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Robust Regression

In the early 1980’s robustness was beginning to develop and much work
needed to be done. Most research was focussed on the location-dispersion model
and there were no computable robust regression estimates available. Although
some modest progress had been made, serious theoretical and computational
roadblocks needed to be removed.

In the mid 70’s Ricardo Maronna had shown that generalized M-estimates of
regression, the most promising regression estimates at that time, loose robust-
ness as the dimension p of the problem increases. He showed that GM-estimates
are in fact rather flimsy for p > 5. Therefore, an important open question at
that time was whether robust regression - in terms of breakdown point (BP) was
at all possible for high dimensional problems.
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Repeated Medians

The first breakthrough in high BP regression is due to Siegel (1982) who
introduced the repeated medians regression estimate (RM). Siegel showed that
his estimate has BP = 1/2, regardless of the dimension of the problem.

The definition and computation of the RM is rather simple in the case of
p = 1. Given n 2-dimesional points (y1, x1) , ..., (y1, x1) the RM estimate of slope
is defined as

β̂1 = Medi Medj

{
yi − yj
xi − xj

}
.

The corresponding intercept estimate is defined as

β̂0 = Medi

{
yi − β̂1xi

}
.

An equivalent definition, which can be easily extended to cases with p > 1
(number of covariates) is as follows. For each pair of points (xi, yi) and (xj , yj)

with xi 6= xj let
(
α̂ij , β̂ij

)
be the corresponding LS fit. Now

β̂1 = Medi Medj

{
β̂ij

}
β̂0 = Medi

{
yi − β̂1xi

}
.

Unfortunately, the definition and computation of the repeated median esti-
mate face severe limitations for p > 2. One particularly serious problem is that
RM is no longer affi ne-regression equivariant for p > 2. This limitation opened
the question of whether high BP regression and affi ne-regression equivariance
was at all possible for high dimensional problems.
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Least Median of Squares(LMS)

Rousseeuw (1984) broke new ground by showing that the least median of
squares (LMS) regression estimate - originally defined by Hampel - answered this
question in a positive way. Hampel-Rousseuw’s LMS is based on a remarkable
idea which we explain in the next two paragraphs.
We have seen before that robust location M-estimates are defined as the

solution of an estimating equation with bounded score function ψ (y). This is
equivalent to replacing the non-robust quadratic loss function of LS estimates by
a robust loss function ρ (y) that ultimately grows linearly as |t| → ∞. Robustness
in the location case is therefore attained by replacing the non-robust quadratic
loss function (and corresponding non-robust linear score function) by a robust
loss function.
Hampel’s idea was different and rather ingenious. He reasoned as follows:

The LS estimate is not robust because it minimizes the non-robust average of
the squared residuals. But we can perhaps achieve robustness by minimizing
the robust median of the squared residuals. That is, instead of robustifying the
traditional square residuals we could robustify the type of operation we perform
over the squared residuals.
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Given n (p+ 1)-dimensional points (y1,x1) , ..., (y1,x1) the regression LMS
estimate is defined as

(
β̂0, β̂1

)
= arg min

(b0,b)
Medi

{
(yi − b0 − x′ib)

2
}
,

where b0 ranges over R and b ranges over Rp. Notice that we still work with
the squared regression residuals (yi − b0 − x′ib)

2 but instead minimizing their
average (or sum) we minimize their median.

Peter Rousseuw proved that LMS has BP = 1/2, independent from the
dimension p of the explanatory variables. Since LMS is also affi ne-regression
equivariant, it became the first affi ne-regression equivariant regression estimate
which is also robust.
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Figure 1: Simulated dataset with 20 points and two outliers.

Resampling Algorithm

The next problem faced by Rousseeuw was the actual computation of LMS.
This is a highly non-trivial challenge because the median of the squared residuals
is non-convex and non-smooth function. To begin to understand the diffi culties
here let’s consider the following simulated data in Figure 1 and the regression-
through-the-origin model

yi = βxi + εi, i = 1, ..., 20

In Figure 2 we plot β versus Medi

{
(yi − βxi)2

}
for β = 2(0.01)8. Notice

that the plot is very jagged and the curve exhibits several local minimum and
maximum. The situation is similar (usually worse) in the case of high dimen-
sional data.
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Figure 2: Median of squared residuals for the dataset displayed on Figure 1.

Werner Stahel - another former student of Hampel and contemporary of
Rousseeuw - had recently proposed a very smart resampling algorithm to com-
pute a robust multivariate location and covariance estimate now called Donoho-
Stahel estimate. Rousseuw decided to adapt this algorithm to compute LMS.
We will first focus on simple linear regression and use Forbes’dataset, to

introduce the main ideas of the resampling algorithm. Forbes’dataset is sim-
ilar to Hooker’s and relates boiling point of water to atmospheric pressure at
different altitude. The data is presented in Table 1
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Resampling Algorithm When p = 1

The LMS resampling algorithm is based on the reasonable assumption (rather

hope) that the fit L(α̂, β̂) =
(
x, α̂+ β̂x

)
that minimizes the median of squared

residuals will be close to (or even equal to) one of the m =

(
n
2

)
lines

connecting pairs of data points. Under this assumption, one can get a good
(initial) evaluation of LMS by restricting attention to the m lines L( αij , βij) =(
x, αij + βijx

)
, i < j with slope and intercept coeffi cients

βij =
yi − yj
xi − xj

and αij =
yjxi − yixj
xi − xj

(1)

respectively. For each pair of points {(yi, xi) , (yj , xj)} with i < j satisfying xi−
xj 6= 0, we compute the coeffi cients

(
αij , βij

)
given by (1) and the corresponding

residuals

rijk = yk − αij − βijxk, k = 1, ..., n

The next step is to calculate the median of the squared residuals

MSR (i, j) = Medk

{(
rijk

)2
}

for all i < j such that xi − xj 6= 0.

The final step is to determine

(i0, j0) = arg min
i<j

MSR (i, j)

from which we obtain that the (approximate) LMS estimate:

(
α̂, β̂

)
=

(
αi0j0 , βi0j0

)
.
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Table 1: Forbes’s data relating boiling temperature and atmosheric pressure at
different altitude

Case Temperature Pressure Case Temperature Pressure
1 194.5 20.79 10 201.3 24.01
2 194.3 20.79 11 203.6 25.14
3 197.9 22.40 12 204.6 26.57
4 198.4 22.67 13 209.5 28.49
5 199.4 23.15 14 208.6 27.76
6 199.9 23.35 15 210.7 29.04
7 200.9 23.89 16 211.9 29.88
8 201.1 23.99 17 212.2 30.06
9 201.4 24.02

Example 1 In this example we present the results of the LS and LMS fits to
Forbes’data. Figure 3 presents the original data, the LS regression fit Pressure
= −81.06373 + 0.5228924×Temperature (red line) and the LMS regression fit
Pressure = −70.88704+0.4715453×Temperature (black line). Figure 4 displays
the LS residuals (red) and LMS residuals (black). The larger group of 11
points has very small residuals. The Remaining 6 cases have considerably larger
residuals and are poorly fit by the LMS line. The LMS analysis suggests that the
measurements at “higher altitudes” - and corresponding “lower temperatures” -
are quite different from those at “lower altitudes” - and corresponding “higher
temperatures” .
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Figure 4: LMS (black) and LS (red) regression residual for the Forbes’data.
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Resampling Algorithm for General p

Let’s now consider the problem of computing LMS when the number of
explanatory variables, p, is larger than one. In this case we may restrict attention

the m =

 n

p+ 1

 subsets of p+ 1 data points. Let J be the collection of all

the subsets {i1, i2, ..., ip+1} of {1, 2, ..., n} such that the (p+ 1)× (p+ 1) matrix

X{i1,i2,...,ip+1} =


1 x′i1
1 x′i2
...

...
1 x′ip+1


has full rank. For each subset in J we can determine the vector of regression
coeffi cients β{i1,i2,...,ip+1} ∈ R

p+1 - which includes the intercept - such that


yi1
yi2
...

yip+1

 =


1 x′i1
1 x′i2
...

...
1 x′ip+1

β{i1,i2,...,ip+1}

For each subset in J we can now compute the corresponding set of n regression
residuals

r
{i1,i2,...,ip+1}
k = yk − (1,xk)

′
β{i1,i2,...,ip+1}, k = 1, 2, ..., n.

The next step is to calculate the median of the squares of these residuals:

MSR ({i1, i2, ..., ip+1}) = Medk

{(
r
{i1,i2,...,ip+1}
k

)2
}

for all {i1, i2, ..., ip+1} ∈ J.

The final step is to determine

{
i01, i

0
2, ..., i

0
p+1

}
= arg min

J
MSR ({i1, i2, ..., ip+1})
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from which we obtain that the (approximate) LMS estimate:

β̂ = β{i01,i02,...,i0p+1}.
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Numerical Complexity of the Resampling Algorithm

The LMS resampling algorithm becomes unfeasible when the number n of
data points and the number p of explanatory variables increase. Table 2 gives
the number of sub-samples for different values of n and p.

Table 2: Number of sub-samples for different sample sizes (n) and number of
explanatory variables (p)

p n
20 40 80 200 500

1 190 780 3160 19900 124750
2 1140 9880 82160 1313400 20708500
3 4845 91390 1581580 64684950 2573031000
5 38760 3838380 300500200 8.240863e+010 2.105769e+013
10 167960 2311801440 1.047768e+013 3.877901e+017 1.094974e+022
15 4845 62852101650 2.695822e+016 1.691526e+023 5.722368e+029

It is clear from Table 2 that evaluating all the sub-samples may not be
practical (or feasible) for large values of n and p.
A possible approach is to consider only a random subset of sub-samples. In

this case we must determine the size of this subset and how the sub-samples
are to be chosen. This brings up interesting statistical issues: determining the
sample size and choosing the sampling method.
Rousseeuw suggested to use simple random sampling with replacement (for

simplicity) and to choose the sample size big enough to insure a high probabil-
ity of selecting at least one sub-sample that contains only “good data points”.
Of course, this probability depends on the percentage of outliers in the data.
Therefore, to implement Rousseuw’s idea we must make some assumption re-
garding the largest “allowable”percentage of contamination in the data. The
most conservative approach is be to take this percentage equal to 50%.
Let ε be the maximum allowable fraction of contamination in the data. In

this case
P (choosing a good data point) = ε.

Let δ be the probability that a sub-sample of (p+ 1) data points is free of
outliers (a good sub-sample). Under simple random sampling with replacement

δ = P (choosing a good sub-sample) = (1− ε)p+1
.
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Suppose that (1− α) is the desired probability of choosing at least one good
sub-sample. The required numberm of sub-samples needed to achieve this prob-
ability satisfies

P (B (m, δ) > 0) = 1− P (B (m, δ) = 0) = (1− α) ,

where B (m, δ) is a Binomial random variable with m trials and probability δ
of success. So, m must satisfy the equation

1− (1− δ)m = (1− α)

(1− δ)m = α

m log (1− δ) = log (α)

m =
log (α)

log (1− δ)

Therefore,

m =
log (α)

log
[
1− (1− ε)p+1

]
where (1− α) is the desired probability of choosing at least one good sub-sample
and ε the assumed upper bound for the fraction of outliers in the dataset.

Remark 1 Notice that the number of samples, m, depends on three parameters:

ε = assumed maximum fraction of contamination

1− α = the desired probability of having a clean sample

p = the number of explanatory variables

Compiquously and fortunately, it doesn’t depend on the sample size, n.
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The following table gives the values of m for α = 0.01, ε = 0.50 and several
values of p.

p 1 2 3 4 5 6 7 8 9 10 11 12 13
m 17 35 72 146 293 588 1,177 2,356 4,714 9,430 18,861 37724 75449

p 14 15 16 17 18 19 20
m 150,900 301,803 603,607 1,207,216 2,414,434 4,828,869 9,657,740

Remark 2 Figure 5 shows that when the maximum fraction of contamina-
tion is ε = 0.5, the number m of sub-samples needed for a 0.99 probability
of a “clean” sub-sample of size p + 1 follows the exponential formula m ≈
exp {2.2067 + 0.6935p} . The number of sub-samples quickly runs out of control
for p larger than 10, say. This is a problem that has attracted some current
research interest. There are now more effi cient algorithms based on the idea
of local improvement using “concentration steps”. See for example Salibian-
Barrera and Yohai (2006) and Salibian-Barrera, Willems, and Zamar, (2008).
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Figure 5: The number m of subsamples when eps = 0.5 and alpha = 0.01.
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S-Estimates

The introduction of LMS regression estimates was an important break-
through in the theory and practice of robustness.

The theoretical appeal of the estimate was greatly strengthened when Martin,
Yohai and Zamar (1989) showed that LMS has a strong robustness optimality
property - bias-minimaxity - among all M-estimates of regression with general
scale. Yohai and Zamar (1993) showed that LMS optimality is even stronger
by proving that it extends to larger class of all regression estimates that mini-
mize a function of the regression residuals (which they call “residual admissible
regression estimates”).

LMS estimates nicely fulfill the first robustness requirement of resistance in the
presence of outliers.

Unfortunately, LMS estimates do not fulfill the second robustness requirement
of effi ciency in the presence of clean data. In fact, LMS estimates are not
asymptotically normal and approach their asymptotic non-normal limiting dis-
tribution at the slow 3

√
n-rate instead of the usual

√
n-rate.

Rousseuw and Yohai (1984) introduced the family of regression S-estimates
which are robust (have maximal BP = 1/2), are affi ne and regression equivariant
and have asymptotic normal distribution with the usual square-root convergence
rate.

The basic ideas underlying the definition of regression S-estimates have been
already introduced in the first section when we defined robust dispersion M-
estimates.
Given a set of (p+ 1)-dimensional points {(y1,x1) , ..., (y1,x1)} the regres-

sion S-estimate is defined as the solution to the minimization problem

β̂ = arg min
t
S (t) , (2)

where t ranges over Rp+1 - that is, t = (t0, t1, ..., tp)
′
, with t0 representing the

intercept parameter. Of course, the key part in the definition of the regression
S-estimate is the definition of the function S to be minimized. This function is
a robust scale estimate of the regression residuals

ri (t) = yi − x′it, i = 1, 2, ..., n.
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where the robust scale is defined as in the location-scale model considered the
the first section. More precisely, let χ be a (scale) score function satisfying the
following properties

(1) χ is continuously differentiable
(2) χ(0) = 0 and χ(∞) = 1.
(3) χ(−y) = χ(y) for all y.
(4) χ(y) is non-decreasing on [0,∞).
(5) 0 < b = EΦχ(y) < 1.

Commonly used scale score function are Tukey’s bi-square loss function

χ (y) =

 3 (y/c)
2 − 3 (y/c)

4
+ (y/c)

6 if |y| ≤ c

1 otherwise
(3)

and Huber’s truncated squares score function

χ (y) =

 (y/c)
2 if |y| ≤ c

1 otherwise.

The M-scale of the tentative regression residuals {ri (t)} with β =t is now im-
plicitly defined by the equation

s (t) = sup

{
s :

1

n

∑
χ

(
ri (t)

s (t)

)
> b

}
. (4)

Notice that, by continuity of χ, s(t) satisfies the equation

1

n

∑
χ

(
ri (t)

s (t)

)
− b = 0 (5)

The minimization problem (2) can be approximately solved using the resam-
pling algorithm introduced before for the LMS estimate. Since solving equation
(5) is computationally expensive it is crucial to use the “records”step discussed
in Section 1 in the case of the location-scale model. That is, if s∗ = s (t∗) is
the current minimum and t∗∗ is the vector of coeffi cients corresponding to next
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randomly selected sub-sample, then s (t∗∗) needs to be calculated (and therefore
equation (5) needs to be solved) only if

1

n

∑
χ

(
ri (t∗∗)

s (t∗)

)
< b.

If m represents the number of sub-samples to be evaluated and N represents
the number of times equation (5) must be solved then

E (N) ≈ log (m) ≈ V ar (N) .

(see Problem ). By Chevichev’s inequality,

P
[
|N − log (m)| < k

√
log (m)

]
> 1− 1

k2
.

from which it follows that

P
[
N <

√
log (m)

(
k +

√
log (m)

)]
> 1− 1

k2
.

The table below gives the values of m0 =
√

log (m)
(
k +

√
log (m)

)
for k = 10

(and corresponding 99% probability) for several values of m

Number of Number of
Sub-samples Equations

1, 000 34
10, 000 40
100, 000 46
1, 000, 000 51
10, 000, 000 57

Problems
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Problem 3 Show that LMS is an S-estimate with “jump”score function

χ (y) =

 0 if y2 ≤ c

1 y2 > c.

What is the value of c?

Problem 4 Show that a regular S-estimate (with smooth score function satis-
fying A1-A5) can be viewed as an M-estimate. That is show that the S-estimate
satisfies an equation of the form

∑
ψ

(
yi − β′xi

σ̂n

)
xi = 0

for some appropriate ψ and σ̂n (which you must specify).

Problem 5 Suggest an algorithm to compute S-estimates for simple linear re-
gression. Implement this algorithm using your favorite language and apply it
to several datasets including Forbe’s and Hooker’s datasets. Make sure your
program allows the user to choose the value of b.

Problem 6 Show that S-estimates are affi ne and regression equivariant. More
precisely, set

β̂ =

(
β̂0

β̂1

)

and show that
(1) If x→Ax (with A invertible) then β̂1 →A−1β̂1 and β̂0 →β̂0

(2) If x→ x+ d then β̂1 → β̂1 and β̂0 → β̂0 − β̂
′
1d

(3) If y → ay then β̂1→aβ̂1 and β̂0 → aβ̂0

(4) If y → y + a+ x′b then β̂1 → β̂1 + b and β̂0 → β̂0 + a
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Tau-Estimates

Regression S-estimates are asymptotically normal at the usual
√
n-rate, ro-

bust and regression-affi ne equivariant. Therefore they are pretty close to what
we would like to call good robust regression estimates. However they have a
drawback which we can improve upon: they cannot be simultaneously resistant
for contaminated data and effi cient for clean data. We will see later in this
course that the breakdown point of S-estimates is equal to

min {b, 1− b}

where b = E {χ (Z)} , with Z ∼ N (0, 1) .On the other hand, the asymptotic
covariance matrix of β̂ is equal to

σ2 EF
{
ψ2
c (Y )

}[
EF
{
ψ′c (Y )

}]2 [E (xx′)]
−1

with ψc (y) = χ′c (y) . It can be shown (the reader can numerically verify this)
that to get high effi ciency under normal errors c must be chosen rather large
and this causes b to become small. In summary, there is a trade-off between
Gaussian effi ciency and breakdown point in the case of S-estimates. An this
trade-off cannot be resolved because there is only one “tuning”constant, c, we
can play with. In fact, it has been shown that the maximum effi ciency that can
be achieved when b = 1/2 is very low (below 50%).
There are at least two approaches to get around this diffi culty. My favorite

one - warning: this statement may be suspiciously biased - is to use τ -estimates
which were originally introduced by Yohai and Zamar (1988), my first ever
published paper!

τ -estimates are based on the idea of minimizing a robust and effi cient scale
of the regression residuals. The τ -scale is defined as follows:

τ (t) =
s2
n (t)

n

∑
χ2

(
ri (t)

sn (t)

)
(6)

with sn (t) implicitly defined by the equation

1

n

∑
χ1

(
ri (t)

sn (t)

)
= b.
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Notice that sn (t) is an M-scale with score function χ1. The regression τ -
estimate is now defined by

β̂ = arg min
t
τ (t) .

It can be shown that the robustness of the τ -estimate is determined by the
score function χ1 and that its effi ciency is determined by the score function
χ2. Therefore, the score functions can be chosen to simultaneously achieve any
desired level of robustness (breakdown point) and effi ciency.
Although τ -estimates have attractive theoretical properties (see Berrendero,

Mazzi, Romo and Zamar (199?) and Berrendero and Zamar (2001)), there has
not been much progress regarding their computation. This is due in part to the
fact that most of the computational effort has been directed toward the Splus
implementation of Yohai (198?)’s regression MM-estimates - which can also be
simultaneously robust en effi cient (see command lmRob in Splus 6). Regression
MM-estimates will be described and briefly discussed below.

Problems

Problem 7 Show that τ -estimates satisfy an estimating equation of the form

1

n

∑
Ψn

(
ri (t)

sn (t)

)
xi = 0

with “adaptive” score function Ψn which depends on the data and has the form

Ψn (y) = wnψ1 (y) + (1− wn)ψ2 (y) ,

where 0 < wn < 1 is a weight that depends on the data. When is wn close to 1?
When is wn close to 0?

Problem 8 Consider the function

g(y, s) = s2χ(y/s). (7)

What can you say about the monotonicity (in s) of g(y, s) for given y. Give
examples where this monotonicity is (is not) satisfied. In particular, study (7)
for the cases of Tukey’s and Huber’s families of score functions.
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Problem 9 Suppose that χ2 in (6) is such that g(y, s) given by (7) with χ =
χ2 is non-decreasing in s for all y. Consider the following “record step” for an
algorithm to compute the τ -estimate via re-sampling.
Record Step: Let β∗, τ ∗ and s∗ be the current values corresponding to

the last observed “record”. Let β is the next “candidate” to be evaluated for a
possible new record. Show that β can be discarded if the following two conditions
hold:

(1) 1
n

∑
χ1

(
ri(β)
s∗

)
> b.

(2)
∑
χ2

(
ri(β)
s∗

)
>
∑
χ2

(
ri(β

∗)
s∗

)
Determine (numerically if necessary) the expected number of times N condition
(1) or condition (2) above are violated. What is the standard deviation of N?
Notice that E (N) and SD (N) determine the overall expected computational
burden for the proposed resampling algorithm.
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