Characteristic Function

A complex valued random variable X : 2 — C is of
the form

X (w) =Y (w)+1iZ (w),

where Y and Z are real valued random variable. In this
case, we define

E(X)=E(Y)+iE(Z)

provided
E(lY])<oo and FE(|Z]) < 0.



Recall that

| X| = VXX
where
X'=Y -7

is the conjugate of X. That is

1X| =[Y +iZ][Y —iZ]
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Recall that

e — cos (51:) + 7sin (SC)

and so

6] = y/[cos (2) + isin (2)] [cos (a) + isin (z)]

= \/cos2 () + sin® (x)



The characteristic function of a real valued random
variable, X, is now defined as

ox (1) = E (") = E{cos (tX)} +iFE {sin (tX)}
Since
‘eitX|2 —1,

¢x (t) is finite for all ¢ € R.



We will state (without proof) the following results:

Result 1:
(a)

Gatvx () = ™ Px (bt)

(b) If Xj, ..., X,, are independent then

¢2J’7‘:1 X; (75) - H?:1¢Xi (t) .

(c)If E {\X\k} < 00, for some k > 1, then

(it)! + o ()




In particular, if F(X) =0 and Var (X) = 02 < oo,
then

¢X(t):1—%2t2+0(t2)-

(d) ¢x () = oy () < Fx = Fy

(e) Levy’s Continuity Theorem: If X, —; X
then ¢x, (t) — ¢x (t).

Moreover, if ¢x (t) — g (t), and g (¢) is continuous

at zero, then ¢ (t) is the characteristic function of a
random variable X and X,, —; X.

(F)If Z ~ N (0,1), then ¢4 (t) = e /2.



Multivariate Case

The characteristic function of a real valued random
vector, X, is defined as follows:

¢x (t) = E {exp (it'X)} = E {cos (t'X)} +iE {sin (t'X)}

Clearly ¢x (t) is finite for all t € RP.

We will state without proof the following result:



Result 2 (Multivariate Case):

(a)
E {exp (it' (a+BX))} = exp (it'a) E {exp (it' BX)}

= exp (it'a) F {exp (z (B’t)/X>}

Pa+px (t) = E {exp (it' (a+BX))}
= exp (it'a) F {exp (it'BX)}
= exp (it'a) F {eXp (z (B’t)/X>}

= exp (it'a) ¢x (B't)



(b) If Xy, ..., X,, are independent then

b5 x, (8) = I 6, (6).

(c) If E {\Xl|2} < 0, for all 1 < [ < p, then

bx (£) = 1+ iE (X) () — %t’E (XX to ( [t])

(d) ¢x (t) = ¢y (t) <= Fx = Fy

(e) Levy’s Continuity Theorem: If X,, —; X then
ox, (t) — ¢x (t). Moreover, if ¢x, (t)— g(t), continuous
at othen ¢(t) is the characteristic function of a random
vector X and X,, —4 X.

(f) If Z ~ N (0,1), then ¢ (t) = exp (—3t't) .



The Central Limit Theorem (CLT)

Result 3: Suppose that X, ..., X,, are iid with mean
u and finite variance 0. Then

n(X, —
Vi 4 —q N (0,1).
o
Proof: Let
X; —
Z; = ,U’ 1= 1, ,n
o

Then 7y, ..., Z, are iid with mean 0 and finite variance 1
and (by Result 6 (c))

2
¢Zi(t)=1—%+0(t2)-

Moreover,

and
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By Result 1 (a) and (b) we have

dynz (1) = duymxy, z (1)

- H;'L:1¢Zi (t/\/ﬁ)

2 2\ 1"
= [1—t——|—0<t—>] —>6_t2/2.
2n n
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Note: let

-G

Now,

hn (t) = log (gn (1))
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Therefore

t2 2\ 1" 2
Qn(t)=[1——+0<—>] —e 2, forallt
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Multivariate CLT

Suppose that Xy, Xo, ..., X,, are iid with mean p and
covariance matrix Y. Then

vn (Xn — ,LL) —q N (0,2).

Proof. Let Y; = X; — i, then
E(Y;)=0, E (YjY;) =%

Moreover,

Vit (R — ) = V¥ %ZY

e () =05y v, (=t
e
|- Lesero (%)] n
. (em)
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the Characteristic function of n(0,%).
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The Delta Method - Univariate Case

Suppose that
Vi (X, —0) =4 N (0,0%)

Let g (t) be a continuously differentiable function at 6.
Then

VL9 (Xa) = g (0)) —a N (0,19 (0) %)
Proof.

First of all we notice that by Slutzky’s Theorem
(b) we have that

1
NG

Moreover, by the Mean Value Theorem
9(Xn) =g(0) + g (6n) (Xn — 0)

Xp—0=—yn(X,—0)—,0.

with 6, between 6 and X,,. Since |0,, — 0] < |X,, — 0], we
have that

0p, —p 0
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and since ¢’ is continuous at 6,

g (0n) —=p g’ (0).

Therefore
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Example. Suppose that Y7, Y5, ..., Y, arei.id. Exp()).
Fy(y)=1—e

Show that

(@) A=1/Y —, \,

(b) v (A=) =4 N (0,2?)
(c) Vi (& - )\> /A =4 N(0,1)

(d) Use (c) to construct and approximate 95% Con-
fidence interval for A if n = 25 and y = 20.
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Solution

(a) By the WLLN

— 1
Y_>;DE(Y1):X

By continuity of the function g (¢) = 1/t,at t = 1/X # 0,

A== =, A (1)

(b) By the CLT

Vi (Y = 1/X) —4 N (0,1/)%)

Let
g(t) =1/t
g (t) = -1/
g (1/X) = =X°

9 (LN =\
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By the delta-method, we get
Vi (1)Y = X) =g N (0, (1/X) X)) =N (0,2%)  (2)

(c¢) By (1), (2) and Slutzky’s Theorem,

N (X . /\) JASa N (0,02 /A=N(0,1) (3)

(d)

P (-1.96 <n (X - )\) /A< 1.96) ~ 23 (1.96) — 1 = 0.95

1.96)\ . 1.96.)
- P - 96)\+)\§>\§)\+ 96 ~ 0.95
NG NG

. 1.96
= A (1 + —) is an approx 95% CI for A

1 1.96
= — (1 — —) is an approx 95% CI for A

= (0.0304 , 0.0696) is an approx 95% CI for A
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The Delta-Method- Multivariate Case

Suppose now hat
vn (X, —0) —4 N (0,%)

Let g (t) be a continuously differentiable function at 6.
Then

\/ﬁ(g (Xn> - g (9)) —d N (07 vg (0)/ ng (0))

where V, (t) is the gradient of g, that is,

dg(t)
aat(%)
dg(t)
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Proof:

By the Mean Value Theorem
9(Xn) =g(0) + vy (0a) (Xi = 0),
where
0, = (1 —an) X, + a0,
for some 0 < «,, < 1. Therefore
Vit[g (R) = g(0)] = 7, (6.) [V (X, — )] — 9, (0)' Y,

with' Y ~N (0,X) (using the multivariate version of Slutzky’s
Theorem). Finally,

Vg (0) Y~N (0,7, (0) £V, (0)) .
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The Lindeberg Condition

There is a more general version of the CLT that applies
to triangular arrays:

Xn,laXn,Qa U 7Xnk

y'vn

with k, — oo as n — oo. Here the X, ; (j =1,2,...,n4,)
are assumed independent, with mean 0 and variance

on;=E(X7;), =12, k.
For example, if k,, = n,

X1
Xo1, X2

X3.1, X392, X33

Xy, Xa2, Xa3, Xaa

X5.1, X592, X53, X54, X55

Let

and



Then

S_ P 5 —d N (Oa 1)
" Zjn:1 On.j
provided that for all
g
Ap=— E(Xﬁj I(X2j>es721))—>0, for all € > 0.
S 9 b

(4)
This is known as the Lindeberg condition. It can be
shown that if

Sn 0-7213'
— —¢ N (0,1) and max —= —0
Sn 1<j<k, $2

then (4) holds.

The additional condition regarding the maximal ra-
tio of variances going to zero is needed. Consider the
following counter-example:

ij = X] ~ N (0,0’?) ,

with
0?=1 and o2 =ns’_,
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Example 1: In the i.i.d. case Lindeberg condition is
satisfied because

Xpj=2X;, foralln,j

Var (X, ) =0 foralln,j

| o
= Z X2 X?j > enaQ))

= %E (Xl2 ](Xl2 > 67102)) — 0, asn — oo,

by the DCT applied to
X12 I (X12 > en02),

which is dominated by X? and converges to 0 as n —
00.
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Example 2: The simple linear regression model
provides and example where the “triangular array" ver-
sion of the CLT is very useful.

Consider the model

Y;:a-i—ﬁ(xi—f)-l—Ui

where Uy, Us,...,U, are independent, with mean zero
2

and finite variance o“.

We will also assume that

max —— =0, — 0, asn — oc.
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The Least Squares estimate of o and 3 are

SV X7 @)

(o}
I

and (=

n > (2 — )’

Notice that

Hence
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and
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Now we will investigate the asymptotic distribution of

B.

X (YY) (2 — 1)

S Sy
= 2. Yi(z: — 7) because Y(z; —2)=0
S (2 —1)° Z =)
:Zy;wnz
with
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Moreover

(B-8) = (X Yiwni - B)
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Let
vaj = ijn,j = ijj = Zj, for all j,n

The subscript n is dropped from the notation for sim-
plicity.

Then
E(Z;) =0, o? =Var(Z;) = w?aQ,

and so
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and
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Now, we check the Lindeberg Condition:

n

A= 5 Y B(Z 1(2 > )
_ w ; W2E (U2 T (wiU? > es?))
) ; WE (U7 1(wU? > es2))
<Xl z W (U (U} > a®/b,)

— E(U12 I (U12 > 602/bn)) Mzﬂ:u@

o

E 2 I 2 2 bn
_ (Ul (0;2>60/ )) _>()7 as n — oo
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Recall that

and
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Hence we have:

2 N2 N2
v Y @-1) (5-3)
s2 o2

S -]

1 (z;— 1)

T Y (i — )

1
< —b,, forallj
o
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Hence

2
Sh

I(w2U2 > 682) =1 (w—?U2 > €>
Jj-1 n) — 1
<1 (b,U7 > ¢)

and therefore

S (- 7)° 2 2 2
A, < TZU}].E (U I(b,U7 >¢))
=1

_ %E (U12 I (anl2 > 6)) 2 (@i ?)2
o I’Z—ZU)
_EU} I(U?>e?/b)) 0. as oo

o2

by the DCT, because b,, — 0, as n — oc.
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Summary:

\/2?1:’31' —ff)Q <B—5> LN (0.1)

So, for large n
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Suppose now that

Z?:l (z; — 3_3)2 N 0925

Then

\/ﬁ\/ 2zt ffj{ 2l (B - B) —4 N (0,1)

That is,

Vi (3-5) =an (0.5).

Notice that

is a “noise to signal” ratio.
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