
Characteristic Function

A complex valued random variable X : Ω → C is of
the form

X (w) = Y (w) + iZ (w) ,

where Y and Z are real valued random variable. In this
case, we define

E (X) = E (Y ) + iE (Z)

provided

E (|Y |) <∞ and E (|Z|) <∞.
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Recall that

|X| =
√
XX∗,

where

X∗ = Y − iZ

is the conjugate of X. That is

|X| =
√

[Y + iZ] [Y − iZ]

=

√
Y 2 − (iZ)2 =

√
Y 2 + Z2
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Recall that

eix = cos (x) + i sin (x)

and so

∣∣eix∣∣ =

√
[cos (x) + i sin (x)] [cos (x) + i sin (x)]′

=

√
cos2 (x) + sin2 (x)

= 1.
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The characteristic function of a real valued random
variable, X, is now defined as

φX (t) = E
(
eitX

)
= E {cos (tX)}+ iE {sin (tX)}

Since

∣∣eitX∣∣2 = 1,

φX (t) is finite for all t ∈ R.
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We will state (without proof) the following results:

Result 1:
(a)

φa+bX (t) = eitaφX (bt)

(b) If X1, ..., Xn are independent then

φ∑n
j=1Xi

(t) = Πn
j=1φXi

(t) .

(c) If E
{
|X|k

}
<∞, for some k ≥ 1, then

φX (t) =

k∑
j=0

E
(
Xj
)

j!
(it)j + o

(
tk
)

= 1 + itE (X)− t2

2
E
(
X2
)

+ · · ·+
E
(
Xk
)

k!
(it)k + o

(
tk
)
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In particular, if E (X) = 0 and V ar (X) = σ2 < ∞,
then

φX (t) = 1− σ2

2
t2 + o

(
t2
)
.

(d) φX (t) = φY (t)⇐⇒ FX = FY

(e) Levy’s Continuity Theorem: If Xn →d X
then φXn

(t)→ φX (t) .

Moreover, if φXn
(t)→ g (t) , and g (t) is continuous

at zero, then g (t) is the characteristic function of a
random variable X and Xn →d X.

(f) If Z ∼ N (0, 1) , then φZ (t) = e−t
2/2.
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Multivariate Case

The characteristic function of a real valued random
vector, X, is defined as follows:

φX (t) = E {exp (it′X)} = E {cos (t′X)}+iE {sin (t′X)}

Clearly φX (t) is finite for all t ∈ Rp.

We will state without proof the following result:
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Result 2 (Multivariate Case):

(a)

E {exp (it′ (a+BX))} = exp (it′a)E {exp (it′BX)}

= exp (it′a)E
{

exp
(
i (B′t)

′
X
)}

φa+BX (t) = E {exp (it′ (a+BX))}

= exp (it′a)E {exp (it′BX)}

= exp (it′a)E
{

exp
(
i (B′t)

′
X
)}

= exp (it′a)φX (B′t)
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(b) If X1, ...,Xn are independent then

φ∑n
j=1 Xi

(t) = Πn
j=1φXi

(t) .

(c) If E
{
|Xl|2

}
<∞, for all 1 ≤ l ≤ p, then

φX (t) = 1 + iE (X)′ (t)− 1

2
t′E (XX′) t+o

(
‖t‖2

)

(d) φX (t) = φY (t)⇐⇒ FX = FY

(e) Levy’s Continuity Theorem: If Xn →d X then
φXn

(t) → φX (t) . Moreover, if φXn
(t)→ g (t), continuous

at 0,then g (t) is the characteristic function of a random
vector X and Xn →d X.

(f) If Z ∼ N (0, I) , then φZ (t) = exp
(
−1

2t
′t
)
.
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The Central Limit Theorem (CLT)

Result 3: Suppose that X1, ..., Xn are iid with mean
µ and finite variance σ2. Then

√
n
(
X̄n − µ

)
σ

→d N (0, 1) .

Proof: Let

Zi =
Xi − µ
σ

, i = 1, ..., n.

Then Z1, ..., Zn are iid with mean 0 and finite variance 1

and (by Result 6 (c))

φZi (t) = 1− t2

2
+ o

(
t2
)
.

Moreover,

Z̄ =
X̄ − µ
σ

and
√
nZ̄ =

√
n
(
X̄ − µ

)
σ

.
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By Result 1 (a) and (b) we have

φ√nZ̄ (t) = φ(1/
√
n)
∑n

j=1 Zi
(t)

= Πn
j=1φZi

(
t/
√
n
)

=

[
1− t2

2n
+ o

(
t2

n

)]n
→ e−t

2/2.
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Note: let

gn (t) =

[
1− t2

2n
+ o

(
t2

n

)]n

Now,

hn (t) = log (gn (t))

= n log

[
1− t2

2n
+ o

(
t2

n

)]

= n

[
log

(
1− t2

2n

)
+

1

1− t2

2n + õ
(
t2

n

)o(t2
n

)]
,

0 ≤
∣∣∣∣õ(t2n

)∣∣∣∣ ≤ ∣∣∣∣o(t2n
)∣∣∣∣

= log

(
1− t2

2n

)n
+

o
(
t2

n

)
/
(
t2

n

)
1− t2

2n + õ
(
t2

n

)t2

→ log
(
e−

t2

2

)
= −t

2

2
, for all t
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Therefore

gn (t) =

[
1− t2

2n
+ o

(
t2

n

)]n
→ e−

t2

2 , for all t
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Multivariate CLT

Suppose that X1,X2, ...,Xn are iid with mean µ and
covariance matrix Σ. Then

√
n
(
X̄n − µ

)
→d N (0,Σ) .

Proof. Let Yj = Xj − µ, then
E (Yj) = 0, E

(
YjY

′
j

)
= Σ

Moreover,

√
n
(
X̄n − µ

)
=
√
nȲ =

1√
n

n∑
j=1

Yj

φ√nȲ (t) = φ∑n
j=1 Yj

(
1√
n

t

)

=

[
φY1

(
1√
n

t

)]n

=

[
1− 1

2n
t′Σt+o

(
‖t‖2

n

)]n

→ exp

{
−1

2
t′Σt

}
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the Characteristic function of N (0,Σ) .
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The Delta Method - Univariate Case

Suppose that
√
n (Xn − θ)→d N

(
0, σ2

)
Let g (t) be a continuously differentiable function at θ.
Then

√
n (g (Xn)− g (θ))→d N

(
0, [g′ (θ)]

2
σ2
)

Proof.

First of all we notice that by Slutzky’s Theorem
(b) we have that

Xn − θ =
1√
n

√
n (Xn − θ)→p 0.

Moreover, by the Mean Value Theorem

g (Xn) = g (θ) + g′ (θn) (Xn − θ)

with θn between θ and Xn. Since |θn − θ| ≤ |Xn − θ|, we
have that

θn →p θ
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and since g′ is continuous at θ,

g′ (θn)→p g
′ (θ) .

Therefore

√
n (g (Xn)− g (θ)) = g′ (θn)

√
n (Xn − θ)

→d g′ (θ)N
(
0, σ2

)
= N

(
0, [g′ (θ)]

2
σ2
)
.
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Example. Suppose that Y1, Y2, ..., Yn are i.i.d. Exp (λ) .

Fλ (y) = 1− e−λy

Eλ (Y ) =
1

λ
, var (Y ) =

1

λ2

Show that

(a) λ̂ = 1/Ȳ →p λ,

(b)
√
n
(
λ̂− λ

)
→d N

(
0, λ2

)

(c)
√
n
(
λ̂− λ

)
/λ̂→d N (0, 1)

(d) Use (c) to construct and approximate 95% Con-
fidence interval for λ if n = 25 and ȳ = 20.
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Solution

(a) By the WLLN

Ȳ →p E (Y1) =
1

λ

By continuity of the function g (t) = 1/t, at t = 1/λ 6= 0,

λ̂ =
1

Ȳ
→p λ (1)

(b) By the CLT

√
n
(
Ȳ − 1/λ

)
→d N

(
0, 1/λ2

)
Let

g (t) = 1/t,

g′ (t) = −1/t2

g′ (1/λ) = −λ2

[g′ (1/λ)]
2

= λ4
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By the delta-method, we get
√
n
(
1/Ȳ − λ

)
→d N

(
0,
(
1/λ2

)
λ4
)

= N
(
0, λ2

)
(2)

(c) By (1), (2) and Slutzky’s Theorem,
√
n
(
λ̂− λ

)
/λ̂→d N

(
0, λ2

)
/λ = N (0, 1) (3)

(d)

P
(
−1.96 ≤

√
n
(
λ̂− λ

)
/λ̂ ≤ 1.96

)
≈ 2Φ (1.96)− 1 = 0.95

⇒ P

(
−1.96λ̂√

n
+ λ̂ ≤ λ ≤ λ̂+

1.96λ̂√
n

)
≈ 0.95

⇒ λ̂

(
1± 1.96√

n

)
is an approx 95% CI for λ

⇒ 1

20

(
1− 1.96

5

)
is an approx 95% CI for λ

⇒ (0.0304 , 0.0696) is an approx 95% CI for λ
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The Delta-Method- Multivariate Case

Suppose now hat

√
n (Xn − θ)→d N (0,Σ)

Let g (t) be a continuously differentiable function at θ.
Then

√
n (g (Xn)− g (θ))→d N

(
0,Og (θ)′ΣOg (θ)

)
where Og (t) is the gradient of g, that is,

Og (t) =

(
∂g (t)

∂ti

)
=


∂g(t)
∂t1
∂g(t)
∂t2...
∂g(t)
∂tp

 .
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Proof:

By the Mean Value Theorem

g
(
X̄n

)
= g (θ) + Og (θn)

′ (Xn − θ) ,

where

θn = (1− αn) Xn + αnθ,

for some 0 ≤ αn ≤ 1. Therefore

√
n
[
g
(
X̄n

)
− g (θ)

]
= Og (θn)

′ [√n (Xn − θ)
]
→ Og (θ)′Y,

withY ∼N (0,Σ) (using the multivariate version of Slutzky’s
Theorem). Finally,

Og (θ)
′
Y∼N

(
0,Og (θ)

′
ΣOg (θ)

)
.
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The Lindeberg Condition

There is a more general version of the CLT that applies
to triangular arrays:

Xn,1, Xn,2, · · · , Xn,kn

with kn →∞ as n→∞. Here the Xn,j (j = 1, 2, ..., nkn)
are assumed independent, with mean 0 and variance

σ2
n,j = E

(
X2
n,j

)
, j = 1, 2, ..., kn.

For example, if kn = n,

X1,1

X2,1, X2,2

X3,1, X3,2, X3,3

X4,1, X4,2, X4,3, X4,4

X5,1, X5,2, X5,3, X5,4, X5,5

· · ·

Let

Sn =

kn∑
j=1

Xn,j

and

s2
n =

kn∑
j=1

σ2
n,j
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Then

Sn
sn

=

∑kn
j=1Xn,j√∑kn
j=1 σ

2
n,j

→d N (0, 1)

provided that for all

An =
1

s2
n

kn∑
j=1

E
(
X2
n,j I

(
X2
n,j > εs2

n

))
→ 0, for all ε > 0.

(4)
This is known as the Lindeberg condition. It can be
shown that if

Sn
sn
→d N (0, 1) and max

1≤j≤kn

σ2
n,j

s2
n

→ 0

then (4) holds.

The additional condition regarding the maximal ra-
tio of variances going to zero is needed. Consider the
following counter-example:

Xn,j = Xj ∼ N
(
0, σ2

j

)
,

with
σ2

1 = 1 and σ2
n = ns2

n−1
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Example 1: In the i.i.d. case Lindeberg condition is
satisfied because

Xn,j = Xj, for all n, j

V ar (Xn,j) = σ2 for all n, j

s2
n = nσ2

An =
1

nσ2

kn∑
j=1

E
(
X2
,j I

(
X2
,j > εnσ2

))

=
1

σ2
E
(
X2

1 I
(
X2

1 > εnσ2
))
→ 0, as n→∞,

by the DCT applied to

X2
1 I

(
X2
1 > εnσ2

)
,

which is dominated by X2
1 and converges to 0 as n→

∞.
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Example 2: The simple linear regression model
provides and example where the “triangular array" ver-
sion of the CLT is very useful.

Consider the model

Yi = α + β (xi − x̄) + Ui,

where U1, U2, ..., Un are independent, with mean zero
and finite variance σ2.

We will also assume that

max
1≤i≤n

(xi − x̄)2∑
(xi − x̄)2 = bn → 0, as n→∞.
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The Least Squares estimate of α and β are

α̂ =

∑
Yi
n

and β̂ =

∑(
Yi − Ȳ

)
(xi − x̄)∑

(xi − x̄)2

Notice that

α̂ = Ȳ =

∑
Yi
n

=

∑
α + β (xi − x̄) + Ui

n

= α +

∑
Ui
n

,

Hence

E (α̂) = α, var (α̂) =
σ2

n
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E
(
β̂
)

= E

(∑
(xi − x̄)E

(
Yi − Ȳ

)∑
(xi − x̄)2

)

=
1∑

(xi − x̄)2E
(∑

(xi − x̄)Yi

)

=
1∑

(xi − x̄)2

(∑
(xi − x̄)E (α + β (xi − x̄) + Ui)

)

=

∑
(xi − x̄)2∑
(xi − x̄)2β = β
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and

var
(
β̂
)

=
1[∑

(xi − x̄)2
]2

∑
(xi − x̄)2 var (Yi)

=
σ2∑

(xi − x̄)2 .
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Now we will investigate the asymptotic distribution of
β̂.

β̂ =

∑(
Yi − Ȳ

)
(xi − x̄)∑

(xi − x̄)2

=

∑
Yi (xi − x̄)∑
(xi − x̄)2 , because

∑
Ȳ (xi − x̄) = 0

=
∑

Yiwn,i

with

wn,i =
xi − x̄∑
(xi − x̄)2 ,

∑
wn,i = 0,

∑
wn,ixi =

∑
wn,i (xi − x̄)
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=

∑
(xi − x̄)2∑
(xi − x̄)2 = 1

∑
w2
n,i =

1∑
(xi − x̄)2

Moreover

(
β̂ − β

)
=
(∑

Yiwn,i − β
)

=
(∑

(α + βxi + Ui)wn,i − β
)

=
∑

Uiwn,i
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Let

Zn,j = Ujwn,j = Ujwj = Zj, for all j, n

The subscript n is dropped from the notation for sim-
plicity.

Then

E (Zj) = 0, σ2
j = V ar (Zj) = w2

jσ
2,

and so

s2
n =

∑
σ2
j

= σ2
∑

w2
j

=
σ2∑

(xi − x̄)2
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and

Sn
sn

=

∑n
j=1 Zj

sn

=

√∑n
i=1 (xi − x̄)2

σ

n∑
j=1

Ujwj

=

√∑n
i=1 (xi − x̄)2

σ

(
β̂ − β

)
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Now, we check the Lindeberg Condition:

An =
1

s2
n

n∑
j=1

E
(
Z2
j I

(
Z2
j > εs2

n

))

=

∑
(xi − x̄)2

σ2

n∑
j=1

w2
jE
(
U 2
j I

(
w2
jU

2
j > εs2

n

))

=

∑
(xi − x̄)2

σ2

n∑
j=1

w2
jE
(
U 2

1 I
(
w2
jU

2
1 > εs2

n

))

≤
∑

(xi − x̄)2

σ2

n∑
j=1

w2
jE
(
U 2

1 I
(
U 2

1 > εσ2/bn
))

= E
(
U 2

1 I
(
U 2

1 > εσ2/bn
)) ∑ (xi − x̄)2

σ2

n∑
j=1

w2
j

=
E
(
U 2

1 I
(
U 2

1 > εσ2/bn
))

σ2
→ 0, as n→∞
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Recall that

w2
j =

(xj − x̄)2[∑
(xi − x̄)2

]2

and

s2
n =

σ2∑
(xi − x̄)2
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Hence we have:

w2
j

s2
n

=

∑
(xi − x̄)2

σ2

(xj − x̄)2[∑
(xi − x̄)2

]2

=
1

σ2

(xj − x̄)2∑
(xi − x̄)2

≤ 1

σ2
bn, for all j
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Hence

I
(
w2
jU

2
1 > εs2

n

)
= I

(
w2
j

s2
n

U 2
1 > ε

)

≤ I
(
bnU

2
1 > ε

)
and therefore

An ≤
∑

(xi − x̄)2

σ2

n∑
j=1

w2
jE
(
U 2

1 I
(
bnU

2
1 > ε

))

=
1

σ2
E
(
U 2

1 I
(
bnU

2
1 > ε

)) ∑ (xi − x̄)2∑
(xi − x̄)2

=
E
(
U 2

1 I
(
U 2

1 > εσ2/bn
))

σ2
→ 0, as n→∞

by the DCT, because bn → 0, as n→∞.
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Summary:

√∑n
i=1 (xi − x̄)2

σ

(
β̂ − β

)
→d N (0, 1)

So, for large n

√∑n
i=1 (xi − x̄)2

σ

(
β̂ − β

)
≈ N (0, 1)

⇒ β̂ ≈ N

(
β,

σ2∑n
i=1 (xi − x̄)2

)
= N

(
E
(
β̂
)
, var

(
β̂
))
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Suppose now that

∑n
i=1 (xi − x̄)2

nσ2
→ σ2

x

σ2

Then

√
n

√∑n
i=1 (xi − x̄)2

nσ2

(
β̂ − β

)
→d N (0, 1)

That is,

√
n
(
β̂ − β

)
→d N

(
0,
σ2

σ2
x

)
.

Notice that

σ2

σ2
x

is a “noise to signal”ratio.
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