
STAT 321 / ELEC 321

HOMEWORK 2.1

Problems marked with (*) have a numerical component. For these problems,
computing can be done using R or Matlab. Please, submit a copy of your
computer script online and display your results using tables, pictures, etc. when
convenient.

(*) Problem 1: 100, 000 independent items may be tested using a non-
destructive test. The test sensitivity and specificity are 0.90 and 0.95, respec-
tively. Each test costs $10 and the test can be applied to each item individually
or to several items pooled together. It is known that on average a fraction
p = 0.005 of the items are defective. The items can be pooled into k groups of
size m. If a pool fails the test, then each item in that pool is tested individually.
Consider the following pooling strategies:

Strategy k (number of pools) m (pool size)
1 100 1000
2 200 500
3 500 200
4 1000 100
5 2000 50
6 4000 25
7 5000 20
8 10000 10
9 12500 8
10 20000 5

a) Let Xm, represent the testing cost if we use pools of size m. Calculate the
mean and the standard deviation for Xm, m = 5, 8, ..., 1000
b) Derive the random variable, Tj , j = 1, 2, ..., 10, that represents the total

testing cost for each of the 10 strategies described above. Calculate the mean
and the standard deviation for Tj , for j = 1, 2, ..., 10.
c) What is the best strategy (among the 10 considered above) from the

expected cost point of view?

(*) Problem 2: The return period is a very useful design parameter
commonly used in engineering projects. It is defined as the expected waiting
time until the first occurrence of the given event (for example, the failure of a
given component). Suppose that waiting time to the first occurrence of A is
counted in full years and the probability of occurrence of the event in any given
year is p=0.005.
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(a) What is the return period τA for A?
(b) What is the probability that A will occur before its return period has

elapsed?
(c) Let B be another independent event, with waiting time to first oc-

currence also measured in full years. Suppose that the return period for B is
τB = 170 years. Use simulation to estimate the probability that B will occur
before A.

(*) Problem 3: Consider a sequence of independent trials with identical
probability p = 0.10 of “success”.

(a) Let Si be the “time”of the ith success and Tj the “time”of the jth failure.
For example, the range of S1 is {1, 2, ...} , the range of S2 is {S1 + 1, S1 + 2, ...} ,
and so on.
Show that

P (Tj > Si) = P (Bin (i+ j − 1, p) ≥ i)

where Bin (i+ j − 1, p) represents a binomial random variable with i + j − 1
trials and probability p of success.
(b) Calculate P (Tj > Si) for the cases (i, j) = (1, 2) , (2, 1), (5, 7), (7, 5).
(c) Suppose that trials are continued until we obtain 20 successes. Estimate,

using simulation, the expected value and the standard deviation of the number
of failures.

Problem 4: Suppose that number of traffi c accidents involving serious
injuries in a city follows Poisson distribution with rate λ = 1 per day. Inde-
pendently, the number of traffi c accidents not involving serious injuries in that
city follows Poisson distribution with rate λ = 5.

(a) What is the expected number of accidents involving serious injuries in
a given week? The variance? Same for traffi c accidents not involving serious
injuries.
(b) What is the probability of more than 45 accidents in a given week?
(c) What is the probability that the waiting time for the next accident in-

volving serious injuries is less than 4 hours?
(d) What is the expected waiting time (in hours) for the fourth accident?

Problem 5: (Method of Moments Estimation) Suppose a random vari-
ableX has distribution F (x) , which depends on unknown parameters θ1, ..., θm.
Suppose that we have independent measurements of X, denoted X1, X2, ..., Xn.
A simple method for estimating θ1, ..., θm is known as “the method of moments”.
The etimates are the solution θ̂1, ..., θ̂m to the m equations

1

n

n∑
i=1

Xk
i = E

(
Xk
)

= gk (θ1, ..., θm) , k = 1, ...,m
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Consider now the following measurements. The voltage of a given electrical
circuit is independently measured 15 times, resulting in

x =
1

15

15∑
i=1

xi = 11.96 volts

sd =

√√√√ 1

15

15∑
i=1

(xi − x)
2

= 0.21 volts

Apply the method of moment to estimate the unknown parameters values
assuming that:
Case A: the voltage can be modeled as a normal random variable with

mean µ and variance σ2. Estimate the true value for the voltage µ. Show that
the standard error for your estimate is σ/

√
15 and estimate this standard error

using the given data.

Case B: Suppse now that the voltage X is modeled as a Gamma random
variable with density

f (x) =
λα

Γ (α)
xα−1e−λx, x > 0.

B.1 Show that the moment generating fucntion for X is

M (t) =

(
1− 1

λ

)−α
, t < λ

B.2 Calculate the method of moment estimates λ̂ and α̂.

B.3 (Bonus) Estimate the standard errors for λ̂ and α̂ using the parametric
bootstrap: generate 1000 samples of size 15 from a Gamma

(
α̂, λ̂

)
and compute

the bootstrap estimates
(
α̂b, λ̂b

)
for b = 1, 2, ..., 1000. These values emulate the

random behavior of α̂b and λ̂b.

Problem 6: Let U be a uniform random variable on the interval (0, 1) and
set

X = − ln (1− U) /λ

(a) Show that FX (x) = 1− e−λx, E (X) = 1/λ and V ar (X) = 1/λ2.
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(b) Set now
Y = (X − 1/2)

2
.

What is the range of Y ? Derive the probability density anction (pdf) and cu-
mulative distribution function (cdf) for Y. Calculate the mean, median and
standard deviation of Y.

Problem 7: Suppose that the lifetime Y of a system has failure rate

h (y) = (y − 5)
2
, 0 < y < 10

(a) Does this system gets weaker or stronger as it ages?
(b) Find the distribution function and density function for Y.
(c) Find the median life of the system, that is the value m such that F (m) =

1/2.

Problem 8: A large group of students took a test in Stats and the final grades
have a mean of 70 and a standard deviation of 10. If we can approximate
the distribution of these grades by a normal distribution, what percent of the
students
a) scored higher than 80?
b) should pass the test (grades ≥ 60)?
c) should fail the test (grades < 60)?

Problem 9: An article reports that 30% of 100 watt GE light bulbs run
at at least 105 Watts, and that 10% run at at least 110 Watts. If wattage is
normally distributed, what are the mean and variance?

Problem 10: The thickness of silicon wafers is normally distributed with
mean 1mm, standard deviation 0.1mm. A wafer is acceptable if it has thickness
between 0.85 and 1.1.

a) What is the probability that a wafer is acceptable?

b) If 200 wafers are selected, estimate the probability that between 140 and
160 wafers are acceptable.

(*) Problem 11: (i) Show that if U ∼ Unif (0, 1) and F (x) is invertible
[that is, F−1 (α) is well defined for all 0 < α < 1] then

P
(
F−1 (U) ≤ x

)
= F (x) , for all x

Y = F−1X (U)
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has distribution function F (y). That is, show that P (Y ≤ y) = F (y).
This technique can be used to simulate engineering processes with random

components. First generate U ∼ Unif (0, 1) and set X = F−1 (U).
(ii) Generate a sample of 1000 independent Pareto random variables with

cdf

F (x) = 1−
(

1

x

)5
, x > 1. (1)

(iii) Display your sampling results using a histogram (e.g. use the command hist
in R). Compare this histogram with the Pareto density f (x) = F ′ (x) (iv) Use
a quantile-quantile plot (a q-q plot) to check if your sample seems to come from
the Pareto distribution (1). Hint: a q-q plot is a plot of a set of theoretical
quantiles (x-axis) versus the corresponding set of empirical quantiles. If the
sample comes from the theoretical distribution, the q-q plot will approximately
follow a straight line. Given 0 < α < 1, the theoretical α−quantile, q (α) for
the Pareto distribution (1) satisfies the equation

F (q (α)) = α.

That is, q (α) is obtained from the equation

1−
(

1

q (α)

)5
= α.

Notice that P (X ≤ q (α)) = α. The empirical α−quantile q̂ (α) for your sample
x = (x1, x2, ..., x1000) is a number such that α100% of the sample values do
not excede q̂ (α). The empirical quantile, q̂ (α) , may be obtained using the
R-function quantile(x,α).
You may use the grid α = 0.01, 0.02, ..., 0.99 for your q-q plot.

Problem 12: Let X be a random variable with mean µ and variance σ2.
(a) (Chevychev’s Inequality) Show that

P (|X − µ| ≤ ε) ≥ 1− σ2

ε2
, for all ε > 0.

Hint: Notice that

σ2 =

∫ ∞
−∞

(x− µ)
2
f (x) dx

≥
∫ µ−ε

−∞
(x− µ)

2
f (x) dx+

∫ ∞
µ+ε

(x− µ)
2
f (x) dx
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(b) Let X1, X2, ..., Xn be independent measurements of the random variable
X. Let

X =
X1 +X2 + · · ·+Xn

n

Show that

E
(
X
)

= µ and V ar
(
X
)

=
σ2

n

(c) Use the results in (a) and (b) to show that

lim
n→∞

P
(∣∣X − µ∣∣ ≤ ε) = 1, for all ε > 0.

Briefly discuss why this result proves the Law of Large Numbers.
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