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Random Variable

Let (Ω,F ,P) be a probability space.

Definition of random variable:

X : Ω→ R

X−1 (B) ∈ F , for all B ∈ B (R) (measurable function)

Induced probability:

PX (B) = P
(
X−1 (B)

)
, B ∈ B (R) .
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Distribution Function

Definition:

F (x) = P (X ≤ x)

= P
(
X−1(−∞, x ]

)
= PX ((−∞, x ])
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Example.

(Ω,F ,P) = ((0, 1) ,B ((0, 1)) ,P) ,
P ((a, b)) = b− a, for all 1 > b > a > 0.

X (w) = w2,

FX (x) = P (X ≤ x) = P
({
w : w2 < x

})
= P

((
0,
√
x
))
=
√
x , x ∈ (0, 1) .
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Pi-Class

Definition of π-class: a collection of sets which is closed under
finite intersections.

Result: Let P,Q be two probability functions such that
P (A) = Q (A) for all A ∈ C, where C is a π-class. Then
P (A) = Q (A) for all A ∈ F (C) , where F (C) is the σ-field
generated by C.
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Since
C = {(−∞, x ] : for some x ∈ R}

is a π-class, F (x) completely determines the induced probability
function, PX (B) .

Recall that
Borel Sets = F (C)
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Properties of F

P (a < X ≤ b) = F (b)− F (a)
Proof.

(X ≤ b) = (X ≤ a) ∪ (a < X ≤ b)

=⇒ P (X ≤ b) = P (X ≤ a) + P (a < X ≤ b)

=⇒ F (b) = F (a) + P (a < X ≤ b) .
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limx→−∞ F (x) = limx→−∞ P (X ≤ x) = P (φ) = 0

Poof.

(X ≤ x) ↓ ∩ (X ≤ x) = φ, as x → −∞.

⇒ lim
x→−∞

P (X ≤ x) = P (φ) = 0

[Using continuity property of P]
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limx→∞ F (x) = limx→∞ P (X ≤ x) = P (Ω) = 1

Proof.

(X ≤ x) ↑ ∪ (X ≤ x) = Ω, as x → ∞.

⇒ lim
x→∞

P (X ≤ x) = P (Ω) = 1
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F (x) is right-continuous:

lim
x↓x0

F (x) = lim
x↓x0

P (X ≤ x) = F (x0)

Proof.

(X ≤ x) ↓ ∩x>x0 (X ≤ x) = (X ≤ x0) , as x ↓ x0.

Then use continuity property of P.
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P (X = x) = F (x)− F (x−)

Proof.

{x} = ∩ε>0(x − ε, x + ε],

=⇒ P (X = x) = lim
ε→0

P (x − ε < X ≤ x + ε)

= lim
ε→0

F (x + ε)− lim
ε→0

F (x − ε)

= F (x)− F
(
x−
)
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F (x) is non decreasing and has at most a countable number of
jumps.
Proof: Non decreasing:

x1 < x2

⇒ {X ≤ x1} ⊂ {X ≤ x2}

⇒ F (x1) ≤ F (x2) .
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Countable number of jump discontinuities: Let

An =
{
x : F (x)− F

(
x−
)
≥ 1/n

}
Clearly

#An ≤ n (why?).

Hence {
x : F (x)− F

(
x−
)
> 0

}
= ∪n≥1An

is a countable set (finite or infinite).
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Discrete Random Variables

The range of X is finite or countable:

X (Ω) = {xi}i∈I

I = {1, 2, ...n} or I = N+ (positive integer numbers)

Assume (w.l.g.) that x1 < x2 < x3 < · · ·

For most discrete r.v.’s

X (Ω) ⊂ N (integer numbers)
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Probability Mass Function

Definition:

f (xi ) = P (X = xi )

Properties:

(1) f (xi ) ≥ 0 ,

(2) ∑i∈I f (xi ) = 1 and

(3) f (xi ) = F (xi )− F (xi−1) .
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Continuous Random Variable

F (x) is determined by a probability density function f (x):

F (x) = P (X ≤ x) =
∫ x

−∞
f (t) dt

The density function, f (x) , satisfies 2 properties

(1) f (x) ≥ 0 for all x , and

(2)
∫ ∞
−∞ f (x) dx = 1.

By the Fundamental Theorem of Calculus, F (x) is differentiable and

f (x) = F ′ (x)

Ruben Zamar Department of Statistics UBC ()Module 3 September 27, 2016 16 / 131



Expected Value

Let X be a random variable with density function f (x) . Then

E (X ) = ∑
i∈I
xi f (xi ) (discrete case)

E (X ) =
∫ ∞

−∞
xf (x) dx (continuous case)

provided

∑
i∈I
|xi | f (xi ) < ∞ and

∫ ∞

−∞
|x | f (x) dx < ∞
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More generally,

E (g (X )) = ∑
i∈I
g (xi ) f (xi ) (discrete case)

E (g (X )) =
∫ ∞

−∞
g (x) f (x) dx (continuous case)

provided

∑
i∈I
|g (xi )| f (xi ) < ∞ and

∫ ∞

−∞
|g (x)| f (x) dx < ∞
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E X A M P L E S O F

R A N D O M V A R I A B L E S

Ruben Zamar Department of Statistics UBC ()Module 3 September 27, 2016 19 / 131



Bernoulli Random Variable

Notation: X ∼ Bernoulli(p)

X (w) = IA (w) = 1, 0

depending on whether w ∈ A or not. Let

p = P (A)

Then
P (X = x) = px (1− x)1−x , x = 0, 1

In this case

E
(
X k
)
= 0× (1− p) + 1× p = p, k = 1, 2, ...

Var (X ) = E
(
X 2
)
− (E (X ))2 = p − p2 = p (1− p)
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Binomial Random Variable

Notation: X ∼ B (n, p)

f (x) = P (X = x) =

 n

x

 px (1− p)n−x , x = 0, 1, ..., n

n

∑
x=0

f (x) =
n

∑
x=0

 n

x

 px (1− p)n−x = [p + (1− p)]n = 1
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E (X ) =
n

∑
x=0

x

 n

x

 px (1− p)n−x

=
n

∑
x=1

n!
(x − 1)! (n− x)!p

x (1− p)n−x

= np
n

∑
x=1

(n− 1)!
(x − 1)! (n− x)!p

x−1 (1− p)n−x = np
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E (X (X − 1)) =
n

∑
x=0

x (x − 1)

 n

x

 px (1− p)n−x
=

n

∑
x=2

n!
(x − 2)! (n− x)!p

x (1− x)n−x

= n (n− 1) p2
n

∑
x=2

(n− 2)!
(x − 2)! (n− x)!p

x−2 (1− p)n−x

= n (n− 1) p2
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n (n− 1) p2 = E (X (X − 1)) = E
(
X 2
)
− E (X )

= E
(
X 2
)
− np

⇒ E
(
X 2
)
= n (n− 1) p2 + np

Var (X ) = n (n− 1) p2 + np − n2p2

= np (1− p)
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In R you can use the functions:

rbinom(m,n,p) generates m random variables
dbinom(0:m,n,p) probabilities of 0,1,...,m
pbinom(0:m,n,p) cdf at 0,1,...,m
qbinom(q,n,p) quantile function (see latter)
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Geometric Random Variable

Notation: X ∼ Geom (p)

f (x) = P (X = x) = (1− p)x , x = 0, 1, ...

n

∑
x=0

f (x) = p
∞

∑
x=0

(1− p)x = p 1
1− (1− p) = 1

F (x) =
x

∑
y=0

f (y) = 1− (1− p)x+1 , x = 0, 1, ...

E (X ) =
1− p
p

, Var (X ) =
1− p
p2
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In R you can use the functions:

rnbinom(m,1,p) generates m random variables
dnbinom(0:m,1,p) probabilities of 0,1,...,m
pnbinom(0:m,1,p) cdf at 0,1,...,m
qnbinom(q,1,p) quantile function (see latter)

Note: the second parameter is the size. Variable represents number of
failures before the first success. Instead of first success (size =1) could be
the kth success (size = k)

The general case is called: negative binomial.
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Poisson Random Variable

Notation: X ∼ P (λ)

f (x) = P (X = x) =
e−λλx

x !
, x = 0, 1, ...

∞

∑
x=0

f (x) = e−λ
∞

∑
x=0

λx

x !
= e−λeλ = 1

E (X ) = Var (X ) = λ
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In R you can use the functions:

rpois(m,λ) generates m random variables
dpois(0:m,λ) probabilities of 0,1,...,m
ppois(0:m,λ) cdf at 0,1,...,m
qpois(q,λ) quantile function (see latter)
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Normal Random Variable

Notation: X ∼ N
(
µ, σ2

)

f (x) =
1

σ
√
2π
e−

1
2 (

x−µ
σ )

2

, −∞ < µ < ∞, σ2 > 0

To show that
I =

∫ ∞

−∞
f (x) dx = 1

take µ = 0, σ = 1 (wlg)
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Consider

I 2 =
∫ ∞

−∞

1√
2π
e−

1
2 x

2
dx
∫ ∞

−∞

1√
2π
e−

1
2 y

2
dy

=
1
2π

∫ ∞

−∞

∫ ∞

−∞
e−

1
2 (x 2+y 2)dxdy .
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Change of variables (polar coordinates, r > 0, 0 ≤ θ < 2π):

x = r cos (θ)

y = r sin (θ)

x2 + y2 = r2 cos2 (θ) + r2 sin2 (θ) = r2

J =

∣∣∣∣det( cos (θ) −r sin (θ)
sin (θ) r cos (θ)

)∣∣∣∣ = r cos2 (θ) + r sin2 (θ) = r
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I 2 =
1
2π

∫ ∞

−∞

∫ ∞

−∞
e−

1
2 (x 2+y 2)dxdy

=
1
2π

∫ ∞

0

∫ 2π

0
re−

1
2 r
2
dθdr =

∫ ∞

0
re−

1
2 r
2
dr

= −e− 1
2 r
2
∣∣∣∞
0
= 0− (−1) = 1.
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Mean

E (Z ) =
1√
2π

∫ ∞

−∞
z exp

(
−1
2
z2
)
dz

= − 1√
2π

∫ ∞

−∞

d
dz

{
exp

(
−1
2
z2
)}

dz

= − 1√
2π

exp
(
−1
2
z2
)∣∣∣∣∞
−∞

= 0
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Variance

E
(
Z 2
)
=

2√
2π

∫ ∞

0
z2 exp

(
−1
2
z2
)
dz

By part integration:

u = z , du = dz

dv = −z exp
(
−z

2

2

)
, v = exp

(
−z

2

2

)

E
(
Z 2
)
=

2√
2π

[
z exp

(
−z

2

2

)∣∣∣∣∞
0
+
∫ ∞

0
exp

(
−z

2

2

)
dz

]
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E
(
Z 2
)
= =

2√
2π

∫ ∞

0
exp

(
−z

2

2

)
dz

=
1√
2π

∫ ∞

−∞
exp

(
−z

2

2

)
dz = 1
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Gamma Random Variable

Notation: X ∼ Gamma (α,λ)

f (x) =
xα−1λα

Γ (α)
e−λx , x > 0, α > 0, λ > 0

where

Γ (α) =
∫ ∞

0
tα−1e−tdt

is the Gamma function.
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It can be shown that

Γ (α+ 1) = αΓ (α) , for all α > 0

Γ (n+ 1) = n! for all integer n ≥ 1

Γ (1/2) =
√

π
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Density Integrates to One

I =
∫ ∞

0

xα−1λα

Γ (α)
e−λxdx =

λα

Γ (α)

∫ ∞

0
xα−1e−λxdx

Change of variable:

y = λx , x =
y
λ
, dx =

dy
λ

I =
λα

λΓ (α)

∫ ∞

0

( y
λ

)α−1
e−ydy
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Therefore,

I =
λα

λαΓ (α)

∫ ∞

0
y α−1e−ydy

=
λαΓ (α)
λαΓ (α)

= 1
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Mean

E (X ) =
∫ ∞

0
x
xα−1λα

Γ (α)
e−λxdx

=
λα

Γ (α)

∫ ∞

0
xαe−λxdx

=
λα

Γ (α)
Γ (α+ 1)

λα+1

∫ ∞

0

xαe−λxλα+1

Γ (α+ 1)
dx

=
1
λ

αΓ (α)
Γ (α)

=
α

λ
.
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Inverse Scale Parameter

Remark: if
Y = tX , t > 0

then
Y ∼ Gamma (α,λ/t) .

Therefore λ is an “inverse scale”parameter (or 1/λ is a scale
parameter).
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Variance

It can be shown that (students should verify this)

Var (X ) =
α

λ2

Easier approach to show this: Use "Moment generating Function"
(introduced below)
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Some Particular Cases

Exponential distribution X ∼ Exp (λ):

α = 1

Chi-Square distribution with n degrees of freedom X ∼ χ(n):

α = n/2, λ = 1/2
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Beta distribution: if X ∼ Gamma (α,λ) and Y ∼ Gamma (β,λ)
are independent then

R = X/ (X + Y ) ∼ Beta (α, β)

f (r) =
Γ (α+ β)

Γ (α) Γ (β)
r α−1 (1− r)β−1 , 0 < r < 1.
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Important Property: we will show later (using moment generating
functions) that if

Xi ∼ Gamma (αi ,λ) , i = 1, ..., n

are independent then

S =
n

∑
i=1
Xi ∼ Gamma

(
n

∑
i=1

αi ,λ

)
.
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R A N D O M V E C T O R S
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Definition: Let (Ω,F , P) be a probability space.

X : Ω→ Rm

such that

X−1 (B) ∈ F , for all B ∈ B (Rm) (measurable function)

Induced probability:

PX (B) = P
(
X−1 (B)

)
, B ∈ B (Rm) .
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Joint distribution function:

F (x) = P (X ≤ x) = P (X1 ≤ x1, ...,Xm ≤ xm)

Again, the joint distribution function completely determines PX (B)
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Discrete Random Vectors

The range of X is finite or conutable:

X (Ω) = {xi}i∈I

I = {1, 2, ...n} or I = N+ (positive integer numbers)
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Joint Probability Mass function

f (xi ) = P (X = xi )

= P (X1 = x1,X2 = x2, ...,Xm = xm)

Then
F (x) = ∑ · · ·∑

xi≤x
f (xi )
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Continuous Random Vectors

Definition of joint density function: f (x) is a function

f : Rp → R

satisfying

(1) f (x) ≥ 0, for all x ∈Rp , and

(2)
∫ ∞
−∞ · · ·

∫ ∞
−∞ f (x) dx1 · · · dxp = 1.
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In this case

F (x) = P (X1 ≤ x1, ...,Xp ≤ xp) =
∫ xp

−∞
· · ·

∫ x1

−∞
f (t) dt1 · · · dtp

By the Fundamental Theorem of Calculus

f (x) =
∂p

∂x1∂x2 · · · ∂xp
F (x)
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Change of Variables

Let X be a continuous random vector with joint density fX (x) and

y = g (x)

x = h (y) 1-1 transformation

Let

J (y) =

∣∣∣∣det(∂hi (y)
∂yj

)∣∣∣∣ (Jacobian)

Then

fY (y) = fX (h (y))
∣∣∣∣det(∂hi (y)

∂yj

)∣∣∣∣ = fX (h (y)) J (y)
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Example of Change of Variables

Suppose that

X =
(
X1
X2

)
has uniform density on the unit circle. That is

fX (x) =
1
π
, x21 + x

2
2 ≤ 1

Let

x1 = h1 (r , θ) = r cos (θ)

x2 = h2 (r , θ) = r sin (θ)

where 0 ≤ θ < 2π and 0 ≤ r ≤ 1.
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Then,

J (r , θ) =

∣∣∣∣det( cos (θ) −r sin (θ)
sin (θ) r cos (θ)

)∣∣∣∣ = ∣∣r (cos2 (θ) + sin2 (θ))∣∣ = r
Therefore,

f (r , θ) = fX (h (r , θ)) J (r , θ) =
1
π
r , 0 ≤ θ < 2π and 0 ≤ r ≤ 1
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Marginal Density

f
(
x(1)
)
=

∫ ∞

−∞
· · ·

∫ ∞

−∞
f
(
x(1), x(2)

)
dx(2) (continuous case)

f
(
x(1)
)
= ∑

x(2)
f
(
x(1), x(2)

)
(discrete case)
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Conditional Density

f
(
x(1)|x(2)

)
=
f
(
x(1), x(2)

)
f
(
x(2)
) , (conditional)
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Marginal and Conditional Densities

Example (continued)

f (θ) =
∫ 1

0

1
π
rdr =

1
π

r2

2

∣∣∣∣1
0
=

1
2π
, 0 ≤ θ < 2π

f (r |θ) =
1
π r
1
2π

= 2r , 0 ≤ r ≤ 1.
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Independence

We say that X1,X2, ...,Xp are independent if

f (x1, x2, ..., xp) =
p

∏
i=1
fXi (xi )

where fXi (xi ) is the marginal density of Xi (i = 1, 2, ..., p).
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Note: x(1) and x(2) are independent if

f
(
x(1), x(2)

)
= fX(1)

(
x(1)
)
fX(2)

(
x(2)
)

It is immediate that in this case

f
(
x(1) | x(2)

)
= fX(1)

(
x(1)
)

and f
(
x(2) | x(1)

)
= fX(2)

(
x(2)
)
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Change of Variables (Many-to-one transformations)

Let X be a continuous random vector with joint density fX (x) . Let

X = {x : fX (x) > 0} (support space for fX)

Consider

g : X → R ⊂ Rp

y = g (x) many-to-one, onto R
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Assume that X can be decomposed into sets

X1,X2, ...,Xm

such that

g :Xi → R one-to-one, onto R (i = 1, ...,m)

Let
hi :R → Xi inverses i = 1, ...,m

That is
hi (g (x)) = x, for all x ∈Xi
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Set Ji (y) =
∣∣∣∣det(∂hi (y)

∂y

)∣∣∣∣ (Jacobians)

Then, for all y ∈R,

fY (y) =
m

∑
i=1
fX (hi (y))

∣∣∣∣det(∂hi (y)
∂y

)∣∣∣∣ = m

∑
i=1
fX (hi (y)) Ji (y) ,

provided that

all the partial derivatives in Ji (y) are continuous

and all the determinants are non-zero
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Example 1

Example 1:

fX (x) =
1√
2π
e−x

2/2

y = g (x) = x2

R = [ 0,∞), X1 = (−∞, 0) and X2 = (0,∞)

(make a picture to better understand this)
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h1 : (0,∞)→ (−∞, 0)

h1 (y) = −√y , J1 (y) =
y−1/2

2

h2 : (0,∞)→ (0,∞)

h2 (y) =
√
y J2 (y) =

y−1/2

2
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Therefore,

fY (y) = fX (h1 (y)) J1 (y) + fX (h2 (y)) J2 (y)

= fX (−
√
y)
y−1/2

2
+ fX (

√
y)
y−1/2

2
=
y1/2−1
√
2π

e−y/2

Chi-square with one d.f.
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Exercise 1

Exercise 1: Let

fX (x) =
1√
2π
e−x

2/2

and

y = g (x) =
{
x2 x < 0
x x > 0

Find fY (y) .
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Example 2

Example 2:

fX (x1, x2, x3) =
3
4π
, x21 + x

2
2 + x

2
3 ≤ 1

Find the density for

g (x) =
(
x(1), x(2), x(3)

)
= (y1, y2, y3) .

That is, y = (y1, y2, y3) is equal to the sorted vector x.
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Solution

R =
{
(y1, y2, y3) , y21 + y

2
2 + y

2
3 ≤ 1, y1 < y2 < y3

}
X1 =

{
(x1, x2, x3) : x21 + x

2
2 + x

2
3 ≤ 1, x1 < x2 < x3

}
X2 =

{
(x1, x2, x3) : x21 + x

2
2 + x

2
3 ≤ 1, x1 < x3 < x2

}
X3 =

{
(x1, x2, x3) : x21 + x

2
2 + x

2
3 ≤ 1, x2 < x1 < x3

}
X4 =

{
(x1, x2, x3) : x21 + x

2
2 + x

2
3 ≤ 1, x2 < x3 < x1

}
X5 =

{
(x1, x2, x3) : x21 + x

2
2 + x

2
3 ≤ 1, x3 < x1 < x2

}
X6 =

{
(x1, x2, x3) : x21 + x

2
2 + x

2
3 ≤ 1, x3 < x2 < x1

}
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h1 : R → X1, h1 (y1, y2, y3) = (y1, y2, y3) , J1 (y) = 1
h2 : R → X2, h1 (y1, y2, y3) = (y1, y3, y2) , J2 (y) = 1
h3 : R → X3, h1 (y1, y2, y3) = (y2, y1, y3) , J3 (y) = 1
h4 : R → X4, h1 (y1, y2, y3) = (y2, y3, y1) , J4 (y) = 1
h5 : R → X5, h1 (y1, y2, y3) = (y3, y1, y2) , J5 (y) = 1
h6 : R → X6, h1 (y1, y2, y3) = (y3, y2, y1) , J6 (y) = 1
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Therefore

fY (y) = f (y1, y2, y3) + f (y1, y3, y2) + · · ·+ f (y3, y2, y1)

=
6× 3
4π

=
4.5
π
, for y21 + y

2
2 + y

2
3 ≤ 1, y1 < y2 < y3
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Exercise 2

Suppose that (X1,X2, ...,Xn) are i.i.d. with common uniform distribution
on (0, 1) .
(a) Find the joint density for the order statistics

Y =
(
X(1),X(2), ...,X(n)

)
(b) Find the marginal density for X(i ), i = 1, ..., n.
(c) Find the density for the range X(n) − X(1).
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P R O P E R T I E S

O F T H E

E X P E C T E D V A L U E
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Linearity

Y = a+ bX ⇒ E (Y ) = a+ bE (X ) [easy to prove]

E (aX + bY ) = aE (X ) + bE (Y ) [easy to prove]

Follow directly from linearity of the integral (or sum)

Ruben Zamar Department of Statistics UBC ()Module 3 September 27, 2016 75 / 131



Monotonicity

X ≥ 0 and E (X ) = 0 ⇒ X = 0, outside a set of probability zero.

E (|X |) < ∞ ⇒ |X | < ∞, outside a set of probability zero.

[These are intuitively clear but non-trivial results]
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Monotonicity

X ≤ Y ⇒ E (X ) ≤ E (Y ) .

Monotone Convergence Theorem (MCT):

0 ≤ Xn ↑ X a.s. ⇒ 0 ≤ E (Xn) ↑ E (X )
[limn→∞ E (Xn) = E (limn→∞ Xn)]
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Dominated Convergence Theorem

Xn → X a.s. and |Xn | ≤ Y , a.s. with E (|Y |) < ∞ ⇒

(1) E (|X |) < ∞ and so E (X ) is well defined and finite. In addition

(2) limn→∞ E (Xn) = E (limn→∞ Xn) = E (X )
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Tonelli’s and Fubini’s Theorems

g (X ,Y ) ≥ 0⇒

E (g (X ,Y )) = EY (EX (g (X ,Y ))) = EX (EY (g (X ,Y )))

Either EY (EX (|g (X ,Y )|)) < ∞ or EX (EY (|g (X ,Y )|)) < ∞⇒

E (g (X ,Y )) = EY (EX (g (X ,Y ))) = EX (EY (g (X ,Y )))
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Independence

X and Y are independent, E (|X |) < ∞ and E (|Y |) < ∞ ⇒

E (XY ) = E (X )E (Y )
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Proof: By Tonelli’s Theorem:

E (|XY |) = EY (EX (|XY |)) =
∫ ∞

−∞

[∫ ∞

−∞
|x | |y | fX (x) dx

]
fY (y) dy

=
∫ ∞

−∞

[
|y | fY (y)

∫ ∞

−∞
|x | fX (x) dx

]
dy

=
∫ ∞

−∞
[|y | fY (y)E (|X |)] dy

= E (|X |)
∫ ∞

−∞
|y | fY (y) dy

= E (|X |)E (|Y |) < ∞

Now, using Fubini’s Theorem in a similar way gives the desired result.
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Since EY (EX (|XY |)) < ∞, by Fubinis’s Theorem

E (XY ) = EY (EX (XY )) =
∫ ∞

−∞

[∫ ∞

−∞
xyfX (x) dx

]
fY (y) dy

=
∫ ∞

−∞

[
yfY (y)

∫ ∞

−∞
xfX (x) dx

]
dy

=
∫ ∞

−∞
[yfY (y)E (X )] dy

= E (X )
∫ ∞

−∞
yfY (y) dy

= E (X )E (Y )
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Example 1: Random Series

Let Xn be a sequence of random variables. Set

Sn =
n

∑
i=1
Xi , Yn =

n

∑
i=1
|Xi | and Y =

∞

∑
i=1
|Xi |

Then we have

Par 1. E (∑∞
i=1 |Xi |) = ∑∞

i=1 E (|Xi |)

Part 2. If in addition ∑∞
i=1 E (|Xi |) < ∞ then:

(a) ∑n
i=1 Xi converges absolutely a.s. and

(b) E (∑∞
i=1 Xi ) = ∑∞

i=1 E (Xi )
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Proof of Part 1: By monotonicity

n

∑
i=1
|Xi | = Yn ↑ Y = lim

n→∞

n

∑
i=1
|Xi | =

∞

∑
i=1
|Xi | .

By the MCT

lim
n→∞

E (Yn) = E
(
lim
n→∞

Yn
)
= E (Y ) = E

(
∞

∑
i=1
|Xi |

)
(1)

proving Part 1.
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Remark: From (1)

E

(
∞

∑
i=1
|Xi |

)
= lim

n→∞
E (Yn)

= lim
n→∞

E

(
n

∑
i=1
|Xi |

)
= lim

n→∞

n

∑
i=1
E (|Xi |)

=
∞

∑
i=1
E (|Xi |) ,
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Proof of Part 2 (a): From Part 1, E (∑∞
i=1 |Xi |) < ∞ and so

∞

∑
i=1
|Xi | < ∞ a.s.

⇒
n

∑
i=1
Xi converges absolutely a.s. (2)

proving Par 2 (a)
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Proof of Part 2 (b): By (2)

n

∑
i=1
Xi →

∞

∑
i=1
Xi .

and for all n,∣∣∣∣∣ n∑i=1Xi
∣∣∣∣∣ ≤ n

∑
i=1
|Xi | < Y , a.s. with E (Y ) < ∞.
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By the DCT

and

E

(∣∣∣∣∣ ∞

∑
i=1
Xi

∣∣∣∣∣
)
< ∞ and lim

n→∞
E

(
n

∑
i=1
Xi

)
= E

(
∞

∑
i=1
Xi

)
(3)

Notice that

lim
n→∞

E

(
n

∑
i=1
Xi

)
= lim

n→∞

n

∑
i=1
E (Xi ) =

∞

∑
i=1
E (Xi ) (4)

From (3) and (4)

E

(
∞

∑
i=1
Xi

)
=

∞

∑
i=1
E (Xi ) , proving Part 2 (b)
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Example 2: Differentiating Expected Values

Let X (t,w) be a random function (random process).

For fixed w ∈ Ω, X (t,w) is a (deterministic) function of
t ∈ (a, b) .

For fixed t ∈ (a, b) , X (t,w) is a random variable on (Ω,F ,P)
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Suppose that:

(1) There exists t0 ∈ (a, b) such that E (|X (t0)|) < ∞

(2) X ′ (t,w) = d
dtX (t,w) exist for all t ∈ (a, b) a.s. [P] and

(3) There exists a random variable W (w) , with E (|W |) < ∞, such that

∣∣X ′ (t,w)∣∣ ≤ W (w) , for all t ∈ (a, b) a.s. [P ]
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Then:

(a) E (|X (t)|) < ∞, for all t ∈ (a, b)

(b) E (|X ′ (t)|) < ∞, tor all t ∈ (a, b)

(c) d
dtE (X (t)) = E

( d
dtX (t)

)
.
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Proof:
(a) Left as an exercise.

(b) Let t ∈ (a, b) be fixed.

Consider a sequence hn → 0 (with hn 6= 0), such that t + hn ∈ (a, b) for
all n.

By the mean value theorem

X (t + hn)− X (t) = hnX ′ (sn)

where sn = αnt + (1− αn) (t + hn) , with 0 ≤ αn ≤ 1. Set

X ′ (sn) =
X (t + hn)− X (t)

hn
= Yn (t) .
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X ′ (sn) =
X (t + hn)− X (t)

hn
= Yn (t) .

By assumption, Yn (t)→ X ′ (t) , a.s. [P ] and |Yn (t)| ≤ W .

By the DCT
E
(∣∣X ′ (t)∣∣) < ∞

and

lim
n→∞

E (Yn (t)) = E
(
lim
n→∞

Yn (t)
)
= E

(
X ′ (t)

)

Ruben Zamar Department of Statistics UBC ()Module 3 September 27, 2016 93 / 131



(c) We have just shown that

lim
n→∞

E (Yn (t)) = E
(
d
dt
X (t)

)
(5)

Moreover, by definition of derivative,

lim
n→∞

E (Yn (t)) = lim
n→∞

E [X (t + hn)]− E [X (t)]
hn

=
d
dt
E (X (t)) (6)

The result follows now from (5) and (6).
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M U L T I V A R I A T E M E A N

A N D

C O V A R I A N C E M A T R I X
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Multivariate Mean and Covariance Matrix

µ = E (X)

Σ = E
{
(X− µ) (X− µ)′

}
R = D−1/2ΣD−1/2, D = diag (Σ)
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It is easy to show that

Σ = E
{
XX′

}
− µµ′

Moreover, if
Y =AX+ b

then

E (Y)=AE (X) +b =Aµ+ b

Cov (Y) = ACov (X)A′ = AΣA′
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If
Y = X′a

then
E (Y ) = a′µ , Var (Y ) = aΣa′

Suppose that A is symmetric (A′ = A) and

Y = X′AX

then
E (Y ) = µ′Aµ+tr (AΣ)
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Proof

E (Y ) = E
(
X′AX

)
= E

[
tr
(
X′AX

)]
= E

[
tr
(
XX′A

)]
= trE

[(
XX′A

)]
= tr

[
E
(
XX′

)
A
]

= tr
[(

Σ+ µµ′
)
A
]
= tr (ΣA) + tr

(
µµ′A

)
= tr (ΣA) + tr

(
µ′Aµ

)
= tr (ΣA) + µ′Aµ
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S O M E

I N E Q U A L I T I E S
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Chevichev’s and Markov’s Inequalities

P (|X − µ| > ε) ≤ σ2

ε2

P (|X − µ| > ε) ≤ E |X − µ|
ε

The proof of these two inequalities are left as exercise.
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Jensen’s Inequality

If g (x) is a convex function then

E (g (X )) ≥ g (E (X ))
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Proof of Jensen’s Inequality

Let l (x) = a+ bx such that

g (x) ≥ a+ bx , for all x

and

g (µ) = a+ bµ

This linear function exists because g (x) is convex (l (x) is a support line).
Now,

E (g (X )) ≥ E (a+ bX ) = a+ bµ = g (µ) .
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Cauchy-Schwarz Inequality

(1)

Cov2 (X ,Y ) ≤ Var (X )Var (Y )

(2) Equality holds if and only if Y = t0 + t1X , for some constants t0 and
t1.
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Proof. Let

g (t) = Var (Y − tX ) = Var (Y )− 2Cov (X ,Y ) t + Var (X ) t2

Notice that:

g (t) is a convex, second degree polynomial in t.

g (t) has a unique root or no root at all (it cannot be negative).

Recall the formula for the roots of a second degree polynomial:

−b±
√
b2 − 4ac
2a

=
−b± ∆
2a

.
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Notice that the discriminant is

∆2 = b2 − 4ac ≤ 0.

In our case

a = Var (Y ) , b = −2Cov (X ,Y ) and c = Var (X )

Therefore,

∆2 = 4Cov2 (X ,Y )− 4Var (Y )Var (X ) ≤ 0,

proving Part 1.
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Proof of Part 2:

If g (t) = 0 has a solution, t0,say then Var (Y − t0X ) = 0

This means that for some t0 that is,

Y − t0X = t1 a.s.

In other words, equality holds if and only if

Y = t0X + t1, a.s. (Y is a linear function of X )
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The Pearson Correlation Coeffi cient

ρ =
Cov (X ,Y )√
Var (X )Var (Y )

By Cauchy-Schwarz inequality

|ρ| ≤ 1,

with equality if and only if

Y = aX + b, a.s.
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M O M E N T S A N D

M O M E N T G E N E R A T I N G

F U N C T I O N
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Definitions

µk = E
(
X k
)

(moments)

MX (t) = E (exp (tX )) (mgf)
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Some Results

Result 1: if MX (t) exists in an open interval around zero, then MX (t) is
infinitely differentiable at zero and

dk

dtk
MX (t)

∣∣∣∣
t=0

=
dk

dtk
MX (0) = µk

Proof: Use the result of Example 2 and the fact that, for all k,

|X | exp (tX ) ≤ Ck + exp (2tX ) + exp (−2tX ) ,

which has finite mean for t small enough.
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Result 2: if MX (t) = MY (t) for all t in an open interval around zero,
then X and Y have the same distribution.
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Result 3: if X1,X2, ...,Xn are independent random variables with m.g.f.
MXi (t) , then

M∑Xi (t) = ∏MXi (t)

Proof:

M∑Xi (t) = E
(
exp

{
t∑Xi

})
= E

(
∏ exp {tXi}

)
= ∏E (exp {tXi}) = ∏MXi (t)
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Result 4: If Y = a+ bX , then

MY (t) = e
taMX (bt)

Proof:

MY (t) = E
(
etY
)
= E

(
et(a+bX )

)

= E
(
etaetbX

)
= etaE

(
etbX

)
= etaMX (bt)
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M O M E N T G E N E R A T I N G

F U N C T I O N F O R S O M E

R A N D O M V A R I A B L E S
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Binomial

X ∼ B (n, p)

X = X1 + X2 + · · ·+ Xn, i.i.d. B (1, p)

MX1 (t) = 1+ p
(
et − 1

)

MX1+X2+···+Xn (t) = [MX1 (t)]
n =

(
1+ p

(
et − 1

))n
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Poisson

X ∼ P (λ)

MX (t) =
∞

∑
x=0

etxe−λ λx

x !
= e−λ

∞

∑
x=0

(λet )x

x !

= exp (−λ) exp
{

λet
}
= exp

{
λ
(
et − 1

)}
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Geometric

X ∼ Geometric (p)

MX (t) =
∞

∑
x=1

extp (1− p)x = p
∞

∑
x=1

[
et (1− p)

]x
,

=
p

1− et (1− p) , provided t < − log (1− p)
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Standard Normal

Z ∼ N (0, 1)

MZ (t) =
1√
2π

∫ ∞

−∞
etze−

1
2 z
2
dz =

1√
2π

∫ ∞

−∞
e−

1
2 (z 2−2tz)dz

=
1√
2π

∫ ∞

−∞
e−

1
2 (z 2−2tz+t2)+

1
2 t
2
dz = exp

(
1
2
t2
)
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General Normal

In the general case

X ∼ N
(
µ, σ2

)
X = µ+ σZ

Mµ+σZ (t) = e
tµMZ (σt) = exp

(
tµ+

1
2
t2σ2

)
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Gamma

X ∼ Gamma (α,λ)

Let t < λ,

MX (t) =
∫ ∞

0
etx
xα−1λα

Γ (α)
e−λxdx =

∫ ∞

0

xα−1λα

Γ (α)
e−(λ−t)xdx

= (λ− t)−α λα
∫ ∞

0

xα−1

Γ (α)
(λ− t)α e−(λ−t)xdx

=

(
λ− t

λ

)−α

= (1− (t/λ))−α , for t < λ
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Mean and Variance for Gamma

MX (t) = (1− (t/λ))−α

E (X ) = M ′ (t)
∣∣
t=0 = (α/λ) (1− (t/λ))−(α+1)

∣∣∣
t=0

=
α

λ

E
(
X 2
)
= M ′′ (t)

∣∣
t=0 =

(α+ 1) α

λ2
(1− (t/λ))−α−1

∣∣∣∣
t=0

=
(α+ 1) α

λ2
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Therefore,

E (X ) =
α

λ

Var (X ) =
α (α+ 1)

λ2
− α2

λ2
=

α

λ2

Particular case: X ∼ χ2(n) [α = n/2 and λ = 1/2]

E (X ) =
n/2
1/2

= n, Var (X ) =
n/2
1/4

= 2n
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M O M E N T G E N E R A T I N G

F U N C T I O N F O R R A N D O M

V E C T O R S
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Definition

MX (t) = E
(
exp

(
t′X
))

= E (exp (t1X1 + · · ·+ tpXp))
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Result 1

If MX (t) exists in an open interval that includes 0, then MX (t) is
infinitely differentiable at zero and

∂

∂tk11 ...∂t
km
m
MX (t)

∣∣∣∣∣
t=0

=
∂

∂tk11 ...∂t
km
m
MX (0) = E

(
m

∏
i=1
X kii

)

For instance

E (X1X2) =
∂

∂t1∂t2
MX (t)

∣∣∣∣
t=0

and

E
(
X1X 22

)
=

∂

∂t1∂t22
MX (t)

∣∣∣∣
t=0
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Result 2

If for some ε > 0,

MX (t) = MY (t) for all t ∈B (0,ε)

then

FX (v) = FY (v) for all v
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Result 3

If X1,X2, ...,Xn are independent random vectors with m.g.f. MXi (t) ,
then

M∑n
i=1 Xi (t) =

n

∏
i=1
MXi (t)

Proof:

M∑Xi (t) = E
(
exp

{
t′∑Xi

})
= E

(
∏ exp

{
t′Xi

})

= ∏E
(
exp

{
t′Xi

})
= ∏MXi (t)
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Result 4

If
Y = a+BX

for some q × p matrix B, then

MY (t) = exp
(
t′a
)
MX

(
B ′t
)

Proof:

MY (t) = E
(
et
′Y
)
= E

(
et
′(a+BX)

)

= E
(
et
′aet

′BX
)
= et

′aE
(
e(B

′t)′X
)

= exp
(
t′a
)
MX

(
B ′t
)
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MGF For The Standard Multivariate Normal

Z ∼N (0,I )

MZ (t) = E
(
exp

{
t′Z
})
= E

(
p

∏
i=1
exp (tiZi )

)

=
p

∏
i=1
E (exp (tiZi )) =

p

∏
i=1
exp

(
t2i
2

)

= exp

(
1
2

p

∑
i=1
t2i

)
= exp

(
1
2
t′t
)
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MGF For The Multivariate Normal

X ∼N (µ,Σ)⇒ X = µ+Σ1/2Z

MX (t) = Mµ+Σ1/2Z (t) = exp
(
t′µ
)
MZ

(
Σ1/2t

)

= exp
(
t′µ
)
exp

{
1
2

(
Σ1/2t

)′
Σ1/2t

}

= exp
{
t′µ+

1
2
t′Σt

}
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