Stat 547 C Assignment 4

Problem 1 Let $\mathbf{X} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ with

$$\boldsymbol{\mu} = \begin{pmatrix} 2\\5\\3\\1 \end{pmatrix} \quad and \quad \boldsymbol{\Sigma} = \begin{pmatrix} 5 & 2 & 0 & 1\\2 & 9 & 6 & 5\\0 & 6 & 5 & 3\\1 & 5 & 3 & 4 \end{pmatrix}$$

(a) Find the joint distribution of

$$\mathbf{Y} = \left(\begin{array}{c} X_1 - X_2 \\ X_3 - 1.5X_1 \\ X_4 - 2X_2 \end{array}\right)$$

(b) Find the joint conditional distribution of $X_1 + X_2$ and $X_3 + X_4$ given $X_1 - X_3 = y$.

Problem 2 Suppose that $\mathbf{X} \in \mathbf{R}^3$ is a multivariate normal vector with moment generating function

$$M_{\mathbf{X}}(\mathbf{t}) = \exp\left\{3\left(t_1 + t_2\right) - 5t_3 + 2t_1^2 + 3\left(t_2^2 + t_3^2\right) - t_1t_2 + t_3(t_2 - 2t_1)\right\}$$

(a) Write down the joint density function for \mathbf{X} . Explain and justify your procedure.

(b) What is the joint conditional density function of (X_1, X_2) given $X_3 = -4$?

(c) Calculate $P(1 < X_1 < 3, 1 < X_2 < 3)$. Hint: You may wish to use the function "integrate" in R.

Problem 3 Let X be as in Problem 1.

(a) Find the function $g^*(x_2, x_3, x_4)$ that minimizes

$$J(g) = E\{|X_1 - g(X_2, X_3, X_4)|\}$$

among all functions $g(x_2, x_3, x_4)$. That is, find g^* such that

$$E\{|X_1 - g^*(X_2, X_3, X_4)|\} \le E\{|X_1 - g(X_2, X_3, X_4)|\}, \text{ for all } g(x_2, x_3, x_4).$$

Hint: first show that if $X \sim N(\mu, \sigma^2)$, then

$$g(t) = E\{|X - t|\} > E\{|X - \mu|\}, \text{ for all } t \neq \mu.$$

(b) Calculate the minimum value of J(g), that is, calculate

$$J(g^*) = E\{|X_1 - g^*(X_2, X_3, X_4)|\}.$$

Problem 4 Suppose that $\mathbf{X} = (X_1, X_2)'$ has bivariate normal distribution with

$$E(\mathbf{X}) = \boldsymbol{\mu} = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}$$
$$cov(\mathbf{X}) = \boldsymbol{\Sigma} = \begin{pmatrix} \sigma_{11} & \rho \sqrt{\sigma_{11} \sigma_{22}} \\ \rho \sqrt{\sigma_{11} \sigma_{22}} & \sigma_{22} \end{pmatrix}$$

Let

$$Y_i = \begin{cases} -1 & \text{if } X_i < \mu_i \\ 0 & \text{if } X_i = \mu_i \\ 1 & \text{if } X_i > \mu_i \end{cases}, \quad i = 1, 2$$

Define the "quadrant correlation", QC, between X_1 and X_2 which is defined as the Pearson correlation between Y_1 and Y_2 :

$$QC = \frac{E(Y_1Y_2)}{\sqrt{E(Y_1^2)E(Y_2^2)}}.$$

Show that

(a) $QC = (2/\pi) \operatorname{arcsine}(\rho)$ (b) $|QC| \leq |\rho|$.

Problem 5 (a) Suppose that the vector $\mathbf{X} = (X_1, X_2)'$ has a "non-decreasing" bivariate normal distribution (that is $0 < \rho < 1$, where ρ is the correlation between X_1 and X_2). Show that

$$\rho \ge corr\left[g\left(X_1\right), X_2\right]$$

for all functions $g(x_1)$.

Hint: Show first that you can assume w.l.g. that $E(X_1) = E(X_2) = E[g(X_1)] = 0$, $var(X_1) = var(X_2) = 1$ and $var[g(X_1)] = \rho^2$.

(b) Similarly, show that if the distribution is non-increasing (that is, $-1 < \rho < 0$) then

$$\rho \leq corr\left[g\left(X_{1}\right), X_{2}\right]$$

for all function $g(x_1)$.

Note: (a) and (b) imply that the correlation between X_1 and X_2 cannot be "sharpened" (increased in absolute value) by making a transformation on X_1 .