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@ To introduce the main concepts and ideas we first consider the
location-dispersion model

yi = ptog

® ¢1,..., & are i.i.d. random variables with common symmetric
distribution Fg.

@ Wish to estimate .

@ o is an unknown nuisance parameter.
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Dispersion-Location Model

@ The parametric model:

Fuo (y) = Fo (y;y)

@ The likelihood function
1. (vi—
L(y,g):r[aﬁ)( 0V>'

@ The log likelihood function

I(y,0) = log [L(u, )] = —nlog (& Z'°g[( V)]
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@ (j1,0) minimizes the log-likelihood
I(n,0) < I(i, @), forall pand o >0.

@ The ML estimating equations:

T Ri-p /o)y _
L () = o
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ML-Estimate (continued)

@ The score functions:

v(y) = - ;z/ 83 (location score)
xly) = - 6;)(8)}/ =¢(y)y (dispersion score)

@ The ML estimating equations:

iZav(y"_“):o

S

S|

o ()
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Example (normal case)
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Normal Score Functions

Location Dispersion
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fi and 0 satisfy the equations:

1 Yi—K\ _lgvyvi—p
,,DP(U)— 270 =0

Lo () S rm ()

Hence
# =y, the sample mean,
_ 1 _\2 .
=1/ Z (yi—y)" =s, the sample standard deviation.
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Example: the Double Exponential Model

foy) = el
log [fo(y)] = — |y
¥(0) = x(0) =0

and for y # 0,

¥ly) = 5 bl = sien(y).

x(y) =sign(y)y = |y|
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Double Exponential Score Functions

Location Dispersion
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The Estimating Equations

~

Ly |yi—
Z‘ UV

1 ~ . .
- 2 lyi — 7|  (median absolute deviation)
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Example: The Cauchy Model

fily) =1/ ((1+y?)),

log (fo(y)) = c — log [(1+ y?)]

P(y) =2y/(1+y?) and x(y) =2y*/(1+y).
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The Cauchy Score Functions
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=
o &
-
w0
w0 3
3
< <
£ o 23
s° 2
B =4
a o
3 3
° °
3 3
-20 -10 0 10 20 -4 2 0 2 4
Yy y

Ruben Zamar Dept. of Stats, UBC September 20, 2015



Asymptotic Properties of ML-Estimates

Under mild regularity conditions:

o Consistent:

VR
SR
N———
!
7 N
9=
N——
QO
(73]

@ Asymptotically normal

|
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o Asymptotically efficient

L= [I(mo) ",

I (u,0) = Fisher information matrix

[E=Y
m
L—
<
/N
<
SN
=
—
—_
o
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Robust Location-Dispersion Model

@ In some applications it is not reasonable to assume that all the
observations come from Fy, , (y)

@ Contamination neighborhood:
Fly) = (1—e)F <y0”>+ec< )

0 < ex1/2, G unknown

@ (1—¢)100% of the observations come from F  (y)

@ The remaining €100% observations come from an unknown
(contamination) distribution G (y)
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The Robustness Paradigm

@ The goal of robust estimates is to estimate the parameters of the
central distribution, F,, (y)

@ Since € is usually small, there are very few observations coming from

G

@ Robust methods do not attempt to estimate all the components of
the mixture distribution F.
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Location-Dispersion M-Estimates

Introduced by Huber in his influential 1964 paper.
@ Similar to ML-estimates, M-estimates satisfy estimating equations.

The key difference: the estimating equation for the M-estimate is not
related to the data density and likelihood function.

Separation between “data assumptions” and “estimation method":
the main idea behind M-estimates.
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M-Estimates Estimating Equations

I () -

Sx () = B

@ 1 is odd and non-decreasing

@ x is even and non-decreasing on [0, o)
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Computational Issues

Unfortunately, the following questions do not have a positive/easy answer.

@ Does a solution to the simultaneous estimating equation exist?

Is the solution unique (provided it exists)?

@ Is there a computing algorithm to efficiently and safely solve the
estimating equation?

Does the computing algorithm converge?
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M-Estimates of Location with Fixed Dispersion

@ Solve the equation:

where 6, = 6(y1,y2,...,yn) is a given dispersion estimate
@ To achieve robustness ¢ (y) must be bounded

@ 0, must be a robust dispersion estimate, used to calibrate the size of
the location residuals.
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@ A popular choice for 0, is the MAD, defined as

5 _ Med{|y1—m|v |y2—m|, ceen |_Vn_m|}
n O-1(3/4)

m = Med{y;}

e 1/®1(3/4) =~ 1.5 (for consistency under Normal model)
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o Calculated by the function mad in R

> x=rnorm(1000); sd(x); mad(x)
[1] 1.030051
[1] 1.051008

> x=c(rnorm(900),rt(100,1)); sd(x); mad(x)
[1] 2.782721
[1] 0.9926197
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Equivariance Considerations

In general, dispersion estimates must have the following properties:

S1. Scale Equivariance: 0,(ay1, ays,...,ayn) = |a|Gn(y1,¥2, .- ¥n),
forall ain R

S2. Location Invariance:
6'n(YI+va2+bv---vYn+b) :a'n()/lv)@v---v)/n),
forall bin R
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Equivariance Considerations

Location estimates fi = fi(y1,y2, ..., Yn) must satisfy the following
properties:

L1. Scale Equivariance: fi(ay;,ay>, ..., ay,) = aft(y1,y2.---. ¥n),
for all ain R.

L2. Location Equivariance:

.ﬁ()’l+bv)/2+bvv}/n+b) :,ﬁ()/l,}/Z:---v}/n)"’_bv
for all bin R.
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Computation of Location M-Estimates

@ To compute robust location estimate we must solve the non-linear
equation by numerical means.

@ We will discuss two algorithms:

Re-weighting: it is easy to code and doesn’t require the calculation
of the derivative of the location-score function.

Newthon-Raphson: converges faster and therefore is usually
preferred.
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Reweighting

Set

and define
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We can write

or equivalently
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Reweighting Algorithm

Step 1 Set 1l0) =Median(y;).

n

Step 2 Let
. qy(m)
W,(m) =w (y, (AT]/[" ) i=1,..., n
Step 3 Set
S(mt1) _ LY w,"
Vn Zw(m)

Step 4 Stop when

Ruben Zamar
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Newton-Raphson

We wish to find a solution t* for the equation

g(t) =0, (2)

Suppose we have an approximate solution, t(k) at step k.

Instead of directly solving (2) we solve the linear approximation

g(t") +¢'(t")(t—t) = 0. (3)

Ruben Zamar Dept. of Stats, UBC

September 20, 2015



o We get

@ This procedure critically depends on an initial estimate
(approximation) t(©)

e t(© should be close to the solution t*.
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In the location case we have

and
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Newton-Raphson Algorithm

The algorithm has the following steps:

Step 1 Set 10 =Median(y;).

n

Step 2 Set

~(k+1)

Step 3 Stop when
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ASYMPTOTIC
RESULTS
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Let

Ar(t) = Er {—¢ (%)} - OF() = Vare {¢ (fyr(_F;)}

and

Ruben Zamar Dept. of Stats, UBC September 20, 2015 35 /87



Ruben Zamar

A.0 The distribution function F is symmetric about u
A.1 ¢, is consistent, that is ¢, — o(F) as. [F].

A.2 \/n(6,—0c(F)) is bounded in probability, that is,
Vii(on — (F)) = 0,(1).

A.3 0%(t) is continuous on a neighborhood of # and
0 < 02(p) < oo.

A.4 Ap(u) =0, Ap(t) is continuously differentiable on a
neighborhood of u and A (u) > 0.
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Asymptotic Results

Suppose that A.0 - A.4 hold. Then:

and

with

o= p as [F]

V(jt, —p) =4 N(OAV(y, F)),

B v (5A))
M =

Ruben Zamar
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Suppose that

1o
and that
on—0(F)=0
In this case
y—p Y y—u y—u
e {o (50} = s e () e () e
= [ #0060 d = Er {8 ()}

Ruben Zamar Dept. of Stats, UBC September 20, 2015

38 / 87



Example 1: Sample Median

p(y) = sign(y)

Ar(t) = —E,:{sign <y;t>}

= Pr(y<t)—Pr(y>t)
= Pr(y<t)—[1-Pe(y<t)]=2F(t)—1

= 2F(t)—1
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Hence

Since

we have

AV (Median,FW) = =
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If ¥ (y) is continuous, almost everywhere differentiable,

Ae(p) = g ()

=
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Hence, under regularity assumptions (smooth 1 function)

— 2 Er, {lpz (y)}
N E) = e W )P

NOTE: AV(y, F ) doesn't depend on . It depends on ¢ only as a
multiplicative factor.
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To fix ideas, we will consider the Gaussian case:
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Example 2: Sample Mean

Y (y) =y (very smooth)

Use the formula

o2 Er, {¢2 (Y)}

N = e NP

Es {y'(y)} = 1

Eo {¢°(y)} = Eo{y’}=1

AV (Mean,Normal) = (1/1 )2 = ¢?
o
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Example 3: Huber's Optimal Psi-Function

3% —c<y<c
v (y) =

c sign(y) otherwise

Since ¢ (y) is continuous and almost everywhere differentiable we can
use the formula

B (7 0}

AVE) = W T
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{0} = [ o dy
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Eo {120} = 22 (1-0()+2 [ o) dy

[ roma =~ [yve' )

= - [yq)(y)lé—/;(ﬂ(y) dy]

= —cp(e)+(c) 5
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In summary

Therefore,

AV (¢, Normal) = o
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In this case

We will use the formula:

, EFu {IP%F,U (%)} y
(Ere {45, (%))

AV (P, . Fuo) =0
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Recall the (ML theory) result

= e {(Glee ()
. {ai; log |:;_fo <y;ﬂ>H
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That is:

1 _
hi(Fue) = —5Er, {%25,4, (y 5 V)}

1 y—Hu
= e o (251)
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Hence

AV(lPF%g' F]/I,U) = O
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Relative Asymptotic Efficiency

@ Suppose that Tiand T, are asymptotically normal under F :

V(Ti—p) — 4N (0, (F))

Vi(Ta—p) — aN (0, (F))

@ The asymptotic efficiency of T relative to T, is given by:

2
F
EFF (T2, T, F) = 2. (F)

e For example, if v2 (F) = 1.052632 and vZ (F) =1 we have

1

= Toso632 0

EFF (T1, T2, F)
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Comparison of the Mean and Median

@ We consider
Y—Hu
F y
(v) = 0< - )

e fy (y) = scaled student t-distribution with 3, 5, 10, 20, 100 degrees
of freedom.

@ Scaled so that
Varg, (y) =1

@ Since

Var (t(v)> = v = degrees of freedom

We take
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T (Y
h(y) = V=2 urT (3) (1 + -~ 2> (scaled t,) )
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We have shown that

AV (Median, F) =

AV (Mean, F) = o2

Therefore

EFF (Median, Mean, F) = 4 [f] (0)]°
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Relative efficiency of the median relative to the mean

Degrees
of Freedom 1 2 3 4 5 10 20 1000
Relative
Efficiency co oo 1.62 1.12 096 0.76 0.69 0.64
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ESTIMATES
AS

VIEWED

FUNCTIONALS
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Empirical Distribution

@ Empirical distribution function

Faly) = —) 1ni<y)
i=1
o If yi,¥o,...,yn are iid F then
lim sup |F, (y) —F(y)] = 0 (Glivenko-Cantelli)

n—)OOyeR
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Estimating Functional

@ Many estimates do not depend on the order in which the observations
are inputted

Tn = T(Y1|Y2y---vyn):T(Y(l)v)/(2)v---v)/(n)>

Yoy < Yoy < <yu  (order statistic)

@ Examples: mean, median, M-estimates, regression LS estimates, etc.

@ In this case we can write
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@ Sample mean

@ Sample median

1
m=F1 (2) (informally)

1
my = sup {y tFa(y) < 2} (upper median)

my = inf {y tFa(y) > ;} (lower median)
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@ Location M-estimates

12 yi—t .
T, solves : nZi[J(a(Fn)) =0

1
—t
T (F,) solves :  Ef, (l,b ((;/(F,,)>) =0
@ Dispersion M-estimates

S, solves

S(F,) solves : Er. {X (y_’:(F))} —b
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The Functional

@ The functional T (F) is defined for all empirical distribution function
Fn

@ We extend the definition over a larger set of distribution functions by

substituting F, by F.

o If the functional T is continuous we have:

lim T(F,) = T(F) as. [F]

n—oo

when the data are iid [F].
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The sample mean:

T(F) = Er(y), provided Ef (|y]) < oo

The sample median:

T(F)=F1(1/2), provided upper med (F) = lower med (F)

Location M-Estimates:

T (F) solves : Ef {¢ (g (_FS)} =0, S(F) isadisp. functional.
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Measuring Robustness

@ Let T (F) be an estimating functional
@ Suppose T (F) is defined on a set of distributions including

o Empirical distributions F, [in this case T, = T (Fp)]

e The robustness neighborhood

Fe={F:Fly)=00-€)Fo(y) +H(y)}

@ A robust estimate should satisfy T (F) = T (Fg) when € is small
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Let F be a contaminated normal distribution:
F(y)=(1—¢€)N (u,0?) +eUnif (d—hd+h), d>uh>0
The sample mean is not robust:
Ave [N (u,0®)] =pu, Ave(F)=(1—¢€)u+ed

|Ave [N (u,0°)] — Ave (F)

= le(p—d)| — oo, asd— oo
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The sample median is robust:

I\/Ied(/\/(%a?)):ﬂv < Med(F)<pu+od (2(11_€)>

In fact:

(1—e)c1>(y;V) +eH(y) :%
®<y—y) _ 1/21—_e/:(y) ey < oD (2(11_@)

|Med [N (,0)] — Med (F)| < c®! (2(11—6))
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Maxbias and Related Measures

o Let F(y;0) be a parametric family, 6 € ©.
@ y and 0 can be vector valued

o Let

Fe={F(y):F(y)=(1—¢€)F(y;0)+eH(y)}
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@ Consider an appropriate distance d on the parameter space ©

o Example: 0 = (j,0), the parameter of interest is y:

~

d(i,p) = W%f”' (location-scale invariant)

o Example: 6 = (u,0), the parameter of interest is o

d(60) =

‘ (location-scale invariant)
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o Contamination bias:

br(e,F)=d[T(F), T (Fs)], FeFe

o Contamination maxbias

Br () = sup d[T (F). T (Fy)
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The Breakdown Point (BP)

@ The BP of an estimating functional T (F) is defined as follows

BPr =sup{e: By (€) < oo}

Example: BPpjean =0
o Example: BP,cgian = 1/2

o Example: BPyap =1/2

Example: T is a location estimate with bounded ¢ and dispersion
0. Then

BPr = BP;

If 0 = MAD then BPT =1/2
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The Gross Error Sensitivity (GES)

The Gross-Error-Sensitivity (GES) is defined as follows:

— d _ /
GEST — %BT (6) o — BT (0)

Therefore

Bt (€) = €GEST + 0 (€)
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Maxbias and Related Measures
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The Gross Error Sensitivity (GES)

The Gross-Error-Sensitivity (GES) is defined as follows:

— d _ /
GEST — %BT (6) o — BT (0)

Therefore

Bt (€) = €GEST + 0 (€)
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The Influence Function (IF)

@ Introduced by Frank Hampel in his 1967 Ph.D. dissertation (together
with the BP and GES)

@ The IF is an asymptotic and infinitesimal concept

@ Measures the asymptotic impact of a vanishingly small fraction of
outliers located at a fixed position y
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o Consider a central parametric model
Fo (x)
and a Fisher Consistent estimate T:
T (Fo) =6
@ Consider the "point mass contamination” distribution

Fe(x) = (1 —¢€) Fo (x) + 4y (x)
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Definition of IF

The IF of the estimate T aty and Fy is defined as:

i TED=T(R) _ d 1
€—0 € de e—0

/FT (y,Fg) =

provided the limit exists.
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Example 1: The IF for the Sample Mean

@ The central parametric model:

Fuo (%) :cp(x_”>

(oa

@ The estimate:
T (F) = AVE (F) = EF (X)

Clearly
AVE (Fus) = (Fisher Consistent)

@ The point mass contamination distribution:

Fe(x) = (1 =€) Fuo (x) + 4y (x)
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AVE (F¢) — AVE (Fuo)

IFAVE (y,Fu’g) = |im
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Example 2: The IF for Location M-Estimates

@ The central parametric model:

Fuo (%) :cb(x_”)

o

@ The estimate T (F) satisfies the estimating equation:

X-T(F\ _
e (o (“5im) )} =
Fisher Consistency:

Er,, {IP <)5<(_F§l) } =0 (by symmetry)

@ The point mass contamination distribution:

Fe(x) = (1 =€) Fuo (x) + 4y (x)
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Derivation of the IF for Location M-Estimates

T (Fe) satisfies the equation:

D) -
E—e)Fyoten, {1/) (X;(TFG()Fe)>} =0
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NOTATION

Set
. d
T(F) = S.T(F)
and
) d
5(R) = S-S(F)
Hence

IFT (y,Fo) = T (Fo) and IFs (y.Fo) = 5 (Fo)
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-0 o ()} o (5 o

Differentiating both sides with respect to € :

5}

(X =T (F)\ T(F)S(F)+S(F) (X —T(F))
““‘”EFW{IP( S (F) ) S? (Fe) }
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Evaluating the derivative at e = 0:

=0

e o (55)}
—(1—€)E,, {w, (SX(F_VZ) ) IF; E;;ylzt)a) }

+ (sy@ﬁ)) =0
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Therefore

Fuue S(Fuc)

If the dispersion estimate S (F) is Fisher consistent we have
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Three Heuristic Results

1)

TN W15 Ul | ST
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3) If the Fisher consistent estimate T (F) satisfies the estimating equation

EF{Y(X,T(F)} = 0

then the IF of T (F) at Fg and y is proportional to

¥ (y. T (Fo))
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