
Markov Chains

Consider the sequence

X0, X1, X2, ...

of random variables taking values on a finite or countable infinite set of integer
values:

D = {0, 1, 2, ..., k} (finite case)

or

D = {0, 1, 2, ...} (infinite, countable case)

Definition (Markov Chain): The sequence X0, X1, X2, ... is a stationary
Markov chain if

P (Xn+1 = j | X0 = i0, X1 = i1, · · · , Xn−1 = in−1, Xn = i) =

= P (Xn+1 = j | Xn = i) = P (X1 = j | X0 = i)

= Pij ,

for all i0, i1, · · · , in−1, i in D and for all n ≥ 0.
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Definition (Transition Matrix): The transition matrix P is a squared
stochastic matrix with generic element Pij = P (X1 = j | X0 = i) . That is

P = (Pij)

where the Pij satisfy the condition

∑
j∈D

Pij = 1, for all i

Definition (Initial Probability). The initial probability is a vector (or
sequence in the infinite case) p which entries are the initial probabilities for the
chain, that is,

pi = P (X0 = i) , for all i ∈ D.
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Example 1 (A simple weather Markov Chain). Suppose that the
weather condition tomorrow (Sunny=0, Cloudy=1 and Rainy/Snowy=2) only
depends on the weather condition today, with transition probabilities

P =

 0.5 0.4 0.1
0.4 0.2 0.4
0.1 0.4 0.5
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Example 2 (A random walk with absorbing barrier). Suppose that

Pij =

 α j = i

1− α j = i+ 1
, i = 0, 1, 2, 3

P4j =

 1 j = 4

0 otherwise

where k = 4 is an absorbing state. For instance, taking α = 0.4

P =


0.4 0.6 0 0 0
0 0.4 0.6 0 0
0 0 0.4 0.6 0
0 0 0 0.4 0.6
0 0 0 0 1
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Example 3 (A simple gene model) The simplest type of inheritance
occurs when a trait is governed by a gene with two alleles, say G and g.

Genotype: An individual may have a GG combination or Gg (which is
genetically the same as gG) or gg.

Dominance: Very often the GG and Gg types are indistinguishable
in appearance, and then we say that the G gene dominates the g gene. An
individual is called dominant if it is GG, recessive if it is gg, and hybrid if it is
Gg.

Mating: In the mating of two individuals, the offspring inherits one allele
of the pair from each parent.

Basic assumption of genetics: the alleles are selected at random,
independently of each other. This assumption determines the probability of
occurrence of each type of offspring.

Offsprings: The offsprings of two purely dominant parents must be domi-
nant, of two recessive parents must be recessive, and of one dominant and one
recessive parent must be hybrid.

In the mating of a dominant and a hybrid, each offspring must get
a G allele from the former and has an equal chance of getting either G or g from
the latter. Hence there is an equal probability, 1/2, for getting a dominant or a
hybrid offspring.

In the mating of a recessive and a hybrid, there is an even chance,
1/2, for getting either a recessive or a hybrid.

In the mating of two hybrids, the offspring has an equal chance of getting
G or g from each parent. Hence the probabilities are

1/4 for GG

1/2 for Gg

1/4 for gg
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Continuous Mating: We start with an individual of known genetic
character and mate it with a hybrid.

We assume that there is at least one offspring...

The oldest offspring is mated with a hybrid and this process is repeated through
a number of generations.

The genetic type of the chosen offspring in successive generations can be rep-
resented by a Markov chain with states GG, Gg, and gg. The corresponding
transition matrix is:

GG Gg gg
GG 0.5 0.5 0
Gg 0.25 0.5 0.25
gg 0 0.5 0.5

As an exercise, you can derive the transition matrix for a process where we
mate the oldest offspring with a dominant.
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Example 4 (Another gene model) As another exercise (a bit more in-
volved this time) derive the transition matrix for the following mating process:
we start with two specimens of opposite sex, mate them, select two of their off-
spring of opposite sex, and mate those, and so forth. Here a state is determined
by a pair of specimens. Hence, the states of this process are:

s1 = (GG;GG),

s2 = (GG;Gg),

s3 = (GG; gg),

s4 = (Gg;Gg),

s5 = (Gg; gg),

s6 = (gg; gg).

We illustrate the calculation of the corresponding transition probabilities in
terms of the state s2:

GG (1/2) Gg (1/2)
GG (1/2) GG−GG (1/4) GG−Gg (1/4)
Gg (1/2) Gg −GG (1/4) Gg −Gg (1/4)

→ s1 = (GG,GG) (1/4) s2 = (GG,Gg) (1/2) s4 = (Gg,Gg) (1/4)

If we start with s3 = (GG; gg) then the next state is s4 = (Gg;Gg) with
probability one. As an exercise verify that the transition probabilities are as
displayed in the table below:

s1 s2 s3 s4 s5 s6
s1 1 0 0 0 0 0
s2 0.25 0.5 0 0.25 0 0
s3 0 0 0 1 0 0
s4 0.062 0.25 0.125 0.25 0.25 0.062
s5 0 0 0 0.25 0.5 0.25
s6 0 0 0 0 0 1

We will see that in this case the limiting state will be either s1 or s6. So this
method could be used to obtain “pure breed" individuals.

Result 1: Let

A = {(X0, X1, X2, · · · , Xn−1) ∈ B}

where B ⊂ Dn. Then

P (Xn+1 = j | A,Xn = i) = P (Xn+1 = j | Xn = i) = P (X1 = j | X0 = i) .

Proof:
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P (Xn+1 = j|A,Xn = i) =

=

∑
x∈B P (Xn+1 = j,Xn = i,Xn−1 = x)∑

x∈B P (Xn = i,Xn−1 = x)

=

∑
x∈B P (Xn+1 = j | Xn = i,Xn−1 = x)P (Xn = i,Xn−1 = x)∑

x∈B P (Xn = i,Xn−1 = x)

=

∑
x∈B P (Xn+1 = j | Xn = i)P (Xn = i,Xn−1 = x)∑

x∈B P (Xn = i,Xn−1 = x)
by the Markov Property

= P (Xn+1 = j | Xn = i)

∑
x∈B P (Xn = i,Xn−1 = x)∑
x∈B P (Xn = i,Xn−1 = x)

= P (Xn+1 = j | Xn = i) = P (X1 = j | X0 = i) .

Result 2:

P (Xn+1 = j1, · · · , Xn+m = jm | Xn = i) = Pi j1Pj1j2 · · ·Pjm−1jm

Proof:

P (Xn+1 = j1, · · · , Xn+m = jm | Xn = i) =

= P (Xn+1 = j1 | Xn = i) P (Xn+2 = j2 | Xn+1 = j1, Xn = i)×

P (Xn+3 = jm | Xn+2 = j2, Xn+1 = j1, Xn = i)× · · · ×

P (Xn+m = jm | Xn+m−1 = jm−1, · · · , Xn+1 = j1, Xn = i)

= Pi j1Pj1j2 · · ·Pjm−1jm by Markov Property
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Result 3: Let

A = {(X0, X1, X2, · · · , Xn−1) ∈ B} (the past)

and

Dn,m = {(Xn+1, Xn+2, ..., Xn+m) ∈ C} , C ⊂ Dm (the near future)

Then

P (Dn,m | A,Xn = i) = P (Dn,m | Xn = i) = P (D0,m | X0 = i) .

Proof:

P (Dn,m | A,Xn = i) =
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=
∑

(x1,··· ,xm)∈C

P (Xn+1 = x1, · · · , Xn+m = xm | A,Xn = i)

=
∑

(x1,··· ,xm)∈C

P (Xn+1 = x1 | A,Xn = i)× · · · × P (Xn+m = xm | A,Xn = i, · · · , Xn+m−1 = xm−1)

=
∑

(x1,··· ,xm)∈C

P (Xn+1 = x1 | Xn = i)× · · · × P (Xn+m = xm | Xn+m−1 = xm−1) by Result 1

=
∑

(x1,··· ,xm)∈C

P (Xn+1 = x1, Xn+2 = x2, · · · , Xn+m = xm | Xn = i) by Result 2

= P (Dn,m | Xn = i)

=
∑

(x1,··· ,xm)∈C

P (X1 = x1, X2 = x2, · · · , Xm = xm | X0 = i) by stationarity

= P (D0,m | X0 = i)

Result 4: More generally, let

A = {(X0, X1, X2, · · · , Xn−1) ∈ B}

and

Dn = {(Xn+1, Xn+m, ...) ∈ C} , C ⊂ D∞.

Then

P (Dn | A,Xn = i) = P (Dn | Xn = i) = P (D0 | X0 = i) .
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Proof: to prove this result one can use a monotone convergence argument,
with sets of the form

D̃n,m = {(xn+1, xn+2, · · · , xn+m)×D∞ : (xn+1, xn+2, · · · , xn+m, · · · ) ∈ C} , C ⊂ D∞,

which clearly decrease toward C. That is,

lim
m→∞

P
(
D̃n,m | A,Xn = i

)
= P

(
lim
m→∞

D̃n,m | A,Xn = i
)
= P (Dn | A,Xn = i)

On the other hand, by Result 3,

lim
m→∞

P
(
D̃n,m | A,Xn = i

)
= lim

m→∞
P
(
D̃n,m | Xn = i

)
= P

(
lim
m→∞

D̃n,m | Xn = i
)
= P (Dn | Xn = i)

Result 5: Giving the present, the past and future are independent. More
precisely

P (A ∩Dn | Xn = i) = P (A | Xn = i)P (Dn | Xn = i) ,

where A and Dn are as in Result 1 and Result 4.

Proof

P (A ∩Dn | Xn = i) = P (A | Xn = i)P (Dn | A,Xn = i)

= P (A | Xn = i)P (Dn | Xn = i) , by Result 4.
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Transition Probabilities (and Transition Matrix)

P
(m)
ij = P (Xn+m = j | Xn = i) = P (Xm = j | X0 = i)

Obviously, P (1)ij = Pij . These probabilities can be arranged in the (possibly
infinite) matrix

P (m) =
(
P
(m)
ij

)
Notice that ith row of P (m) gives the probabilities of being in state j at time
m, given that the chain was at state i at time zero. Since the chain must be in
some state at time m, it is clear that∑

j

P
(m)
ij = 1, for all i.

Result 6 (Chapman-Kolmogorov Equations): For all m ≥ 1,

P (m) = Pm (matrix multiplication in the RHS)

Proof By induction. Clearly the property holds for m = 1. Suppose, now
that P (m) = Pm for some m > 1. We will show that P (m+1) = Pm+1. In fact,

P
(m+1)
ij = P (Xm+1 = j | X0 = i)

=
∑
k

P (Xm+1 = j,Xm = k | X0 = i)

=
∑
k

P (Xm = k | X0 = i)P (Xm+1 = j | X0 = i,Xm = k)

=
∑
k

P (Xm = k | X0 = i)P (Xm+1 = j | Xm = k) by Markov Property

=
∑
k

P
(m)
ik Pkj

Therefore
P (m+1) = PmP = Pm+1.

A simple consequence of this result is that

P (m+n) = PmPn, for all m,n

That is,

P
(m+n)
ij =

∑
k

P
(m)
ik P

(n)
kj , for all i, j, m, n.
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Transient and Recurrent States

Let

Tk = min {i ≥ 1 : Xi = k} (return time for state k)

Obviously,
XTk = k and X1 6= k, · · · , XTk−1 6= k

Also define

Nk =
∑
i≥0

I (Xi = k) (number of visits to state k)

= f (X0, X1, X2, · · · )

Since we will assume that the initial state of the chain is k - that is X0 = k
- we have that Nk ≥ 1.
Let

fkk = P (Tk <∞ | X0 = k) = P (Nk > 1 | X0 = k) = 1− P (Nk = 1 | X0 = k)

= “Probability that the chain will eventually return to state k”

The state k is called recurrent if fkk = 1. On the other hand, if fkk < 1 the
the state k is called transient.

Recurrent Transient

fkk = 1 fkk < 1

Clearly,

P (Nk = 1 | X0 = k) = P (Tk =∞ | X0 = k) = 1− fkk

More generally, we have the following result:

Result 7:
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(a) For all r > 1, we have

P (Nk = r | X0 = k) = fkkP (Nk = r − 1 | X0 = k)

(b) For all r ≥ 1,

P (Nk = r | X0 = k) = f r−1
kk (1− fkk)

That is, Nr is a Geometric random variable with

p = 1− fkk

= “Probability that the chain will never return to state k”

and
E (Nk) =

1

1− fkk

Proof
(a) Since we are assuming that X0 = k, we have that

Nk = I (X0 = k) +
∑
i≥1

I (Xi = k) = 1 +
∑
i≥1

I (Xi = k)

Now, if Tk = min {i ≥ 1 : Xi = k} =∞, then Nk = 1. On the other hand,
if Tk <∞, then

Nk = 1 +
∑
i≥Tk

I (Xi = k) = 1 + f (XTk , XTk+1, XTk+2, · · · )

Let r > 1. Then,

P (Nk = r | X0 = k) = P (Nk = r , Tk <∞ | X0 = k)

because Tk =∞⇒ Nk = 1 < r. Moreover,

P (Nk = r | X0 = k) = P (f (X0, X1, X2, · · · ) = r , Tk <∞ | X0 = k)

=
∑
j≥1

P (f (Xj , Xj+1, Xj+2, · · · ) = r − 1 , Tk = j | X0 = k)

=
∑
j≥1

P (f (Xj , Xj+1, Xj+2, · · · ) = r − 1 | Tk = j, X0 = k)P (Tk = j | X0 = k)

We now notice that

P (f (Xj , Xj+1, Xj+2, · · · ) = r − 1 | Tk = 1, X0 = k) =
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= P (f (X1, X2, X3, · · · ) = r − 1 | X0 = k,X1 = k)

= P (f (X1, X2, X3, · · · ) = r − 1 | X1 = k)

= P (f (X0, X1, X2, · · · ) = r − 1 | X0 = k)

and for any j > 1,

P (f (Xj , Xj+1, Xj+2, · · · ) = r − 1 | Tk = j, X0 = k) =

= P (f (Xj , Xj+1, Xj+2, · · · ) = r − 1 | X0 = k,X1 6= k, · · · , Xj−1 6= k,Xj = k)

= P (f (Xj , Xj+1, Xj+2, · · · ) = r − 1 | Xj = k)

= P (f (X0, X1, X2, · · · ) = r − 1 | X0 = k)

Therefore
P (Nk = r | X0 = k) =

P (f (X0, X1, X2, · · · ) = r − 1 | X0 = k)
∑
j≥1

P (Tk = j | X0 = k) =

= P (f (X0, X1, X2, · · · ) = r − 1 | X0 = k)P (Tk <∞ | X0 = k) =

= P (Nk = r − 1 | X0 = k) fkk.

This proves Part (a).

(b) Suppose that fkk < 1. By Part (a),

P (Nk = r | X0 = k) = P (Nk = r − 1 | X0 = k) fkk

Therefore,

P (Nk = r | X0 = k) = P (Nk = r − 1 | X0 = k) fkk

= P (Nk = r − 2 | X0 = k) f2kk

= P (Nk = r − 3 | X0 = k) f3kk
...

= P (Nk = 1 | X0 = k) fr−1kk

= P (Tk =∞ | X0 = k) fr−1kk

= (1− fkk) fr−1kk
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NOTE 1: If the state is recurrent, that is, if fkk = 1, then by Result 7
(a) we have

P (Nk = r | X0 = k) = P (Nk = r − 1 | X0 = k) for all r > 1,

and this implies that

P (Nk = r | X0 = k) = 0 for all r > 1.

That is, the chain visits a recurrent state k an infinite number of times.

NOTE 2: If the state is transient (fkk < 1) then the number of visits to
state k is a Geometric distribution with “probability of success" p = 1− fkk.
Therefore, the expected number of visits to a transient estate k is

E (Nk|X0 = k) =
1

1− fkk
<∞⇔ fkk < 1.

NOTE 3: Notice that

Nk =
∑
i≥0

I (Xi = k)

E (Nk | X0 = k) =
∑
i≥0

E {I (Xi = k) | X0 = k}

=
∑
i≥0

P (Xi = k| X0 = k)

=
∑
i≥0

P
(i)
kk

= 1 +
∑
i>0

P
(i)
kk

From Notes 2 and 3,∑
i≥0

P
(i)
kk < ∞⇔ fkk < 1⇔ k is transient.

Remark: If the state k is transient, then it will not occur infinitely often.
Let

Ai = {Xi = k}
and let Q be the conditional probability given X0 = k. Then

Q (Ai) = P
(i)
kk
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By the Borel-Cantelli Lemma:

∞∑
Q (Ai) < ∞⇒ Q (Ai i.o.) = 0
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COMMUNICATION OF STATES

Notation: We will write

P
(n)
ij = P (Xn = j|X0 = i) , for all i, j ∈ D and n ≥ 1

Moreover, set
P
(0)
ij = P (X0 = j|X0 = i) .

Then,

P
(0)
ij =

 1 i = j

0 otherwise

Definition (Communicating states): States i and j communicate (and
write i↔ j) if there exist integers r ≥ 0, s ≥ 0 such that P (r)ij > 0 and P (s)ji > 0.

Notice that "communicate" is an equivalence relation , that is,
(i) reflexive (i↔ i) because P (0)ii = 1 > 0,
(ii) symmetric ( i↔ j iff j ↔ i, by definition) and
(iii) transitive (i ↔ j and j ↔ k implies that i ↔ k) because P (r)ij > 0,

P
(s)
jk > 0⇒ P

(r+s)
ik =

∑
l∈D P

(r)
il P

(s)
lk ≥ P

(r)
ij P

(s)
jk > 0.

Result 8: If two states communicate then they are both persistent or
both transient.

Proof. Suppose that states i and j communicate. Then there exist r ≥
0, s ≥ 0 such that P (r)ij > 0 and P (s)ji > 0. Suppose that state i is transient. By

Note 3 above i is transient ⇔
∑

n≥0 P
(n)
ii <∞. For all n ≥ 0

P
(r+n+s)
ii =

∑
l1∈D

∑
l2∈D

P
(r)
il1
P
(n)
l1l2

P
(s)
l2i
≥ P (r)ij P

(n)
jj P

(s)
ji

and so

∞ >
∑
n≥0

P
(n+r+s)
ii ≥ P (r)ij

∑
n≥0

P
(n)
jj

P
(s)
ji ⇒∞ >

∑
n≥0

P
(n)
jj ,
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since P (r)ij > 0 and P (s)ji > 0. Therefore state j is also transient.

Definition (Irreducible Chain): If all the state of the chain communicate
(that is if P (nij)ij > 0 for some nij ≥ 0 for all i, j ∈ D) then the chain is called
irreducible.

NOTE: From Result 8 we conclude that all the states of an irreducible chain
are either transient or persistent. In other words, persistence is a class
property.
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PERIODICITY

Definition (Period): the period of the state i is the largest common
divisor of the set

{
n ≥ 1 : P (n)ii > 0

}

FACT: It can be shown that all communicating states have the same period
(that is, periodicity is a class property).

Definition (Aperiodic Chain): A chain is aperiodic if all its states have
period equal to one.
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STATIONARY DISTRIBUTION

Definition. A stationary distribution for a Markov process with tran-
sition matrix P is an initial distribution

p =


p1

pm
...


satisfying:

p′ = p′P or P ′p = p

Equivalently

pj = P (X1 = j) =
∑
i∈D

piPij , for all i ∈ D.

In this case we obviously have

p′ = p′Pn = p′P (n), for all n ≥ 1.

Therefore,

pj = p
(n)
j = P (Xn = j) =

∑
i∈D

piP
(n)
ij , for all i ∈ D, for all n.

We have the following important result:

Result 9: Suppose that the Markov Process is aperiodic, irreducible
and has a stationary distribution p. Then the stationary distribution is
unique, satisfies pj > 0 for all j ∈ D, and

lim
n→∞

P
(n)
ij = pj for all i, j ∈ D.
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Moreover, the process is persistent and the average return time of state j, is

µj =

∞∑
n=1

nf
(n)
jj = 1/pj for all j ∈ D

where in general

f
(n)
ij = P (X1 6= j, · · · , Xn−1 6= j,Xn = j | X0 = i) , for all i, j ∈ D.
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Strong Law of Large Numbers for Markov Chains

Result 10: If the Markov chain has a unique stationary distribution p and
the function g (x) is such that

Ep (|g (X)|) < ∞

then

lim
n→∞

1

n

n∑
i=1

g (Xi) = Ep (g (X)) , a.s.
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Finding the Invariant (Stationary) Distribution for a
Finite State Chain

Note: to find the stationary distribution of a finite state Markov Chain we
must solve the equation

p′ = p′P, p =P ′p

That is,

(P ′ − I)p = 0

From a practical point of view we can compute the eigen values of the matrix
P ′ and verify that one of them is equal to 1.

For example, in the case of the transition matrix of Example 3,

P =


0 1 0 0
1/9 4/9 4/9 0
0 4/9 4/9 1/9
0 0 1 0


we have:

===========================
> eigen(t(P))
$values
[1] 1.0000000 0.3333333 -0.3333333 -0.1111111
$vectors
[,1] [,2] [,3] [,4]
[1,] 0.07808688 -0.2236068 0.2236068 0.5
[2,] 0.70278193 -0.6708204 -0.6708204 -0.5
[3,] 0.70278193 0.6708204 0.6708204 -0.5
[4,] 0.07808688 0.2236068 -0.2236068 0.5
>
> a=eigen(t(P))$vectors[,1]
> a/sum(a)
[1] 0.05 0.45 0.45 0.05
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>

=============================

Therefore the stationary distribution is

p =


0.05
0.45
0.45
0.05


and the mean return times are

µ =


20
2.222
2.222
20

 .
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On the other hand, in the case of the transition matrix of example 2

P =


0.4 0.6 0 0 0
0 0.4 0.6 0 0
0 0 0.4 0.6 0
0 0 0 0.4 0.6
0 0 0 0 1


we have:

============================
> eigen(t(P))
$values
[1] 1.0 0.4 0.4 0.4 0.4
$vectors
[,1] [,2] [,3] [,4] [,5]
[1,] 0 0.0000000 0.000000e+00 0.000000e+00 2.293675e-48
[2,] 0 0.0000000 0.000000e+00 1.549469e-32 -1.549469e-32
[3,] 0 0.0000000 1.046728e-16 -1.046728e-16 1.046728e-16
[4,] 0 0.7071068 -7.071068e-01 7.071068e-01 -7.071068e-01
[5,] 1 -0.7071068 7.071068e-01 -7.071068e-01 7.071068e-01

===========================

Clearly, this transition matrix doesn’t have a proper initial distribution (with
pi > 0, i = 1, 2, 3, 4, 5).

This was to be expected because this transition matrix is not irreducible: it
has two communicating classes: {1, 2, 3, 4} which are transient states and {5}
which is a persistent state (absorbing state).
Finally considering the transition matrix

P =

 0.5 0.4 0.1
0.4 0.2 0.4
0.1 0.4 0.5


of Example 1,

==========================
> eigen(t(P))
$values
[1] 1.0 0.4 -0.2
$vectors
[,1] [,2] [,3]
[1,] -0.5773503 7.071068e-01 0.4082483
[2,] -0.5773503 8.527521e-16 -0.8164966
[3,] -0.5773503 -7.071068e-01 0.4082483
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> a=eigen(t(P))$vectors[,1] / sum(eigen(t(P))$vectors[,1])
> a
[1] 0.3333333 0.3333333 0.3333333
>
============================

the stationary distribution is

p =

 1/3
1/3
1/3


and the mean return times are

µ =

 3
3
3

 .
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