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Robust Multivariate Location and Scatter
Estimates

Some Background

We begin by stating an interesting result.

Lemma 1 (Grubel, 1988) Let x1,x2, ...,xn be a sample of p dimensional vectors
in Rp with sample mean x and sample covariance

S =
1

n

n∑
(xi − x) (xi − x)

′
.

Consider the set of all pairs (A, t) such that A is positive definite and

1

np

n∑
(xi − t)

′
A−1 (xi − t) = 1. (1)

Then the pair (S,x) satisfies (1) and S minimizes the det (A) , subject to (1).



3

Proof of Lemma 1

First we show that (S,x) satisfies constraint (1):

1

np

n∑
(xi − x)

′
S−1 (xi − x) =

1

p

1

n

(
n∑
tr
[
(xi − x)

′
S−1 (xi − x)

])

=
1

p

(
1

n

n∑
tr
[
(xi − x) (xi − x)

′
S−1

])

=
1

p

(
tr

(
1

n

n∑
(xi − x) (xi − x)

′
S−1

))

=
1

p

(
tr
(
SS−1

))
=
p

p
= 1

Suppose, now, that

1

np

n∑
(xi − t)

′
A−1 (xi − t) = 1.

It is easy to show that there exist a pair (B,x) with det (B) ≤ det (A) . Hence,
it suffi ces to prove that

det (B) ≥ det (S)

subject to

ȳ = 0 and
1

np

n∑
y′iB

−1yi = 1.

Moreover, since

1

np

n∑
y′iB

−1yi =
1

np

n∑
y′iS

−1/2S1/2B−1S1/2S−1/2yi

=
1

np

n∑(
S−1/2yi

)′ [
S1/2B−1S1/2

] (
S−1/2yi

)
=

1

np

n∑
z′iC

−1zi

zi = S−1/2 (xi − x) , z̄ = 0, Sz = I

It suffi ces to prove that

det (C) > 1

subject to

z̄ = 0 , Sz = I and
1

np

n∑
z′iC

−1zi = 1
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with equality if and only if C = I.
Since C is symmetric and positive definite, there exists an orthogonal matrix

P and a diagonal matrix D = diag (λ1, λ2, ..., λp) with λ1 ≥ λ2 ≥ · · · ≥ λp > 0
such that

C = P ′DP

C−1 = P ′D−1P

det (C) = λ1λ2...λp

Now,

1 =
1

np

n∑
z′iC

−1zi =
1

np

n∑
z′iP

′D−1Pzi

=
1

np

n∑
w′iD

−1wi

with wi = Pzi, so that w̄ = 0 and Sw = PIP ′ = I.Hence

1 =
1

np

n∑
w′iD

−1wi =

∑p
λ−1
i

p

The result follows now from the well known result that the arithmetic mean is
larger than or equal to the geometric mean, with equality iff all the numbers
are equal. In fact

1 =

∑p
λ−1
i

p
≥
(

p∏
λ−1
i

)1/p

⇒ 1 ≥
p∏
λ−1
i ⇒ 1 ≤

p∏
λi = det (C)

with equality iff λ−1
i =constant (i = 1, 2, ..., p), that is, λi = 1, (i = 1, 2, ..., p),

and hence C = I.

A shorther Proof (using the fact that (x,S) is the Gaussian MLE)

l (µ,Σ) = c− n

2
log (det (Σ))− 1

2

n∑
(xi − µ)

′
Σ−1 (xi − µ)

We know that
l (µ,Σ) ≥ l (x̄,S) (2)

with equality iff µ = x̄ and Σ = S. It is easy to show that, for all Σ,

l (µ,Σ) ≤ l (x̄,Σ) = c− n

2
log (det (Σ))− 1

2

n∑
(xi − x̄)

′
Σ−1 (xi − x̄)

Consider the set C of symmetric, positive definite matrices Σ such that
n∑

(xi − x̄)
′
Σ−1 (xi − x̄) = np

We know that S ∈ C. Consider now that problem of minimizing log (det (Σ)) in
C. The unique solution to that problem must be Σ = S. Otherwise we would

have found a matrix S̃ such that l (x̄,S) < l
(
x̄,S̃

)
. This would contradict (2).
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Minimum Covariance Determinant

The Minimum Covariance Estimator (MCD) was introduced by Rousseeuw
(1984). It is defined as follows.

Let x1,x2, ...,xn be a dataset in Rp. For some integer 0 < h ≤ n consider
all the subsets {i1, i2, ..., ih} of {1, 2, ..., n} .There are

M =

 n

h


such subsets. Typical values of h are h = n/2 or h = 3n/4.Set

H = {i1, i2, ..., ih} ⊂ {1, 2, ..., n} .

For each subset H compute the location and scatter matrix

t (H) =
1

l

∑
j∈H

xj , S (H) =
1

h

∑
j∈H

(xj − t (H)) (xj − t (H))
′
.

Let

H∗ = arg min
H

det (S (H)) (3)

The MCD estimate of multivariate location and scatter is defined as

(
t̂, Σ̂

)
= (t (H∗) , S (H∗))

The definition of
(
t̂, Σ̂

)
is very simple but the computation of H∗ in (3) is a

highly non-trivial optimization problem.



6

Next we derive a “concentration step”for the resampling algorithm used to
compute MCD.

Lemma 2 (Rousseeuw and Van Drissen, 1999) Let x1,x2, ...,xn be a dataset
in Rp and let

H1 = {i1, i2, ..., ih} ⊂ {1, 2, ..., n}

of size h (e.g. h = n/2 or 3n/4). Let

t1 =
1

h

∑
j∈H1

xj , S1 =
1

h

∑
j∈H1

(xj − t1) (xj − t1)
′

If det (S1) > 0 define the Mahalanobis distances

d1 (i) =

√
(xi − t1)

′
S−1

1 (xi − t), i = 1, 2, ..., n.

Let now

{k1, k2, ..., kn}

be the permutation of {1, 2, ..., n} such that

d1 (k1) ≤ d1 (k2) ≤ · · · ≤ d1 (kn)

In other words, d1 (kl) is the lth order statistic of the set {d1 (1) , d1 (2) , ..., d1 (n)} .
Now set

H2 = {k1, k2, ..., kh} ,

t2 =
1

h

∑
j∈H2

xj , S2 =
1

h

∑
j∈H2

(xj − t2) (xj − t2)
′
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Then

det (S2) ≤ det (S1)

with equality if and only if t2 = t1 and S2 = S1.

Proof. (Lemma 2)

Assume, w.l.g., that det (S2) > 0. Otherwise there is nothing to prove.

Set

d2 (i) =

√
(xi − t2)

′
S−1

2 (xi − t2), i = 1, 2, ..., n.

Using the definition of (t2, S2) we write

1

hp

∑
i∈H2

d2
2 (i) =

1

hp

∑
i∈H2

(xi − t2)
′
S−1

2 (xi − t2)

=
1

p
tr

[
1

h

∑
i∈H2

(xi − t2)
′
S−1

2 (xi − t2)

]

=
1

p
tr

[
1

h

∑
i∈H2

(xi − t2) (xi − t2)
′
S−1

2

]

=
1

p
tr

[(
1

h

∑
i∈H2

(xi − t2) (xi − t2)
′
)
S−1

2

]

=
1

p
tr
[
S2S

−1
2

]
=
p

p
= 1 (4)
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Now consider

0 < λ =
1

hp

∑
i∈H2

d2
1 (i)

≤ 1

hp

∑
i∈H1

d2
1 (i) [by definition of H2]

=
1

hp

∑
i∈H1

(xi − t1)
′
S−1

1 (xi − t1)

=
1

p
tr

[
1

h

∑
i∈H1

(xi − t1) (xi − t1)
′
S−1

1

]
= 1. (5)

Combining (4) and (5) yields

1

hp

∑
i∈H2

(xi − t1)
′
(λS1)

−1
(xi − t1) =

1

λ

1

hp

∑
i∈H2

(xi − t1)
′
S−1

1 (xi − t1)

=
1

λ

1

hp

∑
i∈H2

d2
1 (i)

=
λ

λ
= 1 (6)

By (4) and (6) we have

1

hp

∑
i∈H2

(xi − t1)
′
(λS1)

−1
(xi − t1) =

1

hp

∑
i∈H2

(xi − t2)
′
S−1

2 (xi − t2) = 1

and by Lemma 1 we have det (S2) ≤ det (λS1) . Moreover,

det (S2) ≤ λp det (S1) ≤ det (S1) , because 0 < λ ≤ 1. (7)

To have equality in (7), we must have λ = 1 (otherwise the inequality would be
strict). By the uniqueness part in Lemma 1, if det (S2) = det (λS1) we should
have

(t2, S2) = (t1, λS1) (8)
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Hence
(t2, S2) = (t1, S1)
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Computing Algorithm for the MCD Estimate

Concentration step. Consider an arbitrary performance criterium denoted
L (θ), for example maximum likelihood, MCD, least squares, etc. A concentra-
tion step is a procedure performed to move from a candidate solution θ0 to
another candidate solution θ1 that bears a better value for the performance
criterium. That is L (θ1) is better than (θ0) .

Lemma 2 justifies the following concentration step regarding the calculation
of the MCD estimate.

Given a multivariate sample x1,x2, ...,xn, a number h (e.g. h = n/2) and a
candidate solution (µ̂0, S0), an MCD concentration step is given by the following
procedure:

a. Compute the Mahalanobis distances

d0 (i) =

√
(xi − µ̂0)

′
S−1

0 (xi − µ̂0), i = 1, 2, ..., n

b. Find the subset H = {xk1 ,xk2 , ...,xkh} of {xk1 ,xk2 , ...,xkh} such that the
corresponding h distances d0 (i) are minimized.

c. Compute the sample mean and sample covariance matrix (µ̂1, S1) for the
set H.

The concentration step described above - leading from (µ̂0, S0) to (µ̂1, S1)
- will be denoted

(µ̂1, S1) = C (µ̂0, S0) .

The letter C stands for “concentration step”.

Then, by Lemma 2 we have that det (S1) ≤ det (S0) .
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The Computing Algorithm

Input:

1. the dataset (x1,x2, ...,xn)

2. m = # of subsamples

3. m0 = # of top-listed candidates (m0 is normally much smaller than m)

4. δ = iterations stopping rule

Output: the MCD estimates
(
µ̂, Σ̂

)
.

The Steps

1. For i = 1, 2, ...,m extract a random elementary set (p+1 randomly chosen
sample points), compute the corresponding sample means and covariances(
µ̂0
i , Σ̂

0
i

)
2. For i = 1, 2, ...,m compute(

µ̂1
i , Σ̂

1
i

)
= C

(
µ̂0
i , Σ̂

0
i

)
3. Form a subset of m0 subscripts {i1, i2, ..., im0

} for which det
(

Σ̂1
i

)
are the

smallest.

4. For j = 1, ....,m0 iterate(
µ̂k+1
ij , Σ̂k+1

ij

)
= C

(
µ̂kij , Σ̂

k
ij

)
to convergence. Keep the case with smallest det

(
Σ̂∞ij

)
and report the

corresponding
(
µ̂∞ij , Σ̂

∞
ij

)
as the desired solution

(
µ̂, Σ̂

)
.
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S-estimates of Multivariate Location and Scat-
ter

S-estimates for multivariate location and scatter were first defined by Davies
(1987).
Given a multivariate sample x1,x2, ...,xn, let ρ : [0,∞)→ [0,∞) be a non-

decreasing function such that ρ (∞) = limt→∞ ρ (t) = 1. For each m ∈Rp and
each symmetric, positive definite p× p matrix Σ, let S (m,Σ) be defined as the
solution in s to the equation

1

n

n∑
i=1

ρ

(
d (xi,m,Σ)

scp

)
=

1

2

where

d (xi,m,Σ) = (xi −m)
′
Σ−1 (xi −m) ,

is the square Mahalanobis distance from xi to m, with covariance matrix Σ.
The constant cp is defined by the equation

E

(
ρ

(
X

cp

))
=

1

2

with X ∼ χ2
p.

The S-estimate of multivariate location and scatter is now defined in two
steps. First define the multivariate location and scatter shape pair

(
µ̂, Σ̃

)
as

follows

(
µ̂, Σ̃

)
= arg min

m,det(Σ)=1
S (m,Σ) .

Second, let

ŝ = S
(
µ̂, Σ̃

)
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Finally set

Σ̂ = ŝΣ̃.
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