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MOTIVATION

The outcome could be any element in the Sample Space, Ω.

Sometimes the range of possibilities is restricted because of “partial
information”

Examples

number of shots:

partial info: we know it wasn’t an “ace”

ELEC 321 final grade:

partial info: we know it is at least a “B”
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CONDITIONING EVENT

The event B representing the “partial information” is called
“conditioning event”

Denote by A the event of interest

Example (Number of Shots)

B = {2, 3, ...} = {not an “ace”} (conditioning event)

A = {1, 3, 5, ...} = {server wins} (event of interest)

Example (Final Grade)

B = [70, 100] = {at least a “B”} (conditioning event)

A = [80, 100] = {an “A”} (event of interest)
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DEFINITION OF CONDITIONAL PROBABILITY

Suppose that P (B) > 0

P (A|B) =
P (A∩ B)
P (B)

The left hand side is read as “probability of A given B”

Useful formulas:

P (A∩ B) = P (B)P (A|B)

= P (A)P (B |A)
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CONDITIONAL PROBABILITY

P (A|B) , as a function of A (and for B fixed) satisfies all the
probability axioms:

- P (Ω|B) = P (Ω ∩ B) /P (B) = P (B) /P (B) = 1

- P (A|B) ≥ 0

- If {Ai} are disjoint then

P (∪Ai |B) =
P [(∪Ai ) ∩ B ]

P (B)

=
P [∪ (Ai ∩ B)]

P (B)

=
∑P (Ai ∩ B)

P (B)
= ∑P (Ai |B)
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EXAMPLE: NUMBER OF SHOTS

For simplicity, suppose that points are decided in at most 8 shots,
with probabilities:

Shots 1 2 3 4 5 6 7 8
Prob. 0.05 0.05 0.15 0.10 0.20 0.10 0.20 0.15

Using the table above:

P (Sever wins | Not an ace) =
P ({3, 5, 7})

P ({2, 3, 4, 5, 6, 7, 8})

=
0.55
0.95

= 0.579
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EXAMPLE: FINAL GRADE

Suppose that

P (Grade is larger than x) =
100− x
100

= 1− x
100

Using the formula above:

P (To get an “A” | To get at least a “B”) =
P ([80, 100])
P ([70, 100])

=
100− 80
100− 70 =

20
30

= 0.667
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SCREENING TESTS

Items are submitted to a screening test before shipment

The screening test can result in either

POSITIVE (indicating that the item may have a defect)

NEGATIVE (indicating that the item doesn’t have a defect)

Screening tests face two types of errors

FALSE POSITIVE

FALSE NEGATIVE
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SCREENING TESTS (continued)

For each item we have 4 possible events

Item true status:

D = {item is defective}

Dc = {item is not defective}

Test result:

B = {test is positive}

Bc = {test is negative}
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SCREENING TESTS (continued)

The following conditional probabilities are normally known

Sensitivity of the test: P (B |D) = 0.95 (say)

Specificity of the test: P (Bc |Dc ) = 0.99 (say)

which implies

P (Bc |D) = 0.05 and P (B |Dc ) = 0.01

The proportion of defective items is also normally known

P (D) = 0.02 (say)
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TEST PERFORMANCE

The following questions may be of interest:

What is the probability that a randomly chosen item tests positive?

What is the probability of defective given that the test resulted
negative?

What is the probability of defective given that the test resulted
positive?

What is the probability of screening error?

We will compute these probabilities
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PROBABILITY OF TESTING POSITIVE

P (B) = P (B ∩D) + P (B ∩Dc )

= P (D)P (B |D) + P (Dc )P (B |Dc )

= 0.02× 0.95+ (1− 0.02)× 0.01

= 0.0288
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PROB OF DEFECTIVE GIVEN A POSITIVE TEST

P (D |B) =
P (D ∩ B)
P (B)

=
P (D)P (B |D)

P (B)

=
0.02× 0.95
0.0288

= 0.65972
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PROB OF DEFECTIVE GIVEN A NEGATIVE TEST

P (D |Bc ) =
P (D ∩ Bc )
P (Bc )

=
P (D)P (Bc |D)
1− P (B)

=
0.0098

1− 0.0288

= 0.01
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SCREENING ERROR

P (Error) = P (D ∩ Bc ) + P (Dc ∩ B)

= P (D)P (Bc |D) + P (Dc )P (B |Dc )

= 0.02× (1− 0.95) + (1− 0.02)× 0.01

= 0.0108
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BAYES’FORMULA

The formula

P (D |B) =
P (D ∩ B)
P (B)

=
P (B |D)P (D)

P (B |D)P (D) + P (B |Dc )P (Dc )

is the simple form of Bayes’formula.

This has been used in the "Screening Example”presented before.
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BAYES’FORMULA (continued)

The general form of Bayes’Formula is given by

P (Di |B) =
P (Di ∩ B)
P (B)

=
P (B |Di )P (Di )

∑k
j=1 P (B |Dj )P (Dj )

where D1, D2, ..., Dk is a partition of the sample space Ω:

Ω = D1 ∪D2 ∪ · · · ∪Dk

Di ∩Dj = φ, for i 6= j
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EXAMPLE: THREE PRISONERS

Prisoners A, B and C are to be executed

The governor has selected one of them at random to be pardoned

The warden knows who is pardoned, but is not allowed to tell

Prisoner A begs the warden to let him know which one of the other
two prisoners is not pardoned
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Prisoner A tells the warden: “Since I already know that one of the
other two prisioners is not pardoned, you could just tell me who is
that”

Prisoner A adds: “If B is pardoned, you could give me C’s name. If
C is pardoned, you could give me B’s name. And if I’m pardoned, you
could flip a coin to decide whether to name B or C.”
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The warden is convinced by prisoner A’s arguments and tells him: “B is
not pardoned”

Result: Given the information provided by the Warden, C is now
twice more likely to be pardoned than A!

Why? Check the derivations below:
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NOTATION:
A = {A is pardoned}
B = {B is pardoned}
C = {C is pardoned}

b = {The warden says “B is not pardoned”}
Clearly

P (A) = P (B) = P (C ) =
1
3

P (b|B) = 0 (warden never lies)

P (b|A) = 1/2 (warden flips a coin)

P (b|C ) = 1 (warden cannot name A)
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By the Bayes’formula:

P (A|b) =
P (b|A)P (A)

P (b|A)P (A) + P (b|B)P (B) + P (b|C )P (C )

=
1
2 ×

1
3

1
2 ×

1
3 + 0×

1
3 + 1×

1
3

=
1
3

Hence
P (C |b) = 1− P (A|b) = 1− 1

3
=
2
3
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SCREENING EXAMPLE II

The tested items have two components: “c1”and “c2”

Suppose

D1 = {Only component “c1” is defective } , P (D1) = 0.01

D2 = {Only component “c2” is defective } , P (D2) = 0.008

D3 = {Both components are defective } , P (D3) = 0.002

D4 = {Both components are non defective } , P (D4) = 0.98

Ruben Zamar Department of Statistics UBC ()Module 2 January 16, 2017 23 / 61



SCREENING EXAMPLE II (continued)

Let
B = {Screening test is positive}

Suppose

P (B |D1) = 0.95

P (B |D2) = 0.96

P (B |D3) = 0.99

P (B |D4) = 0.01
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SOME QUESTIONS OF INTEREST

The following questions may be of interest:

What is the probability of testing positive?

What is the probability that component “ci” (i = 1, 2) is defective
when the test resulted positive?

What is the probability that the item is defective when the test resulted
negative?

What is the probability both components are defective when the test
resulted positive?

What is the probability of testing error?

We will compute these probabilities
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PROB OF TESTING POSITIVE

P (B) = P (B ∩D1) + P (B ∩D2) + P (B ∩D3) + P (B ∩D4)

= 0.01× 0.95+ 0.008× 0.96+ 0.002× 0.99+ 0.98× 0.01

= 0.02896

Notice that the probability of defective is

P (D) = 0.01+ 0.008+ 0.002 = 0.02
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POSITIVE TEST

P (D1|B) =
0.01× 0.95
0.02896

= 0.32804

P (D2|B) =
0.008× 0.96
0.02896

= 0.26519

P (D3|B) =
0.002× 0.99
0.02896

= 0.06837

P (D4|B) =
0.98× 0.01
0.02896

= 0.338 40
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PROB OF TESTING NEGATIVE

P (Bc ) = P (Bc ∩D1) + P (Bc ∩D2) + P (Bc ∩D3) + P (Bc ∩D4)

= 0.01× 0.05+ 0.008× 0.04+ 0.002× 0.01+ 0.98× 0.99

= 0.97104
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A NEGATIVE TEST

P (D1|Bc ) =
0.01× 0.05
0.97104

= 0.00051491

P (D2|Bc ) =
0.008× 0.04
0.97104

= 0.00032954

P (D3|Bc ) =
0.002× 0.01
0.97104

= 0.000020596

P (D4|Bc ) =
0.98× 0.99
0.97104

= 0.99913

P (defective|Bc ) = 1− 0.99913 = 0.00087
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INDEPENDENCE

DEFINITION: Events A and B are independent if

P (A∩ B) = P (A)P (B)

If A and B are independent then

P (A|B) =
P (A∩ B)
P (B)

=
P (A)P (B)
P (B)

= P (A)

and

P (B |A) =
P (A∩ B)
P (A)

=
P (A)P (B)
P (A)

= P (B)
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DISCUSSION

If P (A) = 1, then A is independent of all B.

P (A∩ B) = P (A∩ B) +
=0︷ ︸︸ ︷

P (Ac ∩ B) = P (B)

P (A∩ B) =

=1︷ ︸︸ ︷
P (A)P (B)
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DISCUSSION (Cont)

Suppose that A and B are non-trivial events ( 0 < P (A) < 1 and
0 < P (B) < 1 )

If A and B are mutually exclusive ( A∩ B = φ ) then they cannot be
independent because

P (A|B) = 0 < P (A)

If A ⊂ B then they cannot be independent because

P (A|B) = P (A∩ B)
P (B)

=
P (A)
P (B)

> P (A)
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DISCUSSION (Cont)

Suppose Ω = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and the numbers are equally
likely.

A = {1, 2, 3, 4, 5} and B = {2, 4, 6, 8}

P (A∩ B) = P ({2, 4}) = 0.20, P (A)P (B) = 0.5× 0.4 = 0.20

Hence, A and B are independent

In terms of probabilities A is half of Ω. On the other hand A∩ B is
half of B.
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DISCUSSION (continued)

What happens if

P (i) =
i
55

?

P (A∩ B) = P ({2, 4}) = 6/55 = 0.10909
P (A)P (B) = (15/55)× (20/55) = 0.099174

Hence, A and B are not independent in this case.
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MORE THAN TWO EVENTS

Definition: We say that the events A1,A2, ...,An are independent if

P (Ai1 ∩ Ai2 ∩ · · · ∩ Aik ) = P (Ai1)P (Ai2) · · ·P (Aik )

for all 1 ≤ i1 < i2 < · · · < ik ≤ n, and all 1 ≤ k ≤ n.
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For example, if n = 3, then

P (A1 ∩ A2) = P (A1 )P (A2)

P (A1 ∩ A3) = P (A1)P (A3)

P (A2 ∩ A3) = P (A2)P (A3)

P (A1 ∩ A2 ∩ A3) = P (A1)P (A2)P (A3)
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SYSTEM OF INDEPENDENT COMPONENTS

In series

→ a → b → c →

In parallel

→

a

b

c

→
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NOTATION

A = {Component a works}

B = {Component b works}

C = {Component c works}
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INDEPENDENT COMPONENTS

We assume that A, B and C are independent, that is

P (A∩ B ∩ C ) = P (A)P (B)P (C )

P (A∩ B) = P (A)P (B) ,

P (B ∩ C ) = P (B)P (C ) ,

P (A∩ C ) = P (A)P (C )
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RELIABILITY CALCULATION

Problem 1: Suppose that

P (A) = P (B) = P (C ) = 0.95.

Calculate the reliability of the system

→ a → b → c →

Solution:

P (System Works) = P (A∩ B ∩ C )

= P (A)P (B)P (C )

= 0.953 = 0.857
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PRACTICE

Problem 2: Suppose that

P (A) = P (B) = P (C ) = 0.95.

Calculate the reliability of the system

→

a

b

c

→
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PROBLEM 2 (Solution)

P (System works) = 1− P (System fails)

= 1− P (Ac ∩ Bc ∩ C c )

= 1− P (Ac )P (Bc )P (C c )

= 1− (1− P (A)) (1− P (B)) (1− P (C ))

= 1− 0.053 = 0.99988
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PRACTICE

Problem 3: Suppose that

P (A) = P (B) = P (C ) = P (D) = 0.95.

Calculate the reliability of the system

→

subsys I

a

b

→

subsys II

c

d

→
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PROBLEM 3 (Solution)

P (System works) = P (subsys I works ∩ subsys II works)

= P (subsys I works )P (subsys II works)

= [1− P (subsys I fails )] [1− P (subsys II fails )]

= [1− P (Ac ∩ Bc )] [1− P (C c ∩Dc )]

= [1− P (Ac )P (Bc )] [1− P (C c )P (Dc )]

= [1− (1− P (A)) (1− P (B))] [1− (1− P (C )) (1− P (D))]

=
(
1− 0.052

)2
= 0.99501
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CONDITIONAL INDEPENDENCE

Definition: We say that the events T1,T2, ...,Tn are conditionally
independent given the event B if

P (Ti1 ∩ Ti2 ∩ · · · ∩ Tik | B) = P (Ti1 | B)P (Ti2 | B) · · ·P (Tik | B)

for all 1 ≤ i1 < i2 < · · · < ik ≤ n, and all 1 ≤ k ≤ n.
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For example, if n = 3, then

P (T1 ∩ T2 | B) = P (T1 | B)P (T2 | B)

P (T1 ∩ T3 | B) = P (T1 | B)P (T3 | B)

P (T2 ∩ T3 | B) = P (T2 | B)P (T3 | B)

P (T1 ∩ T2 ∩ T3 | B) = P (T1 | B)P (T2 | B)P (T3 | B)
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Notes

Conditional independence doesn’t imply unconditional independence
and vice versa

Conditional independence given B doesn’t imply conditional
independence given Bc

However, usually both conditional independences are assumed
together in applications

We will apply this concept in Bayesian probability updating
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Sequential Bayes’Formula

Let Si be the outcome of the ith test. For instance

S1 =
{
The 1th test is positive

}
S2 =

{
The 2th test is negative

}
S3 =

{
The 3th test is negative

}
and so on

Ruben Zamar Department of Statistics UBC ()Module 2 January 16, 2017 48 / 61



The outcomes Si (i = 1, 2, ..., n) are available in a sequential fashion.

Let Ik = S1 ∩ S2 ∩ · · · ∩ Sk (data available at step k) and set

π0 = P (E )

π1 = P (E |I1) = P (E |S1)

π2 = P (E |I2) = P (E |S1 ∩ S2)

π3 = P (E |I3) = P (E |S1 ∩ S2 ∩ S3)

and so on
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Conditional Independence Assumption

Assume that the Si (i = 1, 2, ..., n) are independent given E and also
given E c .

Then, for k = 1, 2, ..., n

πk =
P (Sk |E )πk−1

P (Sk |E )πk−1 + P (Sk |E c ) (1− πk−1)
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Proof

πk =
P (Ik |E )π0

P (Ik |E )π0 + P (Ik |E c ) (1− π0)

=
P (Ik−1 ∩ Sk |E )π0

P (Ik−1 ∩ Sk |E )π0 + P (Ik−1 ∩ Sk |E c ) (1− π0)

=
P (Sk |E )P (Ik−1|E )π0

P (Sk |E )P (Ik−1|E )π0 + P (Sk |E c )P (Ik−1|E c ) (1− π0)
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Proof

πk =
P (Sk |E )P (Ik−1 ∩ E )

P (Sk |E )P (Ik−1 ∩ E ) + P (Sk |E c )P (Ik−1 ∩ E c )

=
P (Sk |E )P (Ik−1 ∩ E ) /P (Ik−1)

[P (Sk |E )P (Ik−1 ∩ E ) + P (Sk |E c )P (Ik−1 ∩ E c )] /P (Ik−1)

=
P (Sk |E )πk−1

P (Sk |E )πk−1 + P (Sk |E c ) (1− πk−1)
, πk−1 = P (E |Ik−1)

Ruben Zamar Department of Statistics UBC ()Module 2 January 16, 2017 52 / 61



Pseudo Code

Input:

(S1, S2, S3, ...,Sn) = (1, 0, 1, ..., 0) (outcomes for the n tests)

π = P (E ) (prob of event of interest, for instance E= "the part is
defective")

pk = P (Sk = +|E ) k = 1, 2, ..., n (Sensitivity of kth test)

qk = P (Sk = −|E c ) k = 1, 2, ..., n (Specificity of kth test)

Output πk = P (E |S1 ∩ S2 ∩ · · · ∩ Sk ) , k = 1, 2, ..., n
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Pseudo Code

Example of Input:

n = 4, π = 0.05

Test Results = (1, 1, 0, 1)

k pk = P (1|Defective) 1− qk = P (1|Non Defective)
1 p1 = 0.80 1− q1 = 0.05
2 p2 = 0.78 1− q2 = 0.10
3 p3 = 0.85 1− q3 = 0.20
4 p4 = 0.82 1− q4 = 0.15
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Pseudo Code - Computation

Computation of πk

1) Initialization: Set π0 = π

2) k-step:

If Sk = 1, set a = pk and b = 1− qk

If Sk = 0, set a = 1− pk and b = qk

3) Computing πk :

πk =
aπk−1

aπk−1 + b (1− πk−1)
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Spam Email Detection

When you receive an email, your spam fillter uses Bayes rule to decide
whether it is spam or not.

Basic spam filters check whether some pre-specified words appear in
the email; e.g.

{diplomat,lottery,money,inheritance,president,sincerely,huge,...}.

We consider n events Wi telling us whether the ith pre-specified word
is in the message
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Let

E = { e-mail is spam }

Wi = { word i is in the message } , i = 1, 2, ..., n

Assume that W1,W2, ...,Wn are conditionally independent given E
and also E c .
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Human examination of a large number of messages is used estimate
π0 = P (E )

The training data is also used to estimate pi = P (Wi |E ) and
1− qi = P (Wi |E c )

Let In = S1 ∩ S2 ∩ · · · ∩ Sn, where Si is either Wi or W c
i .

The spam filter assumes that the Wi are conditionally independent
(given E and given E c ) to compute

P (E |In) =
P (In |E )P (E )

P (In |E )P (E ) + P (In |E c )P (E c )
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Sequential Updating

The posterior probs πk = P (E |Ik ) (k = 1, 2, ..., n− 1) can be
computed sequentially using the formula

πk = P (E | Ik ) =
P (Sk |E )P (E |Ik−1)

P (Sk |E )P (E |Ik−1) + P (Sk |E c )P (E c |Ik−1)

=
P (Sk |E )πk−1

P (Sk |E )πk−1 + P (Sk |E c ) (1− πk−1)

An early decision to classify the e-mail as spam can be made if
P (E | Ik ) becomes too large (or too small).
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Numerical Example

For a simple numerical example consider a case with

n = 8 words, P (Spam) = 0.10

and conditional probabilities

Word P(Word|Spam) P(Word|No Spam)
W1 0.74 0.02
W2 0.83 0.12
W3 0.88 0.11
W4 0.75 0.01
W5 0.82 0.15
W6 0.73 0.11
W7 0.77 0.07
W8 0.86 0.08
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Word Word Status P(Spam | Ik )
W1 1 0.804
W2 0 0.443
W3 0 0.097
W4 1 0.889
W5 0 0.630
W6 1 0.919
W7 1 0.992
W8 1 0.999
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