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PART I

MODES OF CONVERGENCE
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NOTATION

{Xn} : sequence of random variables (or vectors)

Xn ∼Fn (x)

X0 ∼ F0 : random variable (or vector)
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MOTIVATION

Different ways in which the sequence {Xn} gets close
to X0 as n increases

In applications: The limit, X0, is used to
approximate Xn for large n
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SOME TYPES OF CONVERGENCE

1 Almost sure convergence (Convergence with prob 1)

2 Convergence in probability

3 Convergence in distribution

4 Convergence in Lp
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ALMOST SURE CONVERGENCE

Suppose that Xn (n = 0, 1, 2, 3, ...) are defined on the
same probability space (Ω,F ,P)

DEFINITION: Xn converges almost surely to X0 if

P
(
lim
n→∞

Xn = X0
)
= 1.

Notation:
Xn → X0, a.s. P
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ALMOST SURE CONVERGENCE

It can be shown that

P
(
lim
n→∞

Xn = X
)
= 1⇐⇒

lim
n→∞

P (|Xm− X | < ε,∨ m ≥ n) = 1,

for all ε > 0.
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ALMOST SURE CONVERGENCE

In other words:

P
(
lim
n→∞

Xn = X
)
= 1⇐⇒

for all ε > 0.

P (limn→∞ {w : |Xn (w)− X (w)| < ε}) = 1.
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Other names for “almost sure convergence”are

“convergence with probability 1"

“convergence almost everywhere”
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CONVERGENCE IN PROBABILITY

Again, Xn and X0 must be defined on the same
probability space (Ω,F ,P)

So we can speak of the set of w ′s where

|Xn (w)− X0 (w)| is small.

Ruben Zamar Deapartment of Statistics UBC ()ASYMPTOTICS August 16, 2016 10 / 45



CONVERGENCE IN PROBABILITY (continued)

DEFINITION: Xn converges in probability to X0 if
for all ε > 0,

lim
n→∞

P (|Xn − X0| < ε) = 1

Notation
Xn →p X0.
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CONVERGENCE IN DISTRIBUTION

Xn converges in distribution to X0 if

lim
n→∞

Fn (x) = F0 (x) ,

for all point x at which F (x) is continuous.

The variables Xn may be defined on different
probability spaces
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RESTRICTION TO CONTINUITY POINTS

The restriction to continuity points of F (x) is a
technicality needed to avoid counter intuitive
situations

A simple example. Let

Xn= 1/n with probability one

Of course
Xn= 1/n→ 0

in all possible ways!
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RESTRICTION TO CONTINUITY POINTS (continued)

However, for all n ≥ 1

FXn (0) = 0

hence
FXn (0)→ 0 6= F0 (0) = 1
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RESTRICTION TO CONTINUITY POINTS (continued)

Claim: the set D of continuity points of F (x) is dense in
R

Proof: the complement set

Dc =
{
x : F (x)− F

(
x−
)
> 0

}
is finite or countable.
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RESTRICTION TO CONTINUITY POINTS (continued)

In fact

Dc = ∪∞
n=1

{
x : F (x)− F

(
x−
)
> 1/n

}
and

#
{
x : F (x)− F

(
x−
)
> 1/n

}
≤ n.

Therefore, for all point x ∈ R there exist sequences
xn ∈ D such that

xn ↑ x and xn ↓ x .
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RELATION BETWEEN THESE TYPES OF
CONVERGENCE

Type Implies a.s. Probability Distribution

a.s. ⇒ - Yes Yes

Probability ⇒ No - Yes

Distribution ⇒ No No -

Dist. to C ⇒ No Yes -
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CONVERGENCE IS PRESERVED BY CONTINUOUS
FUNCTIONS

Suppose g is a continuous function. Then

Xn → X0 a.s. ⇒ g (Xn)→ g (X0) a.s. (easy)

Xn →p X0 ⇒ g (Xn)→p g (X0) (mildly diffi cult)

Xn →d X0 ⇒ g (Xn)→d g (X0) (fairly diffi cult)
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MARGINAL CONVERGENCE AND JOINT
CONVERGENCE

Let

Xn =

 X1,n
...

Xm,n

 and X0 =

 X1,0
...

Xm,0



Xi ,n → Xi ,0 a.s. (i = 1, ..., p)⇒ Xn → X0 a.s.

Xi ,n →p Xi ,0 (i = 1, ..., p) ⇒ Xn →p X0
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MARGINAL CONVERGENCE AND JOINT
CONVERGENCE

However

Xi ,n →d Xi ,0 (i = 1, ..., p) does not imply

Xn →d X0
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SLUTZKY’S THEOREM

(a) If Xn →d X0 and Yn →p c, then

Xn + Yn →d X0 + c .

(b) If Xn →d X0 and Yn →p c, then

XnYn →d cX .
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THE WEAK LOW OF LARGE NUMBERS (WLLN)

Suppose that X1,X2,X3, ... are iid with

E {|X1|} < ∞ and E (X1) = µ

Then

X̄n =
1
n

n

∑
j=1

Xj →p µ.
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THE STRONG LOW OF LARGE NUMBERS (SLLN)

Suppose that X1,X2,X3, ... are iid with

E {|X1|} < ∞ and E (X1) = µ

Then

X̄n =
1
n

n

∑
j=1

Xj → µ a.s.
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THE CENTRAL LIMIT THEOREM

Suppose that X1, ...,Xn, ... are iid with

E (X1)= µ and Var (X1) = σ2< ∞

√
n
(
X n − µ

)
/σ →d N (0, 1)
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THE MULTIVARIATE CENTRAL LIMIT THEOREM

Suppose that X1, ...,Xn, ... are iid with mean

µ =


E (X1)
E (X2)
...

E (Xp)

 and Var (Xj ) = σ2j < ∞, j = 1, 2, ..., p.

Then √
n
(
Xn − µ

)
→d N (0,Σ)
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Equivlently √
nΣ−1/2 (Xn − µ

)
→d N (0, I )

where
Σ−1/2 =

p

∑
j=1

λ−1/2
j aja′j

Here,
λ1, ...,λp are the eigenvalues of Σ

and

a1, ..., ap are the corresponding eigenvectors.
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THE DELTA METHOD - UNIVARIATE

Suppose that

√
n (Xn − µ) →d N

(
0, σ2

)
Let g (t) be a continuously differentiable function at
µ.
Then

√
n (g (Xn)− g (µ)) →d N

(
0, [g ′ (µ)]2 σ2

)
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THE DELTA METHOD - MULTIVARIATE

√
n (Xn − µ) →d N (0,Σ)

g (t) is a continuously differentiable function at µ.
Then

√
n (g (Xn)− g (µ)) →d N

(
0,Og (µ)′ ΣOg (µ)

)
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THE DELTA METHOD - MULTIVARIATE

Og (t) is the gradient of g , that is,

Og (t) =
(

∂g (t)
∂tj

)
=



∂g(t)
∂t1

∂g(t)
∂t2

...

∂g(t)
∂tp


.
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EXAMPLE 1

Suppose that X1,X2, ...,Xn are i .i .d . Binomial(1, p) .

Then

p̂ →p p by the WLLN

and √
n (p̂− p)√
p (1− p)

→d N (0, 1) , by the CLT (1)
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EXAMPLE 1 (CONTINUED)

Hence√
p (1− p)√
p̂ (1− p̂)

→p 1 by continuity of g (t) =
√
t (1− t)

(2)

By (1) and (2) and Slutzky’s Theorem
√
n (p̂− p)√
p (1− p)

√
p (1− p)√
p̂ (1− p̂)

→d N (0, 1)
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EXAMPLE 1 (CONTINUED)

That is √
n (p̂− p)√
p̂ (1− p̂)

→d N (0, 1)
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EXAMPLE 2

The odds ratio is defined as

r =
p

1− p
and an estimate is given by

r̂ =
p̂

1− p̂
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EXAMPLE 2 (CONTINUED)

Using (1) and the Delta Method with

g (t) =
t

1− t

g ′ (t) =
1− t + t
(1− t)2

=
1

(1− t)2
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EXAMPLE 2 (CONTINUED)

We have
√
n (p̂− p) →d N (0, p (1− p))

√
n (r̂ − r) →d N

0, [ 1

(1− p)2

]2
p (1− p)


= N

(
0,

p

(1− p)3

)
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Hence, for large n,

r̂ =
p̂

1− p̂ ∼ N
(

p
1− p ,

p

n (1− p)3

)
= N

(
r ,

r2

np (1− p)

)
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EXAMPLE 3

Let X1,X2, ...,Xn be i .i .d . with

E (X1) = µ

Var (X1) = σ2

Var
(
(X1 − µ)2

)
= τ

4
< ∞
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EXAMPLE 3

(Continued)
Consider the sample variance estimate,

σ̂2n =
∑n
i=1 (Xi − X̄ )

2

n
.

Note that

σ̂2n =
∑n
i=1 [(Xi − µ)− (X̄ − µ)]

2

n

=
∑n
i=1 [Yi − Ȳ ]

2

n
, with E (Yi) = 0.
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EXAMPLE 3 (CONTINUED)

Can assume w.l.g. that µ = 0 and σ2 = E
(
Y 2
)

By the CLT

√
n
(
Y 2− σ2

)
→d N

(
0, var

(
Y 21
))
= N (0, τ4)
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EXAMPLE 3 (CONTINUED)

By the CLT and the WLLN
√
n Y →d N

(
0, σ2

)
(3)

and
Y →p 0 (4)

By (3) and (4) and Slutzky’s Theorem
√
n Y

2 →p 0
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EXAMPLE 3 (CONTINUED)

Now
√
n
(
σ̂2n − σ2

)
=
√
n
[
Y 2− Y 2− σ2

]
=
√
n
[
Y 2− σ2

]
−
√
n Y

2

→d N (0, τ4) (5)
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EXAMPLE 3 (CONTINUED)

In the normal case,
√
n
(
σ̂2n − σ2

)
→d N (0, 2σ4) because

τ4 = var
(
Y 21
)
= var

(
(X1− µ)2

)
= σ4var

((
X1− µ

σ

)2)

= 2σ4 because
(
X1− µ

σ

)2
∼ χ2(1).
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EXAMPLE 4

Consider now the asymptotic distribution of σ̂.

That is, study the limiting behavior of
√
n (σ̂− σ)

Recall that √
n
(
σ̂2n−σ2

)
→d N (0, τ4)
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EXAMPLE 4 (CONTINUED)

Using the δ-method with

g (t) =
√
t g ′ (t) =

1

2
√
t

g ′
(
σ2
)
=

1

2
√

σ2
=
1
2σ

We have √
n (σ̂− σ)→ N

(
0,
1
4σ2

τ4

)
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EXAMPLE 4 (CONTINUED)

In the normal case,

√
n (σ̂− σ)→ N

(
0,
1
4σ2

2σ4
)
= N

(
0,

σ2

2

)
.
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