_{\mu, \sigma}\right)$$

3) If the Fisher consistent estimate $T\left(F\right)$ satisfies the estimating equation

$$E_F \{ \Psi (\mathbf{X}, T(F)) \} = \mathbf{0}$$

then the IF of T(F) at F_{θ} and \mathbf{y} is proportional to

$$\Psi\left(\mathbf{y}, T\left(F_{\boldsymbol{\theta}}\right)\right)$$