Stat 547 C

Assignment 3

1. Suppose that $X \sim N(\mu, \sigma^2)$. Show that

$$\left(\frac{X-\mu}{\sigma}\right)^2 \sim Gamma\left(1/2, 1/2\right) = \chi^2_{(1)}$$

2. Suppose that $X_1, X_2, ..., X_n$ are i.i.d. $N(\mu, \sigma^2)$. Show that

$$\sum_{i=1}^{n} \left(\frac{X_i - \mu}{\sigma}\right)^2 \sim \chi^2_{(n)}$$

Hint: Show first that if $X \sim N(\mu, \sigma^2)$ then

$$\left(\frac{X-\mu}{\sigma}\right)^2 \sim Gamma\left(1/2, 1/2\right) = \chi^2_{(1)}.$$

Now use the MGF's. Recall that the MGF for a Gamma r.v. is derived in the classnotes. You can use it.

- 3. Let $X_i \sim Poisson(\lambda_i)$ (i = 1, ..., k) be independent random variables, and let $N = \sum_{i=1}^{k} X_i$. Show that $\mathbf{X}|N = n \sim Multinomial(n, p_1, p_2, ..., p_k)$, with $p_i = \lambda_i / \sum_{i=1}^{k} \lambda_i$.
- 4. Show that (assuming that all the expectations and variances exist and are finite)

$$E(Y) = E(E[Y|X])$$

and

$$Var(Y) = E(Var[Y|X]) + Var(E[Y|X])$$

- 5. Let $\{X_i\}_{i=0}^{\infty}$ and Y be independent random variables. Suppose that $X_i \sim Binomial(1, p)$ and $Y \sim Poisson(\lambda)$. Calculate the mean and variance of $S = \sum_{i=1}^{Y} X_i$.
- 6. Let X and Y be independent Gamma random variables with parameters (m, λ) and (n, λ) , respectively. Show that

$$S = X + Y$$
$$R = \frac{X}{X + Y}$$

are independent, $S \sim Gamma(m+n, \lambda)$ and $R \sim Beta(m, n)$. Note: recall that the Beta(m, n) density is

$$f(r; m, n) = \frac{\Gamma(m+n)}{\Gamma(m)\Gamma(n)} r^{m-1} (1-r)^{n-1}, \quad 0 < r < 1.$$

7. Let

$$f_{X,Y}(x,y) = \begin{cases} 1/(x^2y^2) & x \ge 1, y \ge 1\\ 0 & \text{otherwise} \end{cases}$$

- (a) Compute the joint density of U = XY, V = X/Y
- (b) Compute the marginal densities of U and V
- (c) Compute the conditional density of U|V and V|U.
- 8. Let

$$g(\theta) = E\left\{\rho\left(Y - \theta X\right)\right\}$$

where $0 \leq \rho(t)$ is a bounded, continuously differentiable loss function. Suppose that X has a finite mean. Show that

$$g'(\theta) = -E\left\{\rho'(Y - \theta X)X\right\}.$$

Note: Since $\rho(t)$ is a loss function, we have that $\rho(t)$ is non-decreasing on $[0,\infty)$ and non-increasing on $(-\infty,0]$.

9. Suppose that $X \sim F$. Define, for all 0 < u < 1,

$$F^{-1}(u) = \inf \{x : F(x) \ge u\}.$$

Then,

- (a) $F(F^{-1}(u)) \ge u$, with equality if F is continuous (b) $F^{-1}(F(x)) \le x$, with equality if F is increasing
- (c) Show that

$$\{u: F^{-1}(u) \le x\} = \{u: u \le F(x)\}\$$

and use this result to show that

$$F^{-1}(U) \sim F$$
, where $U \sim Unif(0,1)$.

(d) Show that

$$\{x : F(x) < u\} = \{x : x < F^{-1}(u)\}\$$

(e) Use the results in (a) and (d) to show that, if F is continuous, then

$$F(X) \sim Unif(0,1)$$
.