
Generating Random Variables with a
Prescribed Distribution

Monte Carlo

Suppose we wish to calculate the integral

I =

∫
m (x) f (x) dx

If we can generate an i.i.d. sequence

X1,X2, ...,Xn

with common density f, then

Î =
1

n

n∑
i=1

m (Xi) (1)

is a consistent, unbiased and asymptotically normal estimate of I.

In some cases, implementation of (1) may not be convenient nor feasible. For example,

• it is not easy (or possible) to generate independent random vectors with joint density f

• the density f is only known up to a multiplicative constant

1

Markov Chain Monte Carlo (MCMC)

An alternative procedure is to generate a Markov Chain sequence

X1,X2, ...,Xn

with

• transition kernel

h (y|x)

• invariant density f (x)

∫
S
h (y|x) f (x) dx = f (y)

Then

Î =
1

n

n∑
i=1

m (Xi)

is still a consistent and unbiased estimate of I.

A simple condition for invariance of f (x) is

h (y|x) f (x) = f (y)h (x|y) , for all x,y∈S

In fact, in this case

∫
S
h (y|x) f (x) dx = f (y)

∫
S
h (x|y) dx = f (y) for all y∈S

2

A Key Result

Suppose that the Markov process is irreducible and aperiodic and has a positive invariant
distribution f (∞) (y) > 0, for all y ∈ S.

Then:

1.

f (∞) (y) = lim
n→∞

p(n) (y|x) , for all y ∈ S

independent from x.

NOTE: in the finite state space case, all the rows of P (∞) are the same.

2. f (∞) (y) is the unique, positive solution of the equation

f (∞) (y) =
∑
x∈S

f (∞) (x) p (y|x)

and
{
f (∞) (y)

}
satisfies ∑

x∈S
f (∞) (y) = 1

That is, f (∞) (y) is a pmf.

3. In the continuous case f (∞) (y) > 0, for all y ∈ S

f (∞) (y) =

∫
S
f (∞) (x) p (y|x) dx

and f (∞) (y) satisfies ∫
S
f (∞) (y) dy = 1

That is, f (∞) (y) is a cdf.

3

4. In the discrete case f (∞) (y) can be interpreted as the long-run proportion of time that the process
is in state y.

5. Let F (∞) (y) be the corresponding invariant distribution function. Suppose that

EF (∞) (|g (Y)|) <∞

Then

1

n

∞∑
n=1

g (Xn) =
∑
y

g (y) f (∞) (y)

= EF (∞) {g (Y)}

In the continuous case

1

n

∞∑
n=1

g (Xn) =

∫
S
g (y) f (∞) (y) dy

= EF (∞) {g (Y)}

4

The Metropolis-Hasting Algorithm

The Algorithm

• INPUT: A function g (x) which is proportional to the the target density f (x) . In other words

f (x) = αg (x)

for some possibly unknown constant α.

• Let x=x(m) be the current “state”of the sequence

• Let

q (y|x)

be an auxiliary (irreducible-aperiodic) kernel. It should be possible (easy) to generate a random
vector with distribution q

(
•|x(m)

)
, for any given “current state”x(m).

• The candidate transition: generate y∼q
(
•|x(m)

)

• Let u be an independent random variable with uniform distribution on the interval (0, 1) .

• The next state, x(m+1), is defined as follows

x(m+1) =

 y u ≤ f (y) q (x|y) /f (x) q (y|x)

x u > f (y) q (x|y) /f (x) q (y|x)

5

Then it can be shown that

{
x(m)

}

is a realization of a Markov Chain with stationary distribution f (x) .

6

Example 1: Suppose we wish to estimate

p = P (X1 +X2 > 1) (2)

where

X =

 X1

X2

X3



has joint density

f (x) ∝ exp {−‖x‖} .

Solution

To estimate p we can use the M-H algorithm to generate a Markov chain with stationary density
f (x) . For instance, we can use the “independent kernel”

q (y|x) =
(
1

2π

)3/2
exp

{
−‖y‖2

}
.

That is, independent from the current value x(m), the candidate y= (y1, y2, y3) is formed by independent
standard normal random variables. We can take x(0) = 0, and given x(m) accept y if

u ≤ f (y) q (x|y)
f (x) q (y|x)

=
exp {−‖y‖} exp

{
− 12 ‖x‖

2
}

exp {−‖x‖} exp
{
− 12 ‖y‖

2
}

=
exp

{
‖x‖ − 1

2 ‖x‖
2
}

exp
{
‖y‖ − 1

2 ‖y‖
2
}

7

A Markov chain of length n = 200, 000, with a burn in of 1, 000 gave p̂ = 0.3282117.

#######################################
This is an R function to performs the MCMC calculations

mh=function(n,n0){
#n is the desired sequence length
#n0 is the "burn-in" parameter
count=0
res=matrix(0,n+n0,3)
res[1,]=c(0,0,0)
for(i in 2:(n+n0)){

y=rnorm(3);x=res[i-1,]
u=runif(1)
yy=sqrt(sum(y^2))
xx=sqrt(sum(x^2))
test=(exp(-yy)/exp(-xx))*exp(-0.5*xx^2)/exp(-0.5*yy^2)
if(u<=test){res[i,]=y;count=count+1}
if(u>test){res[i,]=x}

}
return(list(res[(n0+1):(n+n0),],count)) }

set.seed(13)
re=mh(2000000,10000)
accept = (re[[2]]/dim(re[[1]])[1])
res = re[[1]]

test1=res[,1]+res[,2]
r1=mean(test1>1)
test2=res[,1]+res[,3]
r2=mean(test2>1)
test3=res[,2]+res[,3]
r3=mean(test3>1)
(r1+r2+r3)/3

c(r1,r2,r3)
accept

plot(1:1000,test1[1:1000])
###

8

Example 2: Suppose that we wish to generate random permutations (x1, x2, ..., xn) of the set
{1, 2, ..., n} such that

n∑
j=1

jxj > a, (3)

where a is a given constant.

Let C0 be the set of all the permutations (x1, x2, ..., xn) that satisfy (3). Then the conditional density
of interest is

f (x) =
1

|C0|

for all x∈ C0. Here,

|C0| = number of elements in C0.

Unfortunately, |C0| is unknown.

Solution

Approach 1:

We begin by defining the set N (x) of “neighbors of x”for all ∈x C0:

A permutations y in C0 is a neighbor of x if x and y differ at most on a pair of entries. For example,
let x=(1, 2, 3, 4, 5, 6) , then (1, 2, 3, 6, 5, 4) is a neighbor of x but (1, 2, 3, 5, 6, 4) is not.

The transition kernel in this approach is defined as follows

q (y|x) =


1

|N(x)| if y∈N (x)

0 otherwise
,

9

where |N (x)| is equal to the number of elements in N (x) .

A neighbor y of the current state x is randomly chosen (a list of such neighbors must be constructed)
together with an independent uniform random variable u in (0, 1) .

The new state y is accepted if

u ≤ f (y) q (x|y)
f (x) q (y|x) =

q (x|y)
q (y|x)

=
1/ |N (y)|
1/ |N (x)| =

|N (x)|
|N (y)| .

Notice that if the new state y has fewer neighbors than the current state, then y is accepted with
probability one.

Approach 2: Let now C be the set of all the permutations of {1, 2, ..., n} , irrespective of whether
they satisfy (3) or not.

The neighbors N (x) of x∈ C are now all the permutations y in C that differ from x in at most a pair
of entries.

It is clear now that

|N (x)| = |N (y)| =

 n

2

 , for all x,y∈ C.

The transition kernel in this approach is

q (y|x) = 2

n (n− 1) , for all x,y∈ C.

Moreover, the density of interest is

f (x) =


1
|C0| if y∈ C0

0 if y∈ C\C0
,

10

A neighbor y of the current state x is randomly chosen (a list of such neighbors is no longer needed)
together with an independent uniform random variable u in (0, 1) .

The new state y is accepted if

u ≤ f (y) q (x|y)
f (x) q (y|x) =

f (y)

f (x)

=

 1 if y∈ C0

0 if y∈ C\C0

Notice that if the new state y is accepted with probability one if it belongs to C0.

11

Some Remarks

Remark 1: the probability of making a transition from state x to state y is

q (y|x)P
(
u <

f (y) q (x|y)
f (x) q (y|x)

)
= q (y|x)min

{
1,
f (y) q (x|y)
f (x) q (y|x)

}

and the probability p (x) of sticking to the state x is

p (x) = 1−
∫
y 6=x

q (y|x)min
{
1,
f (y) q (x|y)
f (x) q (y|x)

}
dy

Hence, the transition kernel h (y|x) of
{
x(m)

}
is

h (y|x) = q (y|x)min
{
1,
f (y) q (x|y)
f (x) q (y|x)

}
︸ ︷︷ ︸

making a transition

+ δx (y) p (x)︸ ︷︷ ︸
sticking to the current state

where δx (y) is the Dirac delta function, which satisfies the conditions

(i) δx (y) = 0 almost everywhere, when x 6=y

(ii)
∫
δx (y)D (y)dy=D(x) , for all continuous function D

Notice that in particular, taking D(x) =1, we get

∫
δx (y)dy=1.

12

Remark 2: The M—H algorithm works. To see this we will show that the Markov chain {x(m)}
has stationary density f (x) .

For that, it suffi ces to show that f (x) satisfies the stationarity condition:

f (x)h (y|x) = f (y)h (x|y) (4)

where h (y|x) is the transition kernel of
{
x(m)

}
.

We can assume without loss of generality that x 6=y because equation (4) is trivially satisfied when
x=y. Therefore δx (y) = 0 and

h (y|x) = q (y|x)min
{
1,
f (y) q (x|y)
f (x) q (y|x)

}

f (x)h (y|x) =

 f (y) q (x|y) , f (y) q (x|y) ≤ f (x) q (y|x)

f (x) q (y|x) , f (y) q (x|y) ≥ f (x) q (y|x)

Notice that in the “equality case”f (y) q (x|y) = f (x) q (y|x) and therefore there is no inconsistency
in the equations above.

13

Reversing the roles of x and y we have

f (y)h (x|y) =

 f (x) q (y|x) , f (x) q (y|x) ≤ f (y) q (x|y)

f (y) q (x|y) , f (x) q (y|x) ≥ f (y) q (x|y)

=

 f (x) q (y|x) , f (y) q (x|y) ≥ f (x) q (y|x)

f (y) q (x|y) , f (y) q (x|y) ≤ f (x) q (y|x)

=

 f (y) q (x|y) , f (y) q (x|y) ≤ f (x) q (y|x)

f (x) q (y|x) , f (y) q (x|y) ≥ f (x) q (y|x)

= f (x)h (y|x) .

14

Remark 3: Notice that in order to implement the Metropolis-Hasting algorithm we only need the
ratio

f (x)

f (y)

and not the density values f (x) and f (y) themselves. For example, we could have

f (x) = αg (x)

with g (x) known but α possibly unknown. In such case,

f (x)

f (y)
=
Kg (x)

Kg (y)

=
g (x)

g (y)

can be calculated using the known values of g (x) and g (y) .

15

Example. Consider the data

yi 2 3 3 5 4 6
ni 20 24 18 25 12 14

Suppose that the yi are independent binomial random variables with parameters (ni, pi) where the ni
are the number of trials and the pi satisfy

0 < p1 < p2 < · · · < p6 < 1. (5)

Consider the Bayesian estimation of the pi using a constant prior on the vectors (p1, p2, ..., p6)
that satisfy (5).

1. Derive the posterior distribution of (p1, p2, ..., p6) given (y1, y2, ..., y6) , up to a multiplicative con-
stant.

2. Explain how you can use the Gibbs sampler to generate a Markov Chain with stationary distribution
equal to the posterior distribution of (p1, p2, ..., p6) given (y1, y2, ..., y6) .

3. Apply the procedure described in part 2 to the given data.

Solution
1. Likelihood

f (y1, y2, ..., y6|p1, p2, ..., p6) =
6∏
i=1

pyii (1− pi)
ni−yi

2. Prior

π (p1, p2, ..., p6)n
{
1, if 0 < p1 < p2 < · · · < p6 < 1
0 otherwise

3. Joint distribution for the data and the parameters

f (y1, y2, ..., y6, p1, p2, ..., p6)n
{ ∏

pyii (1− pi)
ni−yi , if 0 < p1 < p2 < · · · < p6 < 1

0 otherwise

16

Therefore, the posterior is

f (p1, p2, ..., p6|y1, y2, ..., y6)n f (y1, y2, ..., y6, p1, p2, ..., p6)

n
{ ∏

pyii (1− pi)
ni−yi , if p1 < p2 < · · · < p6

0 otherwise

4. To apply the Gibbs sampler we must derive the full conditional distributions for each pi, that is,
the conditional distribution of pi given p(−i), and y, with

p(−i) =



p1
...
pi−1
pi+1
...
p6


, i = 2, 3, 4, 5, p(−1) =



p2
...
pi
pi+1
...
p6


, p(−6) =



p1
...
pi
pi+1
...
p5



To facilitate the notations set p0 = 0 and p7 = 1, so we can write

0 = p0 < p1 < p2 < · · · < pi−1 < pi+1 < · · · < p6 < p7 = 1

For 1 ≤ i ≤ 6,

f
(
pi|y,p(−i)

)
=

f (p|y)
f
(
p(−i)|y,

)

n
∏6
i=1 p

yi
i (1− pi)

ni−yi

f
(
p(−i)|y,

) , provided pi−1 < pi < pi+1,

and

f
(
pi|y,p(−i)

)
= 0, otherwise.

17

Moreover,

f
(
p(−i)|y

)
n
∫ pi+1

pi−1

f (p|y) dpi

n

∏
j 6=i

p
yj
j (1− pj)

nj−yj

∫ pi+1

pi−1

pyii (1− pi)
ni−yi dpi

So, for p0 < p1 < p2 < · · · < pi−1 < pi+1 < · · · < pk < p7, and pi−1 < pi < pi+1

f
(
pi|y,p(−i)

)
n

∏6
j=1 p

yj
j (1− pi)

nj−yj(∏
j 6=i p

yj
j (1− pi)

nj−yj
) ∫ pi+1

pi−1
pyii (1− pi)

ni−yi dpi

⇒f
(
pi|y,p(−i)

)
n

pyii (1− pi)
ni−yi∫ pi+1

pi−1
pyii (1− pi)

ni−yi dpi
, pi−1 < pi < pi+1

Therefore, f
(
pi|y,p(−i)

)
is a Beta (yi + 1, ni − yi + 1) , conditional on the event

B = {pi−1 < pi < pi+1} .

5. The key issue now is to generate random variables pi from

Beta (yi + 1, ni − yi + 1) ,

conditional on the event
B = {pi−1 < pi < pi+1} .

This is rather simple: we keep generating random variables

zi ∼ Beta (yi + 1, ni − yi + 1)
until we get one value that satisfies the condition

pi−1 < zi < pi+1.

Then set
pi = zi.

18

#######################################
This is an R function to performs the MCMC calculations

mh=function(n,y,N0=0,N) {

NN=N+N0
res=matrix(0,NN,6)
res[1,]=sort(y/n)

for(i in 2:NN){

for(j in 1:6){

if(j == 1){
yy=rbeta(1,shape1=y[j]+1,shape2=n[j]-y[j]+1)
while(yy >=res[i-1,2]){yy=rbeta(1,shape1=y[j]+1,shape2=n[j]-y[j]+1)}
res[i,j]=yy
}

else { if(j == 6){
yy=rbeta(1,shape1=y[j]+1,shape2=n[j]-y[j]+1)
while(yy <=res[i,5]){yy=rbeta(1,shape1=y[j]+1,shape2=n[j]-y[j]+1)}
res[i,j]=yy

}
else {

yy=rbeta(1,shape1=y[j]+1,shape2=n[j]-y[j]+1)
while(yy <= res[i,j-1] || yy >= res[i-1,j+1]){yy=rbeta(1,shape1=y[j]+1,shape2=n[j]-y[j]+1)}
res[i,j]=yy
}
}

}

#print(c(i,res[i,]))
}

return(res[(N0+1):NN,])
}

y=c(2,3,3,5,4,6)
n=c(20,24,18,25,12,14)

res=mh(n,y,N=1000,N0=50)
boxplot(res,bycol=T)

19

