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USAGE

RANDOM VARIABLES

ARE USED TO REPRESENT

NUMERICAL FEATURES

OF A RANDOM EXPERIMENT
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EXAMPLES OF RANDOM QUANTITIES

X = NUMBER OF DEFECTIVE ITEMS IN A LOT

Y = NUMBER OF VISITS TO A WEBSITE

T = TIME TO OCCURRENCE OF A RARE EVENT

V = PERCENTAGE YIELD OF A CHEMICAL PROCESS

Z = VERTICAL DISTANCE TO A TARGET
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DEFINITION AND NOTATION

A RANDOM VARIABLE IS A FUNCTION DEFINED ON THE SAMPLE
SPACE:

X : Ω→ R

X (ω) = x

RANDOM VARIABLES ARE DENOTED BY

X , Y , Z , U, V

LAST UPPER CASE LETTERS
IN THE ALPHABET
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EXAMPLE

EXPERIMENT: FLIPPING A COIN 10 TIMES
SAMPLE SPACE Ω : ALL POSSIBLE SEQUENCE OF TEN
HEADS (H) AND TAILS (T)

RANDOM VARIABLE X : NUMBER OF HEADS

RANDOM VARIABLE Y : LARGEST RUN OF TAILS

SUPPOSE

ω = (HTTHHTTTHT )

X (ω) = 4

Y (ω) = 3
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MORE NOTATION

POSSIBLE VALUES OF

X , Y , Z , U, V ,

ARE DENOTED BY

x , y , z , u, v ,

(CORRESPONDING
LOWER-CASE LETTERS)
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DISCUSSION

X = RANDOM QUANTITY

AND

x = VALUE OF X (ω) ,

KNOWN AFTER THE EXPERIMENT IS

PERFORMED AND ω IS DETERMINED
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DISCUSSION

THE EVENT

“RANDOM VARIABLE X

TAKES THE VALUE x”.

IS MATHEMATICALLY REPRESENTED AS

X = x

MORE PRECISELY

X = x MEANS {ω : X (ω) = x}
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RANGE OF A RANDOM VARIABLE

SET OF ALL THE POSSIBLE VALUES
THAT THE RANDOM VARIABLE CAN TAKE ON

RANGE
X = NUMBER OF DEFECTIVE {0, 1, 2, ...,N}

ITEMS IN A LOT
Y = NUMBER OF VISITS {0, 1, 2, ...}

TO A WEBSITE
T = TIME TO OCCURRENCE [0,∞)

OF A RARE EVENT
V = PERCENTAGE YIELD OF [0, 100]

A CHEMICAL PROCESS
Z = VERTICAL DEVIATION (−∞,∞)

FROM A TARGET
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DISCRETE RANDOM VARIABLES

A RANDOM VARIABLE ISDISCRETE WHEN ITS RANGE IS
EITHER

FINITE (e.g. {0, 1, 2, ..., 100})

OR

COUNTABLE (e.g. {1, 2, 3, ...})
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CONTINUOUS RANDOM VARIABLES

A RANDOM VARIABLE IS CONTINUOUS WHEN ITS RANGE
IS AN INTERVAL

INTERVAL OF FINITE LENGTH
SUCH AS: (0, 1), [1, 5), [0, 100]

OR

INTERVAL OF INFINITE LENGTH
SUCH AS: (0,∞), [0,∞), (−∞,∞)
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DISCRETE RANDOM

VARIABLES
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PROBABILITY MASS FUNCTION (pmf)

THE pmf OF A DISCRETE RANDOM

VARIABLE X GIVES THE PROBABILITY OF OCCURRENCE

FOR EACH POSSIBLE VALUE x OF X .

IN MATHEMATICAL SYMBOLS:

f (x) = P(X = x)
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PROPERTIES OF THE pmf

1 0 ≤ f (x) ≤ 1

2 ∑ f (x) = 1

3 P (X ∈ A) = ∑x∈A f (x)
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DISTRIBUTION FUNCTION (cdf)

DISTRIBUTION FUNCTIONS ARE
DENOTED BY UPPER CASE LETTERS SUCH AS

F , G , H

F (x) = P (X ≤ x) = ∑
k≤x

f (k)
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PROPERTIES OF THE cdf

1 0 ≤ F (x) ≤ 1

2 F (x) is non decreasing

3 F (−∞) = 0, F (∞) = 1

4 P (a < X ≤ b) = F (b)− F (a)

5 f (k) = F (k)− F (k − 1)
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EXAMPLE 1

GIVEN BY A TABLE:
x f (x) F (x)
0 0.15 0.15
1 0.25 0.40
2 0.30 0.70
3 0.20 0.90
4 0.10 1.00

0 1 2 3 4

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30
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EXAMPLE 1 (continued)

x f (x) F (x)
0 0.15 0.15
1 0.25 0.40
2 0.30 0.70
3 0.20 0.90
4 0.10 1.00

P (1 < X ≤ 3) = F (3)− F (1) = 0.90− 0.40 = 0.50

P (1 ≤ X < 3) = P (0 < X ≤ 2) = F (2)− F (0) = 070− 0.15 =
0.55
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EXAMPLE 2

GIVEN BY A FORMULA

f (x) =
1

2.928968
× 1
x
, x = 1, 2, ..., 10

1 2 3 4 5 6 7 8 9 10

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30
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EXAMPLE 2

F (x) =
1

2.928968

x

∑
k=1

1
k
, x = 1, 2, ..., 10

P (2 < X ≤ 5) =
1

2.928968

5

∑
k=1

1
k
− 1
2.928968

2

∑
k=1

1
k

= 0.267 44
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EXAMPLE 3

GIVEN BY A TABLE OF GENERIC VALUES:

x f (x) F (x)
0 (1− p)2 (1− p)2
1 2p (1− p) 1− p2
2 p2 1

, 0 < p < 1

f (x) =

 (1− p)2 x = 0
2p (1− p) x = 1
p2 x = 2

The parameter p can be chosen to obtain a desired configuration of
probabilities.
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EXPECTED VALUE

CONSIDER A FUNCTION g (X )

g (X ) = X
g (X ) = (X − t)2 , for some constant value t
g (X ) = etX , for some constant value t

THE OPERATOR “EXPECTED VALUE” (DENOTED BY E ) IS
DEFINED AS FOLLOWS

E [g (X )] = ∑
x
g (x) f (x)
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EXAMPLE 1 (continued)

x f (x)
0 0.15
1 0.25
2 0.30
3 0.20
4 0.10

Take g (X ) = X 2

E
[
X 2
]
=

4

∑
x=0

x2f (x)

= 0× 0.15+ 1× 0.25+ 4× 0.30+ 9× 0.20+ 16× 0.10 = 4.85
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DISCUSSION

E (g (X )) IS THE WEIGHTED AVERAGE OF THE FUNCTION
g (X )

MORE LIKELY VALUES OF g (x) (WITH LARGER f (x)) HAVE
MORE WEIGHT

E (g (X )) IS CONSIDERED A “TYPICAL VALUE”OF g (X ) ,
WHICH CAN BE USED TO SUMMARIZE g (X ) .
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LAW OF LARGE NUMBERS

Suppose that X1,X2,X3, ...,Xn are independent measurements of the
random variable X .

Example: X = number of traffi c accidents in Vancouver in one week,
and X1,X2,X3, ...,Xn are the number of traffi c accidents in n
consecutive weeks.

Then, it can be shown that, as n→ ∞

X =
1
n
(X1 + X2 + X3 + · · ·+ Xn)→ E (X )
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LINEAR OPERATOR

THE OPERATOR E IS A “LINEAR OPERATOR”

E [a+ bg (X )] = ∑
x
(a+ bg (X )) f (x)

= ∑
x
a f (x) +∑

x
bg (X ) f (x)

= a

1︷ ︸︸ ︷
∑
x
f (x) + b

E [g (X )]︷ ︸︸ ︷
∑
x
g (X ) f (x)

= a+ bE [g (X )]
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MOMENTS

g (X ) = X k , k = 1, 2, 3, ..

µk = E
(
X k
)
= ∑

x
xk f (x)

Moment generating function

MX (t) = E
(
etX
)
= ∑

x
etx f (x)
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USAGE

d
dt
MX (t) |t=0 = M ′X (0) = µ1

d2

dt2
MX (t) |t=0 = M ′′X (0) = µ2

In general:
dk

dtk
MX (t) |t=0 = M (k )

X (0) = µk
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MEAN, VARIANCE, STANDARD DEVIATION

KEY SUMMARY FEATURES FOR A RANDOM VARIABLE X ARE:

THE MEAN
µ = E (X ) = ∑ xf (x)

THE VARIANCE

σ2 = Var (X ) = E
[
(X − µ)2

]
= ∑ (x − µ)2 f (x)

THE STANDARD DEVIATION

σ = SD (X ) =
√

∑ (x − µ)2 f (x)
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VARIANCE FORMULA

σ2 = Var (X )

= E
(
X 2
)
− E (X )2

= µ2 − µ2
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VARIANCE FORMULA

PROOF:

σ2 = Var (X ) = E
[
(X − µ)2

]
= ∑ (x − µ)2 f (x)

= ∑
(
x2 + µ2 − 2µx

)
f (x)

= ∑ x2f (x) +∑ µ2f (x)−∑ 2µxf (x)

=

E (X 2)︷ ︸︸ ︷
∑ x2f (x) + µ2

=1︷ ︸︸ ︷
∑ f (x)− 2µ

=µ︷ ︸︸ ︷
∑ xf (x)

= E
(
X 2
)
+ µ2 − 2µ2 = µ2 − µ2
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EXAMPLE 1 (continued)

x f (x) xf (x) x2f (x)
0 0.15 0.00 0.00
1 0.25 0.25 0.25
2 0.30 0.60 1.20
3 0.20 0.60 1.80
4 0.10 0.40 1.60

Total – µ = 1.85 µ2 = 4.85

µ = 1.85

σ2 = µ2 − µ2 = 4.85− 1.852 = 1.4275

σ =
√
1.4275 = 1.1948
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EXAMPLE 2 (continued)

f (x) =
1

2.928968
× 1
x
, x = 1, 2, ..., 10

µ =
1

2.928968

10

∑
X=1

x
1
x
=

10
2.928968

= 3.4142

µ2 =
1

2.928968

10

∑
X=1

x2
1
x
=

1
2.928968

10

∑
X=1

x

=
10× 11

2× 2.928968 = 18.77855

Ruben Zamar Department of Statistics UBC ()Module 3 January 18, 2016 33 / 97



EXAMPLE 2 (continued)

µ = 3.4142 µ2 = 18.77855

HENCE:

σ2 = µ2 − µ2 = 18.77855− 3.41422 = 7.1218

σ =
√
7.121 8 = 2.6687
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EXAMPLE 3 (continued)

f (x) =

 (1− p)2 x = 0
2p (1− p) x = 1
p2 x = 2

µ = 0× f (0) + 1× f (1) + 2× f (2)

= 2p (1− p) + 2p2 = 2p
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EXAMPLE 3 (continued)

µ2 = 0× f (0) + 1× f (1) + 4× f (2)

= 2p (1− p) + 4p2 = 2p + 2p2

σ2 = µ2 − µ21 =
(
2p + 2p2

)
− (2p)2

= 2p − 2p2 = 2p (1− p)

σ =
√
2p (1− p)
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EXAMPLE 3 (continued)

p µ σ2 σ

0.05 0.10 0.095 0.308
0.25 0.50 0.375 0.612
0.50 1.00 0.500 0.707
0.75 1.50 0.375 0.612
0.95 1.90 0.095 0.308
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EXAMPLE 4

EXAMPLE 4: An urn contains n chips numbered 1 through n. We draw
k chips (1 < k < n) without replacement. Let Y represent the highest
number among those drawn.

(a) What is the range of Y ?

(b) Find FY (y).

(c) Find fY (y) .

(d) Suppose n = 20 and k = 5. Calculate the mean, variance and
standard deviation for Y .
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EXAMPLE 4 (Cont)

(a) What is the range of Y ?

Smallest possible value of Y is k.

[corresponds to the event {1, 2, ..., k}]

Largest possible value of Y is n

Range = {k, k + 1, ..., n}
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EXAMPLE 4 (Cont)

(b) Find F (y)

F (y) =

Because the k chips must be ≤ y︷ ︸︸ ︷ y

k


 n

k

 =

y !
k !(y−k )!

n!
k !(n−k )!

=
(n− k)!y !
n! (y − k)! , y = k, k + 1, ..., n
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EXAMPLE 4 (Cont)

(c) Find f (y) .

f (y) = F (y)− F (y − 1) , y = k, k + 1, ..., n

NOTE: F (y) = 0 for all y < k . So

f (k) = F (k)− F (k − 1) = F (k)

=

 k

k


 n

k

 =
1 n

k

 =
k ! (n− k)!

n!
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EXAMPLE 4 (Cont)

(d) Suppose n = 20 and k = 5. Calculate the mean, variance and
standard deviation for Y .

This must be done using a computer (e.g. R or matlab)
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PROPERTIES OF THE MEAN

Let

µX = E (X ) , µY = E (Y )

- E (a+ bX ) = a+ bE (X ) = a+ bµX , for constants a, b.

- E (a+ bX + cY ) = a+ bµX + cµY , for constants a, b, c.
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PROPERTIES OF THE MEAN

The mean minimizes the Mean Square Error:

S (t) = E
[
(X − t)2

]
≥ E

[
(X − µ)2

]
= Var (X ) , for all t

Proof:

S (t) = E
(
X 2 + t2 − 2Xt

)
= E

(
X 2
)
+ t2 − 2µt

S ′ (t) = 2t − 2µ = 0⇒ t = µ

S ′′ (µ) = 2 > 0 (µ is a minimizer)
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PROPERTIES OF THE VARIANCE

Var (a+ bX ) = E [a+ bX − E (a+ bX )]2

= E [a+ bX − a− E (bX )]2 = E [bX − bE (X )]2

= E
[
b2 (X − E (X ))2

]
= b2E

[
(X − E (X ))2

]
= b2Var (X )

That is:

Var (a+ bX ) = b2Var (X )

SD (a+ bX ) = |b| SD (X )
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BINOMIAL RANDOM VARIABLES

Suppose we wish to monitor the occurrence of an event A, such as

A = {Electric circuit has a flaw}

A = {Wind speed exceeds 100k}

A = {Student passes a given math test}

Let

p = P (A)

The occurrence of A is arbitrarily called a “success”

The non-occurrence is arbitrarily called a “failure”
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BINOMIAL RANDOM VARIABLES (continued)

The occurrence/non-occurrence of A is monitored a fixed number, n,
of times

Each monitoring is called “a trial”.

INDEPENDENCE: We perform n independent trials

The random quantity of interest:

X = Number of successes

Notation: X ∼ Bin (n, p) ,
n = number of trials
p =probability of success.
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BINOMIAL RANDOM VARIABLES (continued)

Possible values for X are:

Range = {0, 1, 2, ..., n}

The Binomial density:

f (x) =

 n

x

 px (1− p)n−x , x = 0, 1, ..., n

The combinatorial coeffi cient: n

x

 =
n!

x ! (n− x)!

Ruben Zamar Department of Statistics UBC ()Module 3 January 18, 2016 48 / 97



MEAN AND VARIANCE

Moment generating function

M (t) =
(
1− p + pet

)n
Mean

µ = E (X ) = np

Variance

σ2 = np (1− p) , maximized when p = 1/2
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MEAN AND VARIANCE (Continued)

M ′ (t) =
d
dt
M (t) =

d
dt

(
1− p + pet

)n
= n

(
1− p + pet

)n−1 pet
M ′′ (t) = n (n− 1)

(
1− p + pet

)n−1 p2e2t + n (1− p + pet)n−1 pet
Therefore,

µ = M ′ (0) = n
(
1− p + pe0

)n−1
pe0 = np

µ2 = n (n− 1) p2 + np

σ2 = µ2 − µ2 = n (n− 1) p2 + np − n2p2 = np (1− p)
Ruben Zamar Department of Statistics UBC ()Module 3 January 18, 2016 50 / 97



PRACTICE

Problem: suppose that finding oil when digging at certain locations has
probability p = 0.10 (geologically determined locations).

(a) How many wells should we dig to find oil with probability larger than
or equal to 0.95?

(b) How many wells should we dig to obtain at least 2 successful wells
with probability larger than or equal to 0.95?
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PRACTICE (continued)

Solution Part (a)
Assume the diggings are independent. Hence the number of successful
wells is X ∼ Bin (n, 0.10) , where n is the number of dug wells.

P (X > 0) = 1− P (X = 0) = 1− (1− 0.10)n = 0.95

(1− 0.10)n = 1− 0.95

n ln (0.90) = ln (0.05) =⇒ n =
ln (0.05)
ln (0.90)

= 28.43,

Answer: n = 29.
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PRACTICE (continued)

Solution Part (b)
Assume the diggings are independent. Hence the number of successful
wells is X ∼ Bin (n, 0.10) , where n is the number of dug wells.

P (X > 1) = 1− P (X = 0)− P (X = 1)

= 1− (1− 0.10)n − n0.10 (1− 0.10)n−1 ≥ 0.95

0.9n + n× 0.1× 0.9n−1 ≤ 0.05

This equation must be solved numerically. Answer: n = 46
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POISSON RANDOM VARIABLES

Suppose we wish to count the number of occurrences of a certain event A,
such as

A = {Earthquakes over 5.0 in BC in one year}

A = {Traffi c violations at Oak & Cambie in one week}

A = {Rainfalls exceeding 30mm in Vancouver in one year}
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THE RATE OF OCCURRENCE OF A

Let λ be the rate of occurrence for the event of interest, such as

λ = 4 per year

λ = 15 per week

Number of occurrences: 4, 15, etc.

The time interval for the count MUST BE TAKEN INTO ACCOUNT:
year, week, etc.
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ASSUMPTIONS

NOTATION: P (k; t) is the probability of k occurrences of A in the
interval [0, t]

1 INDEPENDENCE: occurrences in disjoint time intervals are
independent

2 PROPORTIONALITY:

P (1; t) = λt + o (t) , where lim
t→0

o (t)
t

= 0

3 RARE EVENT: We have at most 1 occurrence of A in a small
period of time

1− P (0; t)− P (1; t) =
∞

∑
k=2

P (k; t) = o (t)
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POISSON PROBABILITY MASS FUNCTION (pmf)

The quantity of interest is:

X = Number of occurrences

The possible values for X are:

Range= {0,1,2,...}

The Poisson pmf is:

f (x) = P (X = x) =
e−λλx

x !
, x = 0, 1, 2, ...
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POISSON MEAN AND VARIANCE

Moment Generating Function

M (t) = eλ(e t−1)

Mean

µ = E (X ) = λ

Variance

σ2 = Var (X ) = λ
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COMPUTING THE MEAN

µ =
∞

∑
x=0

x
e−λλx

x !
=

∞

∑
x=1

x
e−λλx

x !

= λ
∞

∑
x=1

e−λλx−1

(x − 1)! = λ

=1︷ ︸︸ ︷
∞

∑
y=0

e−λλy

y !
= λ
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THE MOMENT GENERATING FUNCTION

M (t) =
∞

∑
x=0

e−tx
λx e−λ

x !
= e−λ

∞

∑
x=0

(λet )x

x !

= eλe t e−λ
∞

∑
x=0

e−λe t (λe
t )x

x !
= eλ(e t−1)

=1︷ ︸︸ ︷
∞

∑
x=0

e−λe t (λet )x

x !

= eλ(e t−1)
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PRACTICE

Problem: Suppose that the number Y of earthquakes over 5.0 (Richter
scale) in a given area is a Poisson random variable [Y ∼ P (λ)] with
λ = 3.6 per year.

1 What is the probability of having at least 2 earthquakes over 5.0
during the next 6 months?

2 What is the probability of having 1 earthquake over 5.0 next month?

3 What is the probability of waiting more than 3 months for the next
earthquake over 5.0 in that area?
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PRACTICE

Solution:

We should keep track of the length of the period of interest to adjust the
rate:

3.6 per year = 1.8 per half year = 0.3 per month
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PRACTICE

Solution Part 1:

X = # of earthquakes in the next 6 month ∼ P (1.8)

P (X ≥ 2) = 1− P (X < 2)

= 1− P (X = 0)− P (X = 1)

= 1− e
−1.8 × 1.80

0!
− e

−1.8 × 1.8
1!

= 1− e−1.8 − e−1.8 × 1.8 = 0.53716
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PRACTICE

Solution Part 2:

X = # of earthquakes in the next month ∼ P (0.3)

P (X = 1) = e−0.3 × 0.3 = 0.22225

Solution Part 3:

X = # of earthquakes in the next quarter ∼ P (0.9)

P (Waiting more than 3 months) = P (X = 0) = e−0.9 = 0.40657
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CONTINUOUS RANDOM

VARIABLES
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CONTINUOUS RANDOM VARIABLES

CONTINUOUS DENSITY

1 f (x) ≥ 0, NON-NEGATIVE

2
∫ ∞
−∞ f (x) dx = 1, INTEGRATES TO ONE

3 P (a < X < b) =
∫ b
a f (x) dx , USED TO COMPUTE

PROBABILITIES
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CONTINUOUS DISTRIBUTION FUNCTION

CONTINUOUS DISTRIBUTION FUNCTION

F (x) = P (X ≤ x) =
∫ x

−∞
f (t) dt

F CAN BE USED TO COMPUTE P (a < X < b) :

P (a < X < b) =
∫ b

a
f (x) dx =

∫ b

−∞
f (x) dx −

∫ a

∞
f (x) dx

= F (b)− F (a)

Ruben Zamar Department of Statistics UBC ()Module 3 January 18, 2016 67 / 97



DISCUSSION

NOTE 1: IN THE CONTINUOUS CASE

P (X = x) =
∫ x

x
f (t) dt = 0 FOR ALL x

NOTE 2:

f (x) 6= P (X = x)

IN PARTICULAR, WE OFTEN HAVE

f (x) > 1
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DISCUSSION

NOTE 3: FOR SMALL δ > 0,

P (x < X < x + δ) =
∫ x+δ

x
f (t) dt

≈ f (x)δ

NOTE 4:

F ′ (x) =
d
dx

∫ x

−∞
f (t) dt = f (x)
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DISCUSSION

NOTE 5: SINCE

P (X = a) = P (X = b) = 0,

WE HAVE

P (a < X < b) = P (a < X ≤ b) = P (a ≤ X < b)

= P (a ≤ X ≤ b) = F (b)− F (a)
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MEAN, VARIANCE AND STANDARD DEVIATION

MEAN:
µ =

∫ ∞

−∞
x f (x) dx

VARIANCE:

σ2 =
∫ ∞

−∞
(x − µ)2 f (x) dx =

∫ ∞

−∞
x2 f (x) dx − µ2 = µ2 − µ2

STANDARD DEVIATION

σ =

√∫ ∞

−∞
(x − µ)2 f (x) dx
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UNIFORMLY DISTRIBUTED RANDOM VARIABLES

0.5 0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

Uniform ( 0 , 1 )  Density

x

f(
x)

 Area = 0.6

P( 0.3 < X < 0.9 ) = 0.6
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UNIFORM DENSITY (continued)

Notation: X ∼ Unif (α, β)
Parameters: α (lower limit) and β (upper limit).

Naturally, α < β.

In the picture (Example 1) we have

α = 0 and β = 1
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UNIFORM DENSITY (continued)

Mathematical representation of the density:

f (x) =


0 x ≤ α

1/ (β− α) α < x < β

0 x ≥ β

We will often use the shorter notation

f (x) = 1/ (β− α) , α < x < β
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UNIFORM DISTRIBUTION FUNCTION

F (x) =


0 x ≤ α

1
β−α

∫ x
α dt =

x−α
β−α α < x < β

1 x ≥ β

Shorter notation:

F (x) =
x − α

β− α
, α < x < β

Hence,

P (a < X < b) = F (b)− F (a) = b− a
β− α
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UNIF(0,1) DISTRIBUTION FUNCTION

0.5 0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

Uniform ( 0 ,1 )  Distribution

x

f(
x)
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UNIFORM DENSITY - SUMMARY MEASURES

First and second moments:

µ =
1

β− α

∫ β

α
xdx =

α+ β

2

µ2 =
1

β− α

∫ β

α
x2dx =

β3 − α3

3 (β− α)
=

β2 + α2 + αβ

3
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UNIFORM DENSITY - SUMMARY MEASURES

Variance:

µ =
α+ β

2
, µ2 =

β2 + α2 + αβ

3

σ2 = µ2 − µ2 =
b2 + α2 + αβ

3
− b

2 + α2 + 2αβ

4

=
4
(
b2 + α2 + αβ

)
− 3

(
b2 + α2 + 2αβ

)
12

=
b2 + α2 − 2αβ

12
=
(β− α)2

12
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PRACTICE

Problem: Suppose that X is Unif(0, 10) . Calculate P (X > 3) and
P (X > 5|X > 2) .

Solution:

P (X > 3) = 1− F (3)

= 1− 3
10
= 0.70
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PRACTICE

P (X > 5|X > 2) =
P ({X > 5} ∩ {X > 2})

P (X > 2)

=
P (X > 5)
P (X > 2)

=
1− F (5)
1− F (2)

=
1− (5/10)
1− (2/10)

= 0.625
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PRACTICE

Problem (Change of Variable): Suppose that X is Unif(0, 1) . That
is,

fX (x) = 1 0 ≤ x ≤ 1

and

FX (x) = x , 0 ≤ x ≤ 1

Derive the distribution function and density function for

Y = − ln (X )
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PRACTICE

Solution: first notice that the range of Y is (0,∞) , so

FY (y) = 0, for y < 0

On the other hand, for y > 0,

FY (y) = P (Y ≤ y) = P (− ln (X ) ≤ y) = P
(
X ≥ e−y

)
= 1− FX

(
e−y

)
= 1− e−y
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PRACTICE

Hence, for y > 0,

FY (y) = 1− e−y

Finally, for y > 0,

fY (y) = F ′Y (y) =
d
dy

(
1− e−y

)
= e−y
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EXPONENTIAL RANDOM VARIABLES

This type of random variables are used to represent (model) the waiting
time until the occurrence of a certain event, such as

- arrival of a customer

- occurrence of an earthquake

- crash of computer network
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RATE OF OCCURRENCE

The exponential density function has a single parameter, λ > 0, which
represents the rate of occurrence for the event

Examples:
λ = 5 per hour

λ = 2 per year

λ = 1 per month
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EXPONENTIAL DENSITY AND DISTRIBUTION

Notation X ∼ Exp (λ)
Density function

f (x) = λe−λx ,

for x > 0, and zero otherwise.

Distribution function

F (x) =
∫ x

0
λe−λtdt = −e−λt

∣∣∣x
0
= 1− e−λx

for x > 0, and zero otherwise.
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DISCUSSION

Comparing with the result in the Practice above, we have

− ln (U (0, 1)) = Exp (1)

More generally,

− ln (U (0, 1)) /λ = Exp (λ)
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MEMORYLESS PROPERTY OF EXPONENTIAL RV’S

Problem: Suppose that X ∼ Exp (λ). For x0 > 0 and h > 0, calculate
P (X > h) and P (X > x0 + h | X > x0) . Comment on the result.
Solution:

P (X > h) = 1− F (h) = e−λh

P (X > x0 + h | X > x0) =
P ({X > x0 + h} ∩ {X > x0})

P ( X > x0)

=
P (X > x0 + h)
P ( X > x0)

=
e−λ(x0+h)

e−λx0

= e−λh
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DISCUSSION

The probability of surviving h additional units at age x is the same for
all x .

If X represents “time to failure for a system” than the system doesn’t
get “old”.
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FAILURE RATE

The failure rate is defined as

λ (x) = lim
δ→0

P (X ≤ x + δ | X > x)
δ

= lim
δ→0

P (x < X ≤ x + δ)

P ( X > x) δ

=
1

P ( X > x)
lim
δ→0

F (x + δ)− F (x)
δ

=
f (x)

1− F (x) = −
d
dx
ln (1− F (x))
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HEURISTIC INTERPRETATION

λ (x) δ ≈ P (X ≤ x + δ | X > x) , for small δ

Why?

Set g (x , δ) = P (X ≤ x + δ | X > x)

Then

g (x , δ) ≈
0︷ ︸︸ ︷

g (x , 0) +

λ(x )︷ ︸︸ ︷
∂

∂δ
g (x , 0) δ = λ (x) δ
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DISCUSSION

The failure rate can be:

Constant The system doesn’t improve
nor wear out with time

Increasing The system wears out with time

Decreasing The system improves with time
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FAILURE RATE AND cdf

We have the following result:

F (x) = 1− e−
∫ x
0 λ(t)dt
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FAILURE RATE AND cdf

Proof: Recall that −λ (t) = d
dt ln (1− F (t)) . Hence,

−
∫ x

0
λ (t) dt =

∫ x

0

d
dx
[ln (1− F (t))] dt

= ln (1− F (t))|x0

= ln (1− F (x))− ln (1− F (0))

= ln (1− F (x))
Therefore

1− e−
∫ x
0 λ(t)dt = F (x)
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CONSTANT FAILURE RATE

λ (x) = γ

Show that in this case

F (x) = 1− e−γx (exponential distribution)
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INCREASING FAILURE RATE

Increasing failure rate. For example

λ (x) = x

Show that for this example

F (x) = 1− e−x 2/2 (Weibull distribution)
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DECREASING FAILURE RATE

Decreasing failure rate. For example

λ (x) =
1

1+ x

Show that for this example

F (x) =
x

1+ x
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