
Optimally Bounding the GES (Hampel’s Problem)

Let µ̂n be a (smooth) location M-estimate based on the monotone location
score function ψ and the consistent dispersion estimate σ̂n. We have shown
before that the asymptotic variance of µ̂n at the central normal model H0 =
N
(
µ, σ2

)
is given by

AV (ψ,H0) = σ2 EH0

{
ψ2(y−µσ )

}[
EH0

{
ψ(y−µσ )

(
y−µ
σ

)}]2 . (1)

We have also shown before that the gross error sensitivity of µ̂n at the central
normal model N

(
µ, σ2

)
is given by

γ(ψ,H0) = σ
ψ(∞)

EH0

{
ψ(y−µσ )

(
y−µ
σ

)} . (2)

In his Ph.D. dissertation (completed in 1967), Hampel posed and solved the
following problem.
Hampel’s Optimality Problem: Consider the class C of all location M-

estimates with non-decreasing and bounded score functions ψ. We wish to find
the most effi cient robust estimate within this class. Suppose that we will mea-
sure effi ciency by the asymptotic variance (at the target model H0) and robust-
ness by the gross error sensitivity. Therefore, we wish to choose the location
M-estimate within C with the smallest asymptotic variance AV (ψ,H0) among
all estimates in C with relatively small gross-error sensitivity γ(ψ,H0). Ham-
pel’s optimality problem can be mathematically stated as follows: find ψ∗ ∈ C
such that

ψ∗ = arg min
γ(ψ,H0)≤K

AV (ψ,H0) (3)

The change of variables z = (y − µ) /σ in (1) and (2) gives

AV (ψ,H0) = σ2 EH0

{
ψ2(y−µσ )

}[
EH0

{
ψ(y−µσ )

(
y−µ
σ

)}]2 = σ2 EΦ

{
ψ2(z)

}
[EΦ {ψ(z) (z)}]2

(4)

and

γ(ψ,H0) = σ
ψ(∞)

EH0

{
ψ(y−µσ )

(
y−µ
σ

)} = σ
ψ(∞)

EΦ {ψ(z)z} . (5)
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Therefore, except for the fixed scaling factors (σ2 and σ) the asymptotic variance
and the GES of M-estimates essentially depend on the shape of the distribution
H0 and not on the particular values of its location and dispersion parameters.
Therefore, without loss of generality we can assume that the fixed location and
dispersion parameters are µ = 0 and σ = 1 (and so H0 = Φ). Moreover, since
(4) and (5) are invariant under multiplication of ψ by a non-zero constant, we
can assume without loss of generality that

EΦ {ψ(y)y} = 1. (6)

Therefore, problem (3) can be re-stated as follows.

Minimize (in ψ) EΦ

{
ψ2(z)

}
Subject to

(i) EΦ {ψ(y)y} = 1.
and

(ii) ψ(∞) ≤ K

For future reference let

CK = {ψ ∈ C : (i) and (ii) above hold} . (7)

We have the following result:

Theorem 1 Let H0 = N
(
µ, σ2

)
and consider the family of Huber’s score func-

tions:

ψc(y) =

 y/[2Φ(c)− 1] |y| ≤ c

c sign(y)/[2Φ(c)− 1] |y| > c.
(8)

Then

(a) If K < 1/[2ϕ(0)], then CK = φ (the empty set). In other words,

γ(ψ,Φ) ≥
√
π

2
, for all ψ. (9)

(b) The median minimizes the gross error sensitivity among all location M-
estimates.
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(c) If K > 1/[2ϕ(0)], then there exists a unique constant c > 0 such that
ψc ∈ CK , that is γ(ψc,Φ) = K.

Proof: To prove (a) write

EΦ {ψ(y)y} =

∫ ∞
−∞

ψ(y)yϕ(y)dy

= 2

∫ ∞
0

ψ(y)yϕ(y)dy

≤ 2ψ(∞)

∫ ∞
0

yϕ(y)dy = −2ψ(∞)

∫ ∞
0

ϕ′(y)dy

= −2ψ(∞)[ϕ(∞)− ϕ(0)] = 2ψ(∞)ϕ(0)

= 2ψ(∞)/
√

2π.

Therefore,

γ(ψ,Φ) =
ψ(∞)

EΦ {ψ(y)y} ≥
√

2π

2
=

√
π

2
.

Part (b) follows directly from (a) and the fact that in the case of the median
ψ (y) =sign(y)

γ(sign,Φ) =
sign (∞)

EΦ {sign (y) yϕ(y)}

=
1∫∞

−∞ sign (y) yϕ(y)dy

=

[∫ ∞
−∞
|y|ϕ(y)dy

]−1

=

[
2

∫ ∞
0

yϕ(y)dy

]−1

=

[
−2

∫ ∞
0

ϕ′(y)dy

]−1

= [−2ϕ (∞) + 2ϕ (0)]
−1

= 1/ [2ϕ (0)]

=

√
π

2
.
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To prove (c) notice that
EΦ {ψc(y)y} = 1

and therefore
γ(ψc,Φ) =

c

[2Φ(c)− 1]
≡ g(c)

The function g(c) is continuous, with

lim
c→∞

g (c) =∞

and

lim
c→0

g (c) = lim
c→0

c

[2Φ(c)− 1]
= lim
c→0

1

2ϕ(c)
=
√
π/2.

This proves the existence part of (c). The uniqueness part of (c) follows from
the fact

g′(c) =
2Φ(c)− 1− 2cϕ(c)

[2Φ(c)− 1]2
≥ 0, for all c ≥ 0 (see Problem 3).

Theorem 2 Given K > 1/[2ϕ(0)], there exists a unique c > 0 such that
γ(ψc,Φ) = K (see (8)) and

AV(ψ,Φ) ≥ AV(ψc,Φ), for all ψ ∈ CK .

Proof: Let K > 1/[2ϕ(0)]. By the previous theorem we know there is a
unique

c = c(K)

such

γ(ψc,Φ) = K.

Set

β = β(c) =
1

[2Φ(c)− 1]
.
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Now write

J (ψ) = EΦ

{
ψ2(y)

}
and

I(ψ) =

∫ ∞
−∞

[ψ(y)− βy]2ϕ(y)dy.

For all ψ ∈ CK ,

I(ψ) =

∫ ∞
−∞

[ψ2(y) + β2y2 − 2βyψ(y)]ϕ(y)dy = J (ψ) + β2 − 2β. (10)

Therefore, ψ∗ minimizes J (ψ) over CK if and only if ψ∗ minimizes I(ψ) over
CK .
By symmetry,

I(ψ) = 2

∫ ∞
0

[ψ(y)− βy]2ϕ(y)dy

and so it suffi ces to study the squared difference [ψ(y)− βy]2 for y ≥ 0.
Clearly, since ψ ∈ CK , for y ≤ c we have

[ψ(y)− βy]2 ≥ 0 = [ψc(y)− βy]2 for y ≤ c. (11)

On the other hand, since ψ ∈ CK , for y > c we have

0 ≤ ψ(y) ≤ K = ψc(y), for y > c

and so

[ψ(y)− βy]2 ≥ [K − βy]2 = [ψc(y)− βy]2, for y > c. (12)
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From (11) and (12) we have (see Figure 1)

I(ψ) = 2

∫ ∞
0

[ψ(y)− βy]2ϕ(y)dy

≥ 2

∫ ∞
0

[ψc(y)− βy]2ϕ(y)dy = I(ψc) (13)

Finally the theorem follows (i.e. ψ∗(y) = ψc(y)) from (10) and (13).

By Theorem 2, for each
K >

√
π/2

there is a unique c > 0 such that ψc (y) (see Equation (8)) minimizes the
asymptotic variance among all ψ functions with

γ(ψc,Φ) = K.

The specific value of c,

c = c (K) ,

can be determined from the equation

c

[2Φ(c)− 1]
= K. (14)
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Minimax Variance (Huber’s Problem)

Consider the symmetrical contamination neighborhood

F∗ε = {H : H(y) = (1− ε)Φ + εG, Gis symmetric} . (15)

The technical advantage of restricting attention to F∗ε is that for any M-estimate
µ̂ we have

µ̂(H) = 0, for all H ∈ F∗ε .

Therefore, we do not need to worry about the problem of asymptotic bias when
we restricted to F∗ε . On the other hand, the serious practical limitations imposed
by this restriction are obvious.
The original problem considered by Huber was solved assuming that the

dispersion parameter σ is known. The solution of Huber’s problem when σ
is unknown ( and must be robustly estimated) was obtained by Li and Zamar
(1991).
Huber’s goal was to find the location M-estimate score function ψ∗ that

minimizes the maximum asymptotic variance over the symmetric contamination
family (15). Huber’s mathematical approach was very elegant and goes along
the following lines.
Let

AV (ψ) = sup
F∈F∗ε

AV (ψ,H),

be the maximum asymptotic variance over F∗ε for the location M-estimate with
score function ψ. Robust M-estimates are then expected to have a relatively
small and stable AV over the contamination neighborhood. Therefore, an esti-
mate with smaller AV (ψ) should be preferred, from a robustness point of view
(other things being equal). Then, we wish to consider the minimization problem

inf
ψ

AV (ψ) = inf
ψ

sup
F∈F∗ε

AV (ψ,H). (16)
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Suppose that one can prove (as Huber did) that ψ∗ solves (16) if and only if ψ∗

solves the dual problem

sup
F∈F∗ε

inf
ψ

AV (ψ,H). (17)

Then, we may wish to solve the “dual”optimality problem (17) instead of the
(harder) optimality problem (16).
Let

ψH (y) = −h
′ (y)

h (y)

be the maximum likelihood score function under H and let I(H) be the corre-
sponding Fisher Information index

I(H) = E2
H {ψH (y)} =

∫ ∞
−∞

(
−h
′ (y)

h (y)

)2

h (y) dy.

It is not diffi cult to verify that

sup
F∈F∗ε

inf
ψ

AV (ψ,H) = sup
F∈F∗ε

AV (ψH , H)

= sup
F∈F∗ε

1

I(H)

=
1

infF∈F∗ε I(H)

Therefore, the original min-max problem reduces to that of finding the least
favorable distribution, that is, the distribution with smallest Fisher information
in the family (15). Huber did precisely that and found its famous truncated-
linear score function when H0 is Normal.

An Alternative Derivation of Huber’s Optimality Result

We will see that in the case of “contamination neighborhoods”Huber’s op-
timality result can be directly obtained using Hampel’s result, and vice-versa.
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That is, the two problems are mathematically equivalent. This is not too sur-
prising if we notice that the two problems yield the same family of optimal score
functions.
The elegant approach of solving the min-max variance problem by first find-

ing the least favorable distribution is not easy to apply to models other than the
simple pure location model treated by Huber. On the other hand, the approach
of attacking the min-max problem directly (brute force approach, so to speak)
shows better promise of possible extensions as it has already been successfully
applied by Li and Zamar (1991) to the location-dispersion model.
It is easy to show (using a simplified version of proof of Theorem ?? in

Section ??) that in the case of known dispersion - taken equal to one, without
loss of generality - the asymptotic distribution of location M-estimates is normal
with mean 0 and variance

AV (ψ,H) =
EH

{
ψ2 (x)

}[
EH

{
ψ′ (x)

}]2 . (18)

We have the following result.

Theorem 3 Suppose that the dispersion parameter σ is known (and then taken
equal to one without loss of generality). If ψ is non-decreasing then

sup
H∈Fε

AV (ψ,H) =
1

(1− ε)AV (ψ,Φ) +
ε

(1− ε)2 γ
2 (ψ,Φ) . (19)

where γ (ψ,Φ) is the gross-error sensitivity at the Normal model. Therefore
the maximum asymptotic variance under the normal ε-contamination family
Fε is a linear combination of the normal asymptotic variance and gross-error-
sensitivity, with coeffi cients 1/ (1− ε) and ε/ (1− ε)2

, respectively.

Proof: Let

H = (1− ε)N (0, 1) + εH1 (20)

From (18) and (20) we have

AV (ψ,H) =
(1− ε)EΦ

{
ψ2 (x)

}
+ εEH1

{
ψ2 (x)

}[
(1− ε)EΦ

{
ψ′ (x)

}
+ εEH1ψ

′ (x)
]2 .
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Since ψ is non-decreasing, it is clear that

(1− ε)EΦ

{
ψ2 (x)

}
+ εEH1

{
ψ2 (x)

}
≤ (1− ε)EΦ

{
ψ2 (x)

}
+ εψ2 (∞) .(21)

Moreover, since ψ′ (x) ≥ 0 for all x, we can write

(1− ε)EΦ

{
ψ′ (x)

}
+ εEH1

{
ψ′ (x)

}
≥ (1− ε)EΦ

{
ψ′ (x)

}
(22)

Using (21) and (22) we obtain

AV (ψ,H) =
(1− ε)EΦ

{
ψ2 (x)

}
+ εEH1

{
ψ2 (x)

}[
(1− ε)EΦ

{
ψ′ (x)

}
+ εEH1

ψ′ (x)
]2

≤
(1− ε)EΦ

{
ψ2 (x)

}
+ εψ2 (∞)[

(1− ε)EΦ

{
ψ′ (x)

}]2
=

1

(1− ε)
EΦ

{
ψ2 (x)

}[
EΦ

{
ψ′ (x)

}]2 +
ε

(1− ε)2

ψ2 (∞)[
EΦ

{
ψ′ (x)

}]2
=

1

(1− ε)AV (ψ,Φ) +
ε

(1− ε)2 γ
2 (ψ,Φ) , for all H ∈ Fε.

Therefore,

sup
H∈Fε

AV (ψ,H) ≤ 1

(1− ε)AV (ψ,Φ) +
ε

(1− ε)2 γ
2 (ψ,Φ) . (23)

where γ (ψ,Φ) is the gross-error-sensitivity of the M-estimate at the Normal
model.
On the other hand, taking

Hy = (1− ε)N (0, 1) + ε Uniform (y − δ, y + δ;−y − δ,−y + δ)
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we have that

sup
H∈Fε

AV (ψ,H) ≥ sup
y
AV (ψ,Hy) ≥ lim

y→∞
AV (ψ,Hy)

=
1

(1− ε)AV (ψ,Φ) +
ε

(1− ε)2 γ
2 (ψ,Φ) . (24)

Therefore, (19) follows from (23) and (24).

Theorem 3 shows that the maximum asymptotic variance minimized by Hu-
ber is the Lagrangian representation of Hampel’s optimality problem. Hampel
sets an explicit bound on the gross-error-sensitivity while Huber (in a rather
fortuitous way) had the gross-error-sensitivity included as a “penalty”term in
the maximum asymptotic variance he minimized.
The following result formally shows that Hampel’s and Huber’s’problems

are equivalent from a mathematical point of view. However, it is very important
to understand that the mathematical equivalence of the two problems doesn’t
imply their statistical equivalence. More precisely, Hampel’s problem has a
deep statistical meaning while Huber’s problem is just a nice mathematical
elaboration.

Theorem 4 (Equivalence between Huber’s and Hampel’s optimal location re-
sults)
(a) Suppose that ψ∗ solves Huber’s optimality problem for some 0 < ε < 1/2.

Then ψ∗ solves Hampel’s optimality problem with gross-error-sensitivity bound
equal to K = γ (ψ∗,Φ).
(b) For each 0 < ε < 1/2 the solution ψ∗ to Huber’s min-max variance

problem on Fε belongs to the set of score functions ψc given by (8). That is,

min
ψ

max
H∈Fε

AV (ψ,H) = min
c>0

max
H∈Fε

AV (ψc, H)

where the min on the left side is taken over the family of all monotone score
functions ψ.

Proof: To prove Part (a) notice that, by hypothesis,

max
H∈Fε

AV (ψ∗, H) ≤ max
H∈Fε

AV (ψ,H) , for all ψ
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Let

α = 1/ (1− ε)

β = ε/ (1− ε)2
. (25)

By Theorem 3 we have

αAV (ψ∗,Φ) + βγ2 (ψ∗,Φ) ≤ αAV (ψ,Φ) + βγ2 (ψ,Φ) , for all ψ.

Hence,

αAV (ψ∗,Φ) + βK (c)
2 ≤ αAV (ψ,Φ) + βγ2 (ψ,Φ) , for all ψ

or equivalently

AV (ψ∗,Φ) ≤ AV (ψ,Φ) +

[
β

α
γ2 (ψ,Φ)− β

α
K (c)

2

]
, for all ψ.

Therefore

AV (ψ∗,Φ) ≤ AV (ψ,Φ) , for all ψ with γ (ψ,Φ) ≤ K

and Part (a) follows.
To prove part (b), let 0 < ε < 1/2 be fixed and set (as in (25)) α = 1/ (1− ε)

and β = ε/ (1− ε)2
.

Denote by ψc the solution to Hampel’s problem with bound K (c) on the
gross-error-sensitivity. Then

AV (ψc,Φ) ≤ AV (ψ,Φ) for all γ (ψ,Φ) ≤ K (c) .

This implies the weaker statement

AV (ψc,Φ) ≤ AV (ψ,Φ) for all γ (ψ,Φ) = K (c) . (26)
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Using (26) we can write,

αAV (ψc,Φ) + βK ≤ αAV (ψ,Φ) + βK (c)
2
, for all γ (ψ,Φ) = K

Hence, by Theorem 3

max
H∈Fε

AV (ψc,Φ) = max
H∈Fε

AV (ψ,H) for all γ (ψ,Φ) = K (c) (27)

Let

g (c) = αAV (ψc,Φ) + βK (c)

=
1

1− εAV (ψ∗K ,Φ) +
εK

(1− ε)2 (28)

and denote by c∗ the minimizer of g (c) , that is,

min
c>0

g (c) = g (c∗) (see Problem 2). (29)

Finally by (27), (29) and Theorem 1 we can write

max
H∈Fε

AV (ψc∗ ,Φ) = max
H∈Fε

AV (ψc,Φ) , for all c > 0

≤ max
H∈Fε

AV (ψ,H) , for all γ (ψ,Φ) = K (c) and for all c > 0

≤ max
H∈Fε

AV (ψ,H) , for all ψ.
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Problems

Problem 1 Show that if ψ∗ satisfies

ψ∗ = arg min
γ(ψ,H0)≤K1

AV (ψ,Φ)

for some K1 >
√

2/π, then ψ∗ also satisfies

ψ∗ = arg min
AV (ψ,H0)≤K2

γ(ψ,H0)

for some K2 > 1.

Problem 2 (a) Show that Equation (14) has a unique solution and write a
computer program to solve it for each K >

√
π/2.

(b) Let

g (c) = αAV (ψc,Φ) + βK (c)

and recall that

α = 1/ (1− ε)

β = ε/ (1− ε)2

(see (25)). Find (numerically if necessary) the minimizing value

c∗ = c∗ (ε) = arg min
c>0

g (c) , (30)

for given 0 < ε < 1/2.
(c) Find

lim
ε→0

c∗ (ε) = c0
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and

lim
ε→0.5

c∗ (ε) = c1/2.

(d) Explain the statistical meaning of c0 and c1/2.

Problem 3 Verify that

2Φ(c)− 1− 2cϕ(c)

[2Φ(c)− 1]2
≥ 0

for all c ≥ 0.

Problem 4 Find a sharp lower bound for the gross error sensitivity of disper-
sion M-estimates at the normal central model. Recall that

GES (s,Φ) = s0
max {χ (∞)− b, b}

EH0

{
χ′
(
y−m0

s0

)(
x−m0

s(H0)

)}
and argue that, without loss of generality we can work with the simplified ex-
pression

GES (s,Φ) =
max {χ (∞)− b, b}
EΦ {χ′ (y) y} .

Problem 5 Solve Hampel’s optimality problem of minimizing the asymptotic
variance at the central normal model subject to a bound on the GES for disper-
sion M-estimates at the normal central model.

Problem 6 Suppose that there exists (x0, y0) such that

min
x
g(x, y0) = max

y
g(x0, y) = g (x0, y0) . (31)

A point (x0, y0) with this property is called a saddle point for the function g.
Prove that if (x0, y0) is a saddle point for g then

min
x

max
y

g(x, y) = max
y

min
x
g(x, y) = g (x0, y0) .

Problem 7 Find the least favorable distribution H∗ for the family of sym-
metric distributions F1 with finite variance. Show that in this case (31) with
g(x, y) = AV (ψ,H) , x0 = ψH∗ and y0 = H∗, holds. Discuss the convenience
and practical relevance issues in relation with F1 and the strengths and weak-
nesses of the corresponding minimax estimate.

Problem 8 Find the least favorable distribution H∗ for the family F2 of sym-
metric and strongly unimodal distributions H with h (µ) = k, where µ is the
common center of symmetry for the distributions in F2 . Show that in this case
(31) also holds and therefore the min-max and max-min problem are equivalent.
As in Problem 7 discuss the convenience and practical relevance of the family
F2 and the strengths and weaknesses of the corresponding minimax estimate.
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