Key to Assignment 2.1

October 18, 2017

Problem 1:

- (a) With $q = 0.95(1-p)^m + 0.1(1-(1-p)^m)$: $\mathbb{E}(X_m) = 10(m+1-mq)$ $\mathrm{SD}(X_m) = 10\sqrt{(m+1)^2(1-q) + q - (m+1-mq)^2}.$
- (b) $\mathbb{E}(T_j) = k\mathbb{E}(X_m)$ and $\operatorname{Var}(T_j) = \sqrt{k} \times \operatorname{SD}(X_m)$
- (c) The one with the smallest value of $E(T_j)$.

Problem 2:

- (a) 200
- (b) 0.63
- (c) 0.54

Problem 3:

- (a) Argue that the two events are equivalent.
- (b) 0.19, 0.01, 0.0028, 2.29×10^{-5}
- (c) mean ≈ 179.9583 , standard deviation ≈ 42.2175

Problem 4:

- (a) Involving injuries: mean = 7, variance = 7. Not involving injuries: mean = 35, variance = 35.
- (b) 0.2883

(c) 0.1535

(d) 16

Problem 5:

(A) $\hat{\mu} = 11.96$ and $\hat{\sigma}^2 = 0.21^2$ (B.1) -(B.2) $\hat{\alpha} = 3243.6$ and $\hat{\lambda} = 271.2$ (B.3) -

Problem 6:

- (a) –
- (b) range: $[0,\infty)$

$$F_Y(y) = \begin{cases} e^{-0.5\lambda} \left(e^{-\lambda\sqrt{y}} + e^{\lambda\sqrt{y}} \right) & \text{if } 0 \le y \le \frac{1}{4} \\ 1 - e^{-\lambda(0.5 + \sqrt{y})} & \text{if } y \ge \frac{1}{4} \end{cases}$$

Evaluate $F_Y(1/4)$. If $F_Y(1/4)$ is larger than $\frac{1}{2}$ then solve $e^{-0.5\lambda} \left(e^{-\lambda\sqrt{y}} + e^{\lambda\sqrt{y}} \right) = \frac{1}{2}$. If $F_Y(1/4)$ is smaller than $\frac{1}{2}$ then solve $1 - e^{-\lambda(0.5+\sqrt{y})} = \frac{1}{2}$. For the mean and standard deviation use simulation.

Problem 7:

- (a) The system first gets stronger with time, up to age 5 and then becomes weaker with time after age 5.
- (b) $F(y) = 1 e^{-[(y-5)^3/3 + 125/3]}$
- (c) m = 0.0279

Problem 8:

- (a) 0.15866
- (b) 0.8413447
- (c) 0.15866

Problem 9:

 $\mu=101.54$ and $\sigma=6.6037$

Problem 10:

- (a) 0.7745375
- (b) 0.8219608

Problem 11:

Problem 12: Refer to tutorial notes.