ELEC 321: Assignment #1.1

Anup Aprem

Problem 1

(a) No.

(b) No.

(c) Yes.

(d) $P(A_0) \le \frac{1}{2^{31}}$

(e) No.

Problem 2

- (a) $A \cap B$
- (b) $A \cap B \cap C^c$
- (c) $D = (A \cap B^c \cap C^c) \cup (A^c \cap B \cap C^c) \cup (A^c \cap B^c \cap C)$
- (d) $E = (A \cap B \cap C^c) \cup (A^c \cap B \cap C) \cup (A \cap B^c \cap C)$
- (e) $A \cap B \cap C$
- (f) $F = A^c \cap B^c \cap C^c$
- (g) $D \cup F$
- (h) $D \cup E \cup F$

Problem 3

(a) Induction.

(b) 0.5

Problem 4

Use set theory manipulations and definition of conditional probability.

Problem 5

0.81

Problem 6

(a)	$\binom{n-m+1}{m}$		
(b)	0.72881		

Problem 7

(a)	No.	

(b) Yes. For example, Poisson distribution.

Problem 8

(a) Consider n-1 tosses that satisfy the constraint. Now add a new coin toss to make it to n. (b) $P_n = \frac{f_n}{2^n}$

(c) Use R and Part b

Problem 9

- (b) ~ 625
- (c) ~ 1 .