Markov Chains

Consider the sequence
.X()7 Xl, X27 ces

of random variables taking values on a finite or countable infinite set of integer
values:

D = {0,1,2,...,k} (finite case)
or
D = {0,1,2,..} (infinite, countable case)

Definition (Markov Chain): The sequence Xy, X1, X3, ... is a stationary
Markov chain if

P(Xpt1=j|Xo=10,X1=101, , Xpn1=tp-1,X,, =1) =

= PXpp=j|Xn=0)=P(X1=j|Xo=1)

Pijv

for all ig,41, -+ ,ip_1,% in D and for all n > 0.



Definition (Transition Matrix): The transition matrix P is a squared
stochastic matrix with generic element P;; = P (X; = j | Xo =4). That is

P = (Py)

where the P;; satisfy the condition

Y P =1, foralli
jeED

Definition (Initial Probability). The initial probability is a vector (or
sequence in the infinite case) p which entries are the initial probabilities for the
chain, that is,

p; = P(Xo=i), forallieD.



Example 1 (A simple weather Markov Chain). Suppose that the
weather condition tomorrow (Sunny=0, Cloudy=1 and Rainy/Snowy=2) only
depends on the weather condition today, with transition probabilities

0.5 04 0.1
P = 04 02 04
0.1 04 0.5



Example 2 (A random walk with absorbing barrier). Suppose that

a j=1
P = , 1=0,1,2,3
1—« j=1+1
1 j=4
0 otherwise

where k£ = 4 is an absorbing state. For instance, taking o = 0.4

4 06 O 0 0
04 06 O 0
0 04 06 O
0 0 04 0.6
0 0 0 1

e
|
coocoo



Example 3 (A simple gene model) The simplest type of inheritance
occurs when a trait is governed by a gene with two alleles, say G and g.

Genotype: An individual may have a GG combination or Gg (which is
genetically the same as gG) or gg.

Dominance: Very often the GG and Gg types are indistinguishable
in appearance, and then we say that the G gene dominates the g gene. An
individual is called dominant if it is GG, recessive if it is gg, and hybrid if it is

Gyg.

Mating: In the mating of two individuals, the offspring inherits one allele
of the pair from each parent.

Basic assumption of genetics: the alleles are selected at random,
independently of each other. This assumption determines the probability of
occurrence of each type of offspring.

Offsprings: The offsprings of two purely dominant parents must be domi-
nant, of two recessive parents must be recessive, and of one dominant and one
recessive parent must be hybrid.

In the mating of a dominant and a hybrld, each offspring must get
a G allele from the former and has an equal chance of getting either G or g from
the latter. Hence there is an equal probability, 1/2, for getting a dominant or a
hybrid offspring.

In the mating of a Tecessive and a hybrid, there is an even chance,
1/2, for getting either a recessive or a hybrid.

In the mating of tWO hybI‘idS, the offspring has an equal chance of getting
G or g from each parent. Hence the probabilities are

1/4 for GG
1/2 for Gy
1/4 for gg



Continuous Mating: We start with an individual of known genetic
character and mate it with a hybrid.

We assume that there is at least one offspring...

The oldest offspring is mated with a hybrid and this process is repeated through
a number of generations.

The genetic type of the chosen offspring in successive generations can be rep-
resented by a Markov chain with states GG, Gg, and gg. The corresponding
transition matrix is:

‘ GG Gg gg
GG |05 05 0
Gg | 025 0.5 0.25
qg 0 0.5 0.5

As an exercise, you can derive the transition matrix for a process where we
mate the oldest offspring with a dominant.



Example 4 (Another gene model) As another exercise (a bit more in-
volved this time) derive the transition matrix for the following mating process:
we start with two specimens of opposite sex, mate them, select two of their off-
spring of opposite sex, and mate those, and so forth. Here a state is determined
by a pair of specimens. Hence, the states of this process are:

s1 = (GG;GG),
s2 = (GG;Gy),
s3 = (GGigg),
s4 = (Gg;Gy),
s5 = (Gg;99),
s6 = (99:99)

We illustrate the calculation of the corresponding transition probabilities in
terms of the state s2:

| GG(1/2) Gy (1/2)

GG(1/2) | GG—-GG(1/4) GG —Gg(1/9)
Gg(1/2) | Gg—GG(1/4) Gg—Gg(1/4)

— s1=(GG,GG) (1/4) s2=(GG,Gyg) (1/2) s4=(Gg,Gg) (1/4)

If we start with s3 = (GG, gg) then the next state is s4 = (Gg;Gg) with
probability one. As an exercise verify that the transition probabilities are as
displayed in the table below:

sl s2 s3 s4 EN) s6
sl |1 0 0 0 0 0
s2 | 0.25 0.5 0 0.25 0 0
s3 10 0 0 1 0 0
s4 1 0.062 0.25 0.125 0.25 0.25 0.062
sb |0 0 0 0.25 0.5 0.25
s6 | 0 0 0 0 0 1

We will see that in this case the limiting state will be either s1 or s6. So this
method could be used to obtain “pure breed" individuals.

Result 1: Let
A={(Xo,X1,X2,---,X,,-1) € B}
where B C D™. Then
PXop1=7|AXy=1)=PXpn1=j|X,=9)=PX1=7j|Xo=1).

Proof:



P(Xpi =jlA, X, = i) =

ZXEB P (Xn-‘rl =75,Xn=1X,_1 = X)
ZXGB P (Xn = 7;7an1 = X)

erB P(Xn+1 :j | Xn = iaXn—l = X) P(Xn = i,Xn_l = X)
erB P(X,=i,X,1=X%)

S en P (Xopr = | Xo = ) P (X0 =i, X,1 = )
= X by the Markov P t
erB P (Xn — i,Xn71 — X) y (] arKkov rroperty

erB P(X, =i,X, 1= X)
erB P(X,=1X,-1=x)

P(Xnt1 =7 | Xn=1)

= P(Xpy1=j | Xo=0)=P(X1=j| Xo=1).

Result 2:
P (Xn-‘rl =71, 7Xn+m = Jm | Xn = 7’) = FB .7'1P7'1]'2 "'Pim—ljm
Proof:

P(Xn+1:j1’...7Xn+m:jm‘Xn:i):

= PXopr1=71|Xn=1) P(Xnt2=7J2 | Xot1=J1,Xn =1) X
P(Xn+3:jm|Xn+2:j27Xn+1:jlaXn:i)x"'X

P(X7L+7n = Jm ‘ Xn+m—1 = jm—l; te aXn—i-l = jlan = Z)

P ;P P by Markov Property

1j2 "



Result 3: Let

A = {(Xo,X1,Xo,--,Xpn_1) € B} (the past)
and
Dpm = {(Xn+1,Xnt2, 0, Xntm) €C}, C C D™ (the near future)
Then
P(Dom | A, Xy =) = P(Dpm | Xp=1)=P(Dom | Xo=1).
Proof:

P (Do | A, X, =1) =



= Z P(Xn+1:x1>"';Xn+m:$m‘Aan:i)
(z1,+,xm)€EC

= Z P(Xn—i-l:xl|A7Xn:i)x"'XP(Xn+m:mm|A3Xn:7:a"'7Xn+m—1:xm—1)
(z1,,xm)EC

= Z PXpp1=a1 | Xp =09 XX P (Xngm =2m | Xntm-1==2m_1) by Result 1
(@1, @m)EC

= Z P(Xn+1 = .rl,X.,H_g =T, " 7Xn+m = Tm | Xn = ’L) by Result 2
(21, ,2m)€C

- P(Dn,nL | Xn - Z)

= Z P(Xy=21,Xo=2a0, -, X =am | Xo=14) by stationarity
(@1, @) EC

= P(Dom | Xo=1)

Result 4: More generally, let

A = {(Xo,X1,X2,-+,X,-1) € B}
and
D, = {(Xn+1, Xn4m,..)€C}, CC D™
Then
P(D,|AX,=1) = PD,|X,=0)=P(Dy| Xo=1).
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Proof: to prove this result one can use a monotone convergence argument,
with sets of the form

Dmm = {(xn—i-lyxn-&-Z;"' ,$n+m) X D (xn+1,$71+2,"' 7xn+m7"')ec}7 CCDooa
which clearly decrease toward C. That is,
lim P (Dn,m | AaXn = 7') = P( lim Dn,m | A7X’rb = Z) = P(Dn | A7X’rb = Z)

On the other hand, by Result 3,

lim P (Dn,m | A, X, = z) — lim P (EW | X, = z)

m— 00

Result 5: Giving the present, the past and future are independent. More
precisely

P(AND, | X,=i) = P(A|X,=4i)P(D,|X,=1i),

where A and D,, are as in Result 1 and Result 4.

Proof

P(A| X, =i P(D, | X,=1), by Result 4.

11



Transition Probabilities (and Transition Matrix)
Py = P(Xusm =7 | Xa=i)=P(Xn=7j| Xo=1)

Obviously, P( ) = P;;. These probabilities can be arranged in the (possibly
infinite) matrix

Notice that " row of P(™) gives the probabilities of being in state j at time
m, given that the chain was at state ¢ at time zero. Since the chain must be in
some state at time m, it is clear that

Z Pt-(jm) =1, for alli.

Result 6 (Chapman-Kolmogorov Equations): For all m > 1,
plm) — pm (matrix multiplication in the RHS)

Proof By induction. Clearly the property holds for m = 1. Suppose, now
that P = P™ for some m > 1. We will show that P(m+1) = pm+1 1In fact,

PIY = P(Xpga =3 | Xo=1)

= ZP( m1 = Jy X = k | Xo = 1)

ZP(Xm:k; | Xo =) P (X1 =7 | Xo=1i,Xpm =k)

ZP (Xm=k|Xo=0)P(Xmi1=7| Xm =k) by Markov Property
k

= Zpi(gl)ij
k

Therefore
P(m+1) — pmp — Pm+1.

A simple consequence of this result is that
plmtn) — pmpn for all m,n
That is,

pimtn) ZP””P,C;”, for all i, j, m, n.

)

12



Transient and Recurrent States

Let
T, = min{i>1:X,=k} (return time for state k)
Obviously,
Xr, =k and X1 #k,-, Xp,_1 #£k
Also define
Ny = ZI (X;=k)  (number of visits to state k)
>0

= [(Xo,X1,X2,--1)

Since we will assume that the initial state of the chain is k - that is Xo = &
- we have that N, > 1.
Let

frk P(Tpy<oo| Xo=k)=P(Npy>1| Xo=k)=1-P(Ny=1| Xo=k)

= “Probability that the chain will eventually return to state k”

The state k is called recurrent if fir = 1. On the other hand, if fi; < 1 the
the state k is called transient.

Recurrent Transient

frer =1 froe <1

Clearly,
P(N,=1|Xo=k)=P(Ty=00| Xo=k)=1— frx

More generally, we have the following result:

Result 7:

13



(a) For all r > 1, we have
P(Ny=7|Xo=k) = fixP(Ne =7 — 1 | Xo = k)
(b) Forallr>1,
P(Ny=r|Xo=k)=fi " (1— fux)

That is, N, is a Geometric random variable with

p = 1— fu

= “Probability that the chain will never return to state k”
and
1

E(Ny) = -

Proof
(a) Since we are assuming that X, = k, we have that

Ne=I(Xo=k)+> I(Xi=k)=1+> I(X;=k)
i>1 i>1
Now, if Ty =min{i > 1 : X; =k} =00, then Ny =1. On the other hand,
if Ty, < oo, then

Ne=1+ Z I(Xi :k) = 1+f(XTk7XTk+1aXTk+2"")

i>Ty,
Let » > 1. Then,
P(Ny=r | Xo=k)=P(Np=r,T, <oo | Xo=k)
because T, = oo = N = 1 < r. Moreover,
P(Np,=r | Xo=k) = P(f(X0,X1,Xa,-+)=7r,Tp<o0|Xo=k)

= Zp(f(Xjan+17Xj+27"‘):7"_1aTk:j|XO:]€)

Jj=1

STP(f (X, Xju1. Xjga, ) =1 =1 | Te = j, Xo=k) P (T =j | Xo=k)
i>1

‘We now notice that

P(f(X;,Xj41,Xj40,)=r—1|Tp =1, Xo=k) =

14



= P(f(X1,X2,X3,-+)=r—1|Xo=k X1 =k)
= P(f(X1,X2,X3,---)=r—1]| X1 =k)

= P(f(Xo,X1,X2,--)=r—1|Xo=k)
and for any j > 1,
P(f(Xj,Xj11,Xj42, ) =r—1|Th =34, Xo=k)=
= P(f(X;, X1, Xjro, ) =r—1[Xo=k, X1 # k-, X; 1 #k,X; =k)

= P(f(X;, Xj41, Xjro,-)=r—1] X; =k)

= P(f(X0,X1,Xa,---)=7—1]| Xo=F)

Therefore
P(Ny=r | Xo=k) =

P(f (X0, X1, Xp,--)=r—1]Xo=k)> P(Tx=j|Xo=k)=
Jj>1
=P(f (X0, X1, X0, )=r—1|Xo=k)P(Tpx<oo|Xg=k)=
=P(Npy=r—-1|Xo=k) frk-
This proves Part (a).

(b) Suppose that fx < 1. By Part (a),
P(Ny=r|Xo=k)=P(Np=7r—1]Xo=k) frr
Therefore,

P(N,=r|Xo=k) = P(Ny=r—1]|Xo=k) fr
= P(Ny=7r-2]|Xo=k)f

= P(Ny=7r—-3]|Xo=k)f

— P(Ne=1]Xo=k)fl7
= P(Tp=o0| Xo=k)fi;'
= (1= fue) "

15



NOTE 1: If the state is recurrent, that is, if fyx = 1, then by Result 7
(a) we have

P(Ny=r|Xo=k)=P(Ny=r—-1]|Xo=k) forallr>1,
and this implies that
P(Ny=r|Xo=k)=0 forallr>1.

That is, the chain visits a recurrent state £ an infinite number of times.

NOTE 2: If the state is transient (fzr < 1) then the number of visits to
state k is a Geometric distribution with “probability of success" p=1— fii.
Therefore, the expected number of visits to a transient estate k is

E(Ng|Xo = k) =

<oo e frp <L

1
1 — frk
NOTE 3: Notice that
Ny = > I(X;=k)

i>0

E(Ny|Xo=k) = > E{I(Xi=k) | Xo=k}
i>0

> P (Xi=k| Xo=k)

i>0

- Y

i>0

= 1+ Pf)

i>0

From Notes 2 and 3,

Z P,SC) < 00 fir < 1& kis transient.
i>0

Remark: If the state k£ is transient, then it will not occur infinitely often.
Let

A ={X; =k}
and let Q be the conditional probability given Xy = k. Then

QA;) = PY

16



By the Borel-Cantelli Lemma:

> QA) < co=Q(A; i0)=0

17



COMMUNICATION OF STATES

Notation: We will write
PV =P (X, =j|Xo=1), foralli,jeD andn>1

Moreover, set
PY = P(Xy=j|Xo=1).
Then,
1 i=7
pO —
ij
0 otherwise

Definition (Communicating states): States ¢ and j communicate (and
write ¢ < j) if there exist integers 7 > 0,s > 0 such that Pi(;") >0 and Pj(f) > 0.

Notice that "communicate" is an equivalence relation , that is,

(i) reflexive (i < i) because Pi(io) =1>0,

(ii) symmetric (i« j iff j <> 4, by definition) and

(iii) transitive (i < j and j < k implies that ¢ < k) because Pi(jr) > 0,
5)

Py >0= PIY =3, PYPY > PP > 0.

Result 8: If two states communicate then they are both persistent or
both transient.

Proof. Suppose that states ¢ and j communicate. Then there exist r >

0,s > 0 such that P-(-T) >0 and P@ > 0. Suppose that state i is transient. By
Note 3 above ¢ is transient < Zn>0 P(n) < oo. Foralln>0

T+n+s n s T n s
Pi(i Z Z o F)l(llQ lzz) > P( )P( )P( )
lheDlseD

and so

o > ZP(n+r+s >p Z =>OO>ZPJ(;L7

n>0 n>0 n>0

18



since Pi(jr) > 0 and Pj(iS ) > 0. Therefore state j is also transient.

Definition (Irreducible Chain): If all the state of the chain communicate

(that is if Pi(;”j) >0 for some n;; > 0 for all 4,j € D) then the chain is called
irreducible.

NOTE: From Result 8 we conclude that all the states of an irreducible chain
are either transient or persistent. In other words, persistence is a class

property.

19



PERIODICITY

Definition (Period): the period of the state i is the largest common
divisor of the set

{n >1: P > 0}
FACT: It can be shown that all communicating states have the same period

(that is, periodicity is a class property).

Definition (Aperiodic Chain): A chain is aperiodic if all its states have
period equal to one.

20



STATIONARY DISTRIBUTION

Definition. A stationary distribution for a Markov process with tran-
sition matrix P is an initial distribution

P

b= Dm

satisfying:
pp = pP or Pp=p
Equivalently
ieD
In this case we obviously have
p = pP"=p'P™, foralln>1.
Therefore,
pj = pg.”) =P(X,=j) = ZpiPi(jn), foralli € D, for all n.

i€eD
We have the following important result:
Result 9:  Suppose that the Markov Process is aperiodic, irreducible

and has a stationary distribution p. Then the stationary distribution is
unique, satisfies p; > 0 for all j € D, and

lim P = p; foralli,jeD.

21



Moreover, the process is persistent and the average return time of state j, is

By = an](;b) =1/p; foralljeD
n=1
where in general
8= P(Xi#j Xe1#4,Xa=j | Xo=1), foralli,jeD.

22



Strong Law of Large Numbers for Markov Chains

Result 10: If the Markov chain has a unique stationary distribution p and
the function g (z) is such that

Ep(lg(X)) < o0

then

23



Finding the Invariant (Stationary) Distribution for a
Finite State Chain

Note: to find the stationary distribution of a finite state Markov Chain we
must solve the equation

pp = p'P, p=Pp
That is,
(PP—Dp = 0

From a practical point of view we can compute the eigen values of the matrix
P’ and verify that one of them is equal to 1.

For example, in the case of the transition matrix of Example 3,

0o 1 0 0
1/9 4/9 4/9 0

P 0 4/9 4/9 1/9
0 0 1 0
we have:
> eigen(t(P))
$values
[1] 1.0000000 0.3333333 -0.3333333 -0.1111111
$vectors
1] 12 3] (4]
[1,] 0.07808688 -0.2236068 0.2236068 0.5
[2,] 0.70278193 -0.6708204 -0.6708204 -0.5
[3,] 0.70278193 0.6708204 0.6708204 -0.5
[4] 0.07808688 0.2236068 -0.2236068 0.5

7

> a—elgen( (P))$vectors|,1]
> a/sum(a)
[1] 0.05 0.45 0.45 0.05

24



Therefore the stationary distribution is

0.05
B 0.45

p = 0.45
0.05

and the mean return times are

20
B 2.229
K= 2.992
20
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On the other hand, in the case of the transition matrix of example 2

04 06 O 0 0
0 04 06 O 0
P=1] 0 0 04 06 O
0 0 0 04 06
0 0 0 0 1

> eigen(t(P))

$values

[1] 1.0 0.4 0.4 0.4 0.4

$vectors

(1] [:2] [:3] [:4] [ 5]

[1,] 0 0.0000000 0.000000e+00 0.000000e+00 2.293675e-48
[2,] 0 0.0000000 0.000000e4-00 1.549469¢-32 -1.549469¢-32
[3,] 0 0.0000000 1.046728e-16 -1.046728e-16 1.046728¢-16

[4,] 0 0.7071068 -7.071068e-01 7.071068e-01 -7.071068e-01
[5,] 1-0.7071068 7.071068e-01 -7.071068e-01 7.071068e-01

)

)

Clearly, this transition matrix doesn’t have a proper initial distribution (with
p; >0,i=1,23,4,5).

This was to be expected because this transition matrix is not irreducible: it
has two communicating classes: {1,2,3,4} which are transient states and {5}
which is a persistent state (absorbing state).

Finally considering the transition matrix

05 04 0.1
P = 04 0.2 04

of Example 1,

> eigen(t(P))

$values

1] 1.0 0.4 -0.2

$vectors

1] [,2] [,3]

1,] -0.5773503 7.071068e-01 0.4082483
2,] -0.5773503 8.527521e-16 -0.8164966
3,] -0.5773503 -7.071068¢-01 0.4082483

9
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> a=eigen(t(P))$vectors[,1] / sum(eigen(t(P))$vectors[,1])
> a
[1] 0.3333333 0.3333333 0.3333333

the stationary distribution is

and the mean return times are
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