
Iterative Basian Updates, Problem 1.11

Lena S

Coding part for Problem 1.11 + extension to the problem

If something is unclear in the slides/there is a mistake, email me at elenash@stat.ubc.ca

September 20, 2016

Lena S Tutorial 2 September 20, 2016 1 / 9

Input data for the code

We are going to code the calculations for problem 1.11 in the Tutorial set
A. For that, we are going to use pseudocode provided by your instructor in
the lecture slides in Conditional probability (slides 53-55). The input
values are as shown below:

Input values

pe <- 0.005 #probability of disease P(E)

te <- rep(0.99,5) #prob of positive test given disease

#this is a vector of 5 probabilities

tec <- rep(0.01,5) #prob of positive tests given no disease

test <- c(0,1,1,1,1) #test results part (c1)

Lena S Tutorial 2 September 20, 2016 2 / 9

For loop to compute probabilities

With the input values from previous slide, we are ready to write the for
loop to compute probabilities

prob <- rep(NA, 6) #empty vector to store the results

prob[1] <- pe #first value is the P(E)

for (i in (1:5)){

if (test[i]==1){p=te[i]; q=tec[i]} #if the test is positive

if (test[i]==0){p=1-te[i]; q=1-tec[i]} #if the test is negative

#update probability using iterative formula

prob[i+1]=(prob[i]*p)/(prob[i]*p+(1-prob[i])*q)

}

round(prob,5)

[1] 0.00500 0.00005 0.00500 0.33221 0.98010 0.99979

Lena S Tutorial 2 September 20, 2016 3 / 9

Wrapping for loop in a function

We can wrap the for loop in a function to make it easier for us

probv <- function(test){

pr <- rep(NA, 6)

pr[1] <- pe

for (i in (1:5)){

if (test[i]==1){p=te[i]; q=tec[i]}

if (test[i]==0){p=1-te[i]; q=1-tec[i]}

pr[i+1]=(pr[i]*p)/(pr[i]*p+(1-pr[i])*q)

}

return(pr) # returns a vector of probabilities

}

test2 <- c(1,1,1,1,0)

probv(test2)

[1] 0.0050000 0.3322148 0.9801000 0.9997950 0.9999979 0.9997950

Lena S Tutorial 2 September 20, 2016 4 / 9

Wrapping for loop in a function

Apply this function to each vector of test results to get the answers

> probv(test)

[1] 0.00500 0.00005 0.00500 0.33221 0.98010 0.99979

>

> test2 <- c(1,1,1,1,0)

> probv(test2)

[1] 0.00500 0.33221 0.98010 0.99979 1.00000 0.99979

>

> test3 <- c(1,0,0,0,0)

> probv(test3)

[1] 0.00500 0.33221 0.00500 0.00005 0.00000 0.00000

>

> test4 <- c(0,0,1,0,1)

> probv(test4)

[1] 5e-03 5e-05 0e+00 5e-05 0e+00 5e-05

Lena S Tutorial 2 September 20, 2016 5 / 9

Extension to problem 1.11

Now suppose we set a threshold for the final probability P(E |I5), meaning
in case it is more than α (for example 50%) we give the person treatment
and if it’s less – we do not. The mistakes that could be made:

Not giving treatment to a sick patient or

Giving treatment to a helthy patient

The total probability of mistake can be calculated as follows:

P(M) = P(M ∩ E) + P(M ∩ E c) = P(M|E)P(E) + P(M|E c)P(E c)

We will need to simulate 50 000 test results in case person has disease and
estimate P(M|E); Then we simulate test results for no disease and
estimate P(M|E c). Then we compute the probability of mistake P(M)

Lena S Tutorial 2 September 20, 2016 6 / 9

Simulating test results given sick

First I make a small adjustment for my function for it to only output the
final estimate of probability P(E |I5). I can just change return(probs) to
return(probs[6]). Now we need to simulate test results given patient has
disease. It can be done with the following code

Simulating a matrix of test results given sickness

seq1 <- matrix(NA, nrow=50000, ncol=5)

for (j in (1:5)){

seq1[,j] <- rbinom(50000,1,te[j])}

This creates a matrix where each row is a result of 5 tests with 50 000
rows. We can calculate our probability estimates and estimate P(M|E) as
follows:

#Calculate the probability estimate

prob1 <- apply(seq1, MARGIN=1, probv)

alpha=0.5 # this is a treshold we set

#The fraction of wrongly not given treatment

frac1 <- sum(prob1<=alpha)/ length(prob1) #[1] 0.3420767
Lena S Tutorial 2 September 20, 2016 7 / 9

Simulating test results given healthy

Simulating test results given patientis healthy. The code is similar to the
one on previous slide

#Simulating test results given no sickness

seq2 <- matrix(NA, nrow=50000, ncol=5)

for (j in (1:5)){

seq2[,j] <- rbinom(50000,1,tec[j])

}

#Calculate the probability estimate

prob2 <- apply(seq2, MARGIN=1, probv)

#Fraction of those wrongly given treatment

frac2 <- sum(prob2>=alpha)/ length(prob2) #[1] 3.333333e-05

Now we can calculate P(M) = 0.002 for α = 0.5. Every cutoff will provide
different P(M).

Lena S Tutorial 2 September 20, 2016 8 / 9

Trying different thresholds

We can try different values of the threshold to calculate the probability of
error for each and choose the value that gives the smallest probability of
error

Error probabilities for different cutoffs

alpha <- seq(from=0.01, to=0.99, by=0.01)

Total <- rep(NA, length(alpha))

for (k in (1:length(alpha))){

frac1 <- sum(prob1<=alpha[k])/ length(prob1)

frac2 <- sum(prob2>=alpha[k])/ length(prob2)

Total[k] <- 0.995*frac2+0.005*frac1

}

Choosing the best option is left as an exercise.

Lena S Tutorial 2 September 20, 2016 9 / 9

	Study objectives

