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Random Variable

e Let (), F, P) be a probability space.

@ Definition of random variable:

X : O—-R

X1(B) € F, forall B€B(R) (measurable function)

@ Induced probability:

Ruben Zamar Department of Statistics September 27, 2016 2 /131



Distribution Function

o Definition:
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o Example.

(Q, F, P)
P ((a, b))
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@ Definition of 7t-class: a collection of sets which is closed under
finite intersections.

@ Result: Let P, Q be two probability functions such that
P (A) = Q (A) for all A € C, where C is a mt-class. Then
P(A) = Q(A) for all A€ F(C), where F (C) is the o-field
generated by C.

NN
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@ Since
C = {(—o00,x] : for some x € R}

is a 7t-class, F (x) completely determines the induced probability
function, Px (B).

@ Recall that
Borel Sets = F (C)
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Properties of F

e P(a< X <b)=F(b)—F(a)
Proof.

(X<b) = (X<aU(a<X<b)
— P(X<b)=P(X<a)+P(a<X<b)

— F(b)=F(a)+Pa<X<b).
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o limy o F (x)=lim_oP(X<x)=P(¢)=0

Poof.

(X<x) | N(X<x)=¢, as x — —o0.

= lim P(X<x)=P(¢)=0

X——00

[Using continuity property of P]
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Proof.
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e F (x) is right-continuous:

lim F (x) = lim P (X < x) = F (x)

x|xo x|xo

Proof.
(ng)lmx>xo(X§X):(X§X0)v as x | xo.

Then use continuity property of P.
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Proof.

{x} = Neso(x—€,x+¢€],

= P(X=x)=lmP(x—e<X<x+e)
€E—

= limF(x+¢€)—limF(x—¢)
€—0 e—0

= F (x) —F(Xi)
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@ F (x) is non decreasing and has at most a countable number of
jumps.
Proof: Non decreasing:

x1 < X
= {X§X1}C{X§X2}

= F(x1) <F(x).
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o Countable number of jump discontinuities: Let

A, = {x: F(X)—F(X_) Zl/n}

Clearly

#A, < n (why?).

Hence

{x: F(x)—F (x_) > 0} = Up>1A4,

is a countable set (finite or infinite).
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Discrete Random Variables

@ The range of X is finite or countable:
X(Q) = {xitie
I = {1,2,.n} or I =N (positive integer numbers)
@ Assume (w.l.g.) that x3 <x <x3 < ---

@ For most discrete r.v.'s

X(Q) C N (integer numbers)
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Probability Mass Function

o Definition:

o Properties:
(1) f(x) >0,
(2) Liesf (xi) =1 and

(3) f (X,') =F (X,') —F (X,'_l) .
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Continuous Random Variable

e F (x) is determined by a probability density function f (x):

F(x):P(xgx):/X F(t) dt

—00

@ The density function, f (x), satisfies 2 properties

(1) f(x) >0 forall x, and
(2) [T f(x)dx=1.

e By the Fundamental Theorem of Calculus, F (x) is differentiable and
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Expected Value

Let X be a random variable with density function f (x). Then

E(X) = ) xf(x) (discrete case)
i€l
E(X) = / xf (x) dx (continuous case)

provided
Y x| F(x) < oo and / Ix| £ (x) dx < oo

i€l
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More generally,

E(g Eg xi) f(x) (discrete case)
iel
E(g (X)) = / g(x)f(x)dx  (continuous case)
provided
Z|gx,|fx,<00 and / x) dx < 00
i€l
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EXAMPLES OF
RANDOM VARIABLES
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Bernoulli Random Variable

Notation: X ~ Bernoulli(p)

X(w)=1Ia(w)=1,0

depending on whether w € A or not. Let

p=P(A)
Then
PX=x)=p(1-x)"", x=0,1
In this case
E<X") = Ox(1—p)+lxp=p k=12..
Var (X) = E(X?)—(E(X))’=p—p*=p(L—p)
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Binomial Random Variable

Notation: X ~ B (n, p)

f(x)=P(X=x)= p*(1—p)", x=0,1,...,n
YF) = ) (1= p)" ™ = [p+(1-p)" =1
x=0 x=0 X
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E(X) = X px(l_p)nfx
x=0 X
- ;(X—l)!(n—x)lpx(l—P)
_ Y (n—1)! 1y
- px:l(X—l)!(n—x)!p (1—p) p
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E(X <X— 1)) = Z::OX(X— ]_) px (]_—p)nfx
— )(;2 (X_2)!(n_x)!px(1—x)
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n(n—1)p*> = E(X(X-1))=E(X*) —E(X)

= E(X*)=n(n—1)p*+np

Var (X) = n(n—1)p®+np— n?p?

= np(l1-p)
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In R you can use the functions:

rbinom(m,n,p) | generates m random variables
dbinom(0:m,n,p) probabilities of 0,1,...,m
pbinom(0:m,n,p) cdf at 0,1,....,m

gbinom(q,n,p) | quantile function (see latter)

Ruben Zamar Department of Statistics September 27, 2016 25 / 131



Geometric Random Variable

Notation: X ~ Geom (p)

fx)y=PX=x)=(1-p)", x=0,1,...
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In R you can use the functions:

rnbinom(m,1,p) | generates m random variables
dnbinom(0:m,1,p) probabilities of 0,1,...,m

pnbinom(0:m,1,p) cdf at0,1,....m
gnbinom(q,1,p) | quantile function (see latter)

Note: the second parameter is the size. Variable represents number of
failures before the first success. Instead of first success (size =1) could be

the k" success (size = k)

The general case is called: negative binomial.
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Poisson Random Variable

Notation: X ~ P ())

7)\ X
fx) = P(X:x):eX!A, x=0,1,
if() = e_AiA—X—e_AeA 1
x=0 YT Skt N
E(X) = Var(X)=A
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In R you can use the functions:

rpois(m,A) | generates m random variables
dpois(0:m,A) probabilities of 0,1,...,m
ppois(0:m,A) cdf at0,1,....m

gpois(q,A) | quantile function (see latter)
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Normal Random Variable

Notation: X ~ N (y,0?)

To show that

take y =0, 0 =1 (wlg)
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Consider

(o] 1 [e0]

1
—00 \/ 27T —o0 \/ 27T
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Change of variables (polar coordinates, r > 0, 0 < 0 < 27):

x = rcos(0)

y = rsin(60)

x* +y? = r*cos® (0) + r’sin? (0) = r?

det < 225((5)) r_crozl?H()e) > ' = rcos?® (0) + rsin® () = r
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ro= 27(/ / 080 iy

Ruben Zamar Department of Statistics September 27, 2016 33 /131






Variance

2 ®© 1
2 2 2
E(Z ) = o Jo z°exp (—22 > dz

By part integration:

u = 2z, du = dz
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Gamma Random Variable

Notation: X ~ Gamma (a, A)

a—1lya
f(x) = Xr(a}; e ™ x>0, a>0 A>0

where

is the Gamma function.
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It can be shown that

I'(a+1) = al'(a), for all a>0

I'(n+1) = n! for all integer n>1

r(1/2) = vn
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Density Integrates to One

0o u—1y«& « )
| = / XA e Mdx = A / x¥ e ™My
o I'(a) I'(a) Jo

Change of variable:
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Therefore,

I = 7/\0‘ /Oo y* e Vdy
AT (a) 0

AT (a)
T AT
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Mean

) thfl)\tx
E(X) = A
(X) /0 x T ((x) e dx

A" OO o —A
= Xd
T (a) /O x"e Ix

dx

A* T(a+1) /°° xte= M AMT
T(a) A Jo T(a+1)

1al (a)

AT (a)

&
5
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Inverse Scale Parameter

Remark: if
Y=tX, t>0

then
Y ~ Gamma (a,A/t).

Therefore A is an “inverse scale” parameter (or 1/A is a scale
parameter).
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Variance

It can be shown that (students should verify this)

Var (X) = %

Easier approach to show this: Use "Moment generating Function"
(introduced below)
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Some Particular Cases

e Exponential distribution X ~ Exp (A):

o Chi-Square distribution with n degrees of freedom X ~ X(n):

x = n/2, A=1/2
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e Beta distribution: if X ~ Gamma («,A) and Y ~ Gamma (B, \)
are independent then

R = X/(X+Y)~ Beta(a,B)

0<r<i.
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Important Property: we will show later (using moment generating
functions) that if

Xi ~ Gamma(aj,A), i=1,..,n

are independent then

S = iX,-NGamma izx;,/\
i=1 i=1
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RANDOM VECTORS
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Definition: Let (Q), F, P) be a probability space.
X:0—-R"

such that

X1 (B) € F, forall B€B(R™) (measurable function)

Induced probability:

Px(B) = P(X7*(B)), BeB(R").
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Joint distribution function:

F(X) = P(XSX) :P<X1 SXl,...,Xm <Xm)

Again, the joint distribution function completely determines Px (B)
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Discrete Random Vectors

The range of X is finite or conutable:

X(@Q) = {xi}ig

I = {1,2,.n} or [|= N (positive integer numbers)
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Joint Probability Mass function

Then
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Continuous Random Vectors

Definition of joint density function: f (x) is a function

f : RP—-R
satisfying
(1) f(x) >0, for all x €RP, and

(2) [ [T F(x)dxg - dxp = 1.
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In this case

X X1
F(x) = P(xlgxl,...,x,,gxp):/p / F(t)dt - - dt,
By the Fundamental Theorem of Calculus

f o F
(x) = m (x)
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Change of Variables

Let X be a continuous random vector with joint density fx (x) and

x =h (y) 1-1 transformation

Let

det (ah(y)ﬂ (Jacobian)

J@y) = 3y,

Then
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Example of Change of Variables

Suppose that

(%)

has uniform density on the unit circle. That is

i (x) =~

x12 —|—x§ <1
Let
x1 = hy(r,0)=rcos(6)
xp = hy(r,0)=rsin(0)

where 0 <O <2mand 0 <r <1.
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Then,

J(r0) = ‘da(iﬁf((g)) r_cross"(‘g(f) )’:}r(cos2(9)+sin2(9))\:r

Therefore,

f(r,9):fx(h(r,()))J(r,G):%r, 0<f<27 and 0<r<1
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Marginal Density
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Conditional Density

f (x(1)|x(2)> = ————%,  (conditional)
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Marginal and Conditional Densities

Example (continued)

11 12t 1
F(0) = /—rdr:—r— = —, 0<6<2n
07T T2, 21
1y
F(rle) = Z-=2r, 0<r<1
2
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Independence

We say that Xi, X, ..., X, are independent if

f(xi, %0, ... Xp) = fx, (xi)

et

where fx. (x;) is the marginal density of X; (i = 1,2, ..., p).
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Note: x(!) and x(®) are independent if

It is immediate that in this case

f (x(l) ] x(2)> = fx (x(1)> and f (x(2) | x(l)) = fe (x(2)>
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Change of Variables (Many-to-one transformations)

Let X be a continuous random vector with joint density fx (x) . Let
X ={x: fx(x) >0} (support space for fx)
Consider

g : X—>RCRP

y = g(x) many-to-one, onto R
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Assume that X can be decomposed into sets

X1, Xo, ., X
such that
g:Xi - R oneto-one, ontoR (i=1,..m)
Let
hy R — X; inverses i=1,...,.m
That is

hi(g(x)) =x, forall xeX;
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Set J; ( )

Then, for all y €R,

provided that

o all the partial derivatives in J; (y) are continuous

@ and all the determinants are non-zero
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Example 1

Example 1:

R =] 0,0), X;=(—00,0) and X, = (0,00)

(make a picture to better understand this)

Ruben Zamar Department of Statistics September 27, 2016 65 / 131



W) = 5 b =L
ho (0,00) — (0, c0)
—-1/2
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Therefore,
fr(y) = fx(h(y)hy)+i(h(y)) ()

—1/2 -1/2 1/2-1

= KV () Ty = e

Chi-square with one d.f.
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Exercise 1

Exercise 1: Let

and

x2 x<0
x x>0

Find fv (y).
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Example 2

Example 2:

3
fx (x1,x,x3) = yp F4xE+xd <1

Find the density for

g(x) = (X x20%3) = (ny2%3).

That is, y = (y1, 2, ¥3) is equal to the sorted vector x.
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Solution

{( ), Vi+ys+ys <1, i<y <y}

{( )ixd x4 4% <1, xx<x<x}

= {{ )X+ +x <1, xx<x3<x}
X; = {(xl,xz,X3):x12+x22+x32§1, X < x1 < x3}
= {( )ixi+x4+x <1, x<x3<x}

{( )i+ +x <1, x3<x <x}

{( ):x12+x22+x32§1, X3<X2<x1}

Ruben Zamar Department of Statistics September 27, 2016 70 / 131



hy : R— X1, hi(yi,y2y3) = (.y2.3), h(y) =1
hy : R—X, hi(yi,y2.y3)=01.y3.52), Ly =1
h; : R—A5 hi(yi,y.y3)=(2y1.y3), Ay =1
hy : R—X, hi(y,y.y3)=02.y3.0), Ja(y) =1
hs : R—X, hi(yi,y2.3) = (By1.y2), by =1
he : R— X, hi(yiyy)=0ny2.0), by =1
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Therefore
() = fyyn)+fysy)+-+f(y305)

6 X3 45
=" for VP y2Hy2<i, <y <
yp= p ryi+y,+y3 < i<y»<y
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Exercise 2

Suppose that (X1, Xz, ..., X;) are i.i.d. with common uniform distribution
on (0,1).
(a) Find the joint density for the order statistics

Y = (X Xy X))

(b) Find the marginal density for Xy, i =1,...,n.
(c) Find the density for the range X(,) — X(1).
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PROPERTIES
OF THE
EXPECTED VALUE
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e Y=a+bX= E(Y)=a+ bE(X) [easy to prove]
o E(aX +bY)=aE (X)+ bE(Y) [easy to prove]

Follow directly from linearity of the integral (or sum)
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Monotonicity

e X >0and E(X)=0= X =0, outside a set of probability zero.

e E(|X|) < o0 = |X]| < oo, outside a set of probability zero.

[These are intuitively clear but non-trivial results]
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Monotonicity

e X<Y= EX)SE(Y).
e Monotone Convergence Theorem (MCT):

0< X, 1 X as. = 0<E(X,) 1 E(X)
[limp—oe E (Xn) = E (limp—e0 Xp)]
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Dominated Convergence Theorem

e X, — X as. and | X,| <Y, as. with E(|Y]) < o0 =
(1) E(|X]) < oo and so E (X) is well defined and finite. In addition

(2) limp—eo E (Xp) = E (limp—eo Xp) = E (X)
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Tonelli's and Fubini’'s Theorems

e g(X,Y)>0=

E(g(X,Y)) = Ey (Ex (g (X, Y))) = Ex (Ey (g (X, Y)))

e Either Ey (Ex (|g(X,Y)])) <co or Ex (Ey (|g(X,Y)])) < oo =

E(g(X,Y)) = Ey (Ex (g (X, Y))) = Ex (Ev (¢ (X, Y)))
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Independence

e X and Y are independent, E (| X]|) < oo and E(|Y|) <o =

E(XY) = E(X)E(Y)
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Proof: By Tonelli's Theorem:

E(XY) = Ev(Ex(IXv) = [

e o e () oy
= [ e 00 [ el ) ] o

= [l ) E(XD]dy

= EX) [ IR0

= E(XDE(Y]) <o

Now, using Fubini's Theorem in a similar way gives the desired result.
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Since Ey (Ex (|XY|)) < oo, by Fubinis's Theorem

E(XY) = Ey (Ex (XY)):/OO [/m xyfx (x) dx] fy () dy

—00 —00

_ /oo [yfy () /_O:Oxfx (x) dx] dy

—o0

= [T oA EX) e

—o0
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Example 1: Random Series

Let X, be a sequence of random variables. Set

n n

Sa=Y.Xi . Ya=)_|Xi| and Y =) |X]|

i=1 i=1 i=1

Then we have

Par 1. E (L2 |Xi|) = X721 E (1Xi])

Part 2. If in addition Y2, E (|Xj|) < oo then:
(@) Y71 Xi converges absolutely a.s. and

(b) E (270:1 Xi) = Z?ozl E (Xi)
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Proof of Part 1: By monotonicity

n n o]

Y IXi = Yo 1Y = lim Y |X| =Y (x|

i=1 i=1 i=1

By the MCT

lim E(Y,) = E (nlem Y,,) —E(Y)=E (; |X,-\> (1)
proving Part 1.
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Remark: From (1)
E <Z|X,-|> = lim E(Y,)
i=1 e
= limE <Z|x,-|) = 1im Y E(IXi))
n—oo n~>OOI:1

i=1

[e°]

= Y E(Xi]),

i=1
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Proof of Part 2 (a): From Part1l, E (¥, |Xi|) < oo and so

(0]
Y |Xi| <o  as.
i=1

n
= EX,- converges absolutely a.s. (2)
i=1

proving Par 2 (a)
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Proof of Part 2 (b): By (2)

and for all n,

n
¥
i=1

n
< Z |Xi| <Y, as. with E(Y)<oo.
i=1
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By the DCT

and
E(iX,-) < oo and nIianE<iX;>:E<iX;> (3)
i=1 i=1 i=1
Notice that
nILmOO E (IZH; X,~> = nILmOOiZn; E(Xi) = i; E(Xi) (4)

From (3) and (4)

E < X,-) =) E(X;), proving Part 2 (b)
& :

i i=1
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Example 2: Differentiating Expected Values

Let X (t, w) be a random function (random process).

e For fixed w € O3, X (t,w) is a (deterministic) function of
te(ab).

e For fixed t € (a,b), X (t,w) is a random variable on (Q), F, P)
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Suppose that:

(1) There exists ty € (a, b) such that E (|X (tp)]) < o0

(2) X' (t,w) = S X (t,w) exist for all t € (a,b) a.s. [P] and

(3) There exists a random variable W (w), with E (|[W|) < oo, such that

X (tw)| < W(w), forallte (ab) as. [P]
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Then:

(a) E(IX (£)]) < oo, forall te (ab)

(b) E (|X'(t)]) < oo, torallte (ab)
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Proof:
(a) Left as an exercise.

(b) Let t € (a, b) be fixed.

Consider a sequence h, — 0 (with h, # 0), such that t + h, € (a, b) for
all n.

By the mean value theorem

X (t+ ho) — X (t) = haX' (50)

where s, = apt + (1 —ap) (t+ hy), with 0 < a, < 1. Set

X (t+h,) —X(t)

X, (Sn) = h

=Y, (t).
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By the DCT
E(]X"(t)]) < o0
and
lim E (Y, (1)) = E (nlilnw Y, (t)> = E(X' (1)
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(c) We have just shown that
lim E (Y, (t) = E <th (t)> (5)

Moreover, by definition of derivative,

lim E (Y, (t)) = lim EX(t+h)] = EX ()] _ iE(X(t)) (6)

Sm flus hy dt

The result follows now from (5) and (6).
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MULTIVARIATE MEAN
AND
COVARIANCE MATRIX
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Multivariate Mean and Covariance Matrix
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It is easy to show that
Z:E{XX’}—yy’

Moreover, if
Y =AX+b

then

E(Y)=AE (X)+b =Au +b

Cov (Y) = ACov (X) A’ = AZA’
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o If
Y = X'a

then
E(Y)=a'uy , Var(Y)=aXa

@ Suppose that A is symmetric (A’ = A) and
Y = X'AX

then
E(Y) =y Au+tr (AL)
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E(Y) = E (X'AX)
— E[tr (X'AX)] = E [tr (XX'A)]
— trE [(XX'A)] = tr [E (XX') A]
= tr [(Z+pp) A] = tr (ZA) + tr (up'A)

= tr (ZA) + tr (' Au) = tr (ZA) + p' Au
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Chevichev's and Markov's Inequalities

o2
P(\X—V\>€)§€7
E|X —

P(|X—y|>e)§|ey|

The proof of these two inequalities are left as exercise.
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Jensen’s Inequality

If g (x) is a convex function then

E (g (X)) = g (E(X))
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Proof of Jensen's Inequality

Let / (x) = a+ bx such that
g (x) > a+bx, forall x
and

g(u)=a+bu

This linear function exists because g (x) is convex (/ (x) is a support line).

Now,
E(g(X)) = E(a+bX)=a+bp=g(p).
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Cauchy-Schwarz Inequality

Cov? (X, Y) < Var (X) Var (Y)

(2) Equality holds if and only if Y = t; + t; X, for some constants t; and
t1.
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Proof. Let
g(t) = Var(Y —tX)= Var(Y)—2Cov(X,Y)t+ Var (X) t?

Notice that:

@ g (t) is a convex, second degree polynomial in t.

@ g (t) has a unique root or no root at all (it cannot be negative).

Recall the formula for the roots of a second degree polynomial:

—bEt Vb —dac  —bEA

2a 2a
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Notice that the discriminant is
A®? = b?> —4ac < 0.
In our case
a=Var(Y), b= —-2Cov(X,Y) and c= Var(X)
Therefore,
A? = 4Cov? (X, Y) — 4Var (Y) Var (X) <0,

proving Part 1.
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Proof of Part 2:

e If g (t) = 0 has a solution, ty,say then Var (Y —t;X) =0

@ This means that for some ty that is,

Y—ttX =1t as.

@ In other words, equality holds if and only if

Y =tX+t, as (Y isa linear function of X)
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The Pearson Correlation Coefficient

Cov (X,Y)
f= \/ Var (X) Var (Y)

By Cauchy-Schwarz inequality

ol <1,
with equality if and only if

Y =aX+b, as.
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MOMENTS AND
MOMENT GENERATING
FUNCTION
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w,=E (X") (moments)
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Some Results

Result 1: if Mx (t) exists in an open interval around zero, then My (t) is
infinitely differentiable at zero and

dk

dk
= WMX (0) = py

WMX (t)

t=0

Proof: Use the result of Example 2 and the fact that, for all k,

| X]exp (tX) < Cx + exp (2tX) + exp (—2tX),

which has finite mean for t small enough.
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Result 2: if Mx (t) = My (t) for all t in an open interval around zero,
then X and Y have the same distribution.
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Result 3: if Xq, X5, ..., X,, are independent random variables with m.g.f.

My, (t), then
MZX,' (t) = HMXi (t)

Proof:

My x, (t) = E (exp {t}_Xi}) = E (] [exp {tXi})

= HE (exp{tXi}) = HMX,- (t)
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Result 4: If Y = a—+ bX, then
My (t) = etaMx (bt)
Proof:

My (t) = E (etY) - F (et(a+bX))
—F (etaeth) — oF (etbx>

= etaMX (bt)
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MOMENT GENERATING
FUNCTION FOR SOME
RANDOM VARIABLES
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Binomial

X ~B(np)

X=Xi+Xo+---+X,, iid B(1,p)

Mx, (t) =1+p(ef —1)

My x4, (t) = [Mx, (£)]" = (1+p (e" = 1))"
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Poisson

X ~P(A)
(o] . )\X _ o0 Aet X

MX(t):ZeteAX;_eAZ(ﬂ)
x=0 x=0 '

=exp(—A)exp{Ae'} =exp{A (e —1)}
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Geometric

X ~ Geometric (p)

Mx(t):ileﬂp(l—l’) i[ @=p]"
- #El—p)' provided t < —log(1— p)
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Standard Normal

Z ~ N(0,1)
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General Normal

In the general case

X ~ N(po?)

X = utoZ

1
My 1oz (t) = €Mz (0t) = exp (ty + 2t20'2)
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Gamma

X ~ Gamma (a, A)

Let t < A,
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Mean and Variance for Gamma

Mx () = (1=(t/A)"

E(X)= M (t)|,_, = (a/A) (1= (t/A))" "+ = %
E (Xz) =M (t)|t:0 — (0&—;1) (1—(t/A)™" . _ (o ";21)
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Therefore,

> =

a(a+1) a® @
VarX) = =z e T

Particular case: X ~ X%n) [x =n/2and A =1/2]

EX) = M2 varx)= 22

n/z _ e,
1/2 1/~ "
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MOMENT GENERATING
FUNCTION FOR RANDOM
VECTORS
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Mx (t) = E (exp (t'X))

= E (exp (t1X1 + -4 thp))
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If Mx (t) exists in an open interval that includes 0, then Mx (t) is
infinitely differentiable at zero and

d d L
— Mx (t =— My (0)=E X
ot otar x (£) —o ot oty x (0) (E ! )

For instance 3
E (X1X2) = m X (t) o

and
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If for some € > 0,
Mx (t) = My (t) forallteB(0.)
then

Fx(v) = Fy(v) forallv
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If X1, X2, ..., X, are independent random vectors with m.g.f. Mx, (t),
then

My x, (t) = [ Mx, (t)
i=1

Proof:

Mpx; (8) = E (exp {t')_X;}) = E ([ [exp {t'Xi})

=]]E (exp {t'X;}) =] [ Mx, (t)
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If
Y =a+BX

for some g X p matrix B, then

My (t) = exp (t'a) Mx (B't)
Proof:

My (t) = E (et'Y) —E (et’(a+BX))
=E (et/aet/BX> _ otafp <e(3/t)’x)

= exp (t’a) My (B’t)
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MGF For The Standard Multivariate Normal

Z ~N(0,/)
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MGF For The Multivariate Normal

X ~N(pX) = X = u+xt/?Z

My (t) = M, 510z (t) =exp (tn) Mz (21/%)

(Zl/2t>,21/2t}

N~

= exp (t'u) exp {

1
= exp {t'y—l—zt/Zt}
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