Generating Random Variables with a
Prescribed Distribution

Monte Carlo

Suppose we wish to calculate the integral

I:/m(m)f(m)dm

If we can generate an i.i.d. sequence
X17X2? aXTL

with common density f, then

~>
Il

Zm(qu) (1)

SRS

is a consistent, unbiased and asymptotically normal estimate of I.

In some cases, implementation of (1) may not be convenient nor feasible. For example,

e it is not easy (or possible) to generate independent random vectors with joint density f

e the density f is only known up to a multiplicative constant

Markov Chain Monte Carlo (MCMC)
An alternative procedure is to generate a Markov Chain sequence
XlaX27 "'7X7L

with

e transition kernel
h(y|z)

e invariant density f(x)

Then

‘\D
I
S

Zm(Xz‘)

is still a consistent and unbiased estimate of I.

A simple condition for invariance of f (x) is

h(ylz) f(z) = f(y)h(z|y), forall z,yeS

In fact, in this case

/h(ylw)f(w)dw=f(y)/h(wly)dw=f(y) for all yeS
S S

A Key Result

Suppose that the Markov process is irreducible and aperiodic and has a positive invariant
distribution f(>) (y) >0, for all y € S.

Then:

f(OO) (y) = lim p(”) (y|x), forally e S

n—oo

independent from x.

NOTE: in the finite state space case, all the rows of P(°) are the same.

2. f(°°) (y) is the unique, positive solution of the equation

FON(y) =Y) (@) p (yle)

€S

and {f(>) (y)} satisfies
S) =1

€S
That is, () (y) is a pmf.

3. In the continuous case f(°°) (y) >0, forallye S

£ (y) = /S £ () p (y]z) dae

and f(>) (y) satisfies
[1 @y =1
JS

That is, f(°) (y) is a cdf.

. In the discrete case f(°°) (y) can be interpreted as the long-run proportion of time that the process
is in state y.

. Let F() (y) be the corresponding invariant distribution function. Suppose that

Epeo (lg(Y)]) < oo

Then

%Zg(Xn) => g(y) 1 (y)
n=1 Y
= FEpe {9(Y)}
In the continuous case
15, _ [(00)
22000 = 9w @ty
= Epe {9(Y)}

The Metropolis-Hasting Algorithm

The Algorithm

e INPUT: A function g (x) which is proportional to the the target density f (x). In other words

f(z) = ag(z)
for some possibly unknown constant a.

e Let z=z(™ be the current “state” of the sequence

o Let

q(ylz)
be an auxiliary (irreducible-aperiodic) kernel. It should be possible (easy) to generate a random
vector with distribution ¢ (o|:c(7”)) , for any given “current state” a(").
e The candidate transition: generate y~q (0|w(m))

e Let u be an independent random variable with uniform distribution on the interval (0,1).

e The next state, (™1 is defined as follows

y u<f(yalzly)/f(2)q(yle)

z u>f(y)q(zly)/f(z)q(ylz)

L(m+1) _

Then it can be shown that

(=)

is a realization of a Markov Chain with stationary distribution f (z).

Example 1: Suppose we wish to estimate

p:P(X1+X2>1) (2)
where
X1
X = X
X3

has joint density

f(x) occexp{—|z|}.
Solution

To estimate p we can use the M-H algorithm to generate a Markov chain with stationary density
f (x). For instance, we can use the “independent kernel”

a(ylz) = (;ﬂ)meXp{— lvll*}-

That is, independent from the current value ("), the candidate y= (y1,Y2,ys3) is formed by independent
standard normal random variables. We can take (°) = 0, and given ("™ accept y if

_ eXP{_ ||y||}exp{_% |a:||2}
exp {— |||/} exp {_% Hy||2}

2
exp { o) - §)}

2
exp {llyll - 4 llyl* |

A Markov chain of length n = 200,000, with a burn in of 1,000 gave p = 0.3282117.

HHHH
This is an R function to performs the MCMC calculations

mh=function(n,n0){
#n 1is the desired sequence length
#n0 1is the "burn-in" parameter
count=0

res=matrix(0,n+n0,3)

res[1,]=c(0,0,0)

for(i in 2:(n+n0)){

y=rnorm(3) ;x=res[i-1,]

u=runif (1)

yy=sqrt (sum(y~2))

xx=sqrt (sum(x"2))

test=(exp(-yy)/exp(-xx))*exp(-0.5*xx"2)/exp(-0.5*xyy~2)
if (u<=test){res[i,]=y;count=count+1}

if (u>test){res[i,]=x}

}
return(list(res[(n0+1) : (n+n0),],count)) }

set.seed(13)

re=mh (2000000, 10000)

accept = (rel[[2]]/dim(re[[111) [11)
res = rel[[1]]

testl=res[,1]+res[,2]
ril=mean(test1>1)
test2=res[,1]+res[,3]
r2=mean(test2>1)
test3=res[,2]+res[,3]
r3=mean(test3>1)
(r1+r2+r3)/3

c(r1,r2,r3)
accept

plot(1:1000,test1[1:1000])
HEHHHHAFHH B HHAFH R B RA SRR RS H R R

Example 2: Suppose that we wish to generate random permutations (x1, zs, ..., ,) of the set
{1,2,...,n} such that

ijj > a, (3)
j=1

where a is a given constant.

Let Cy be the set of all the permutations (x4, za, ..., 2,) that satisfy (3). Then the conditional density
of interest is

for all z€ Cy. Here,
|Co| = number of elements in Cy.

Unfortunately, |Cp| is unknown.
Solution
Approach 1:

We begin by defining the set N (x) of “neighbors of x” for all ex Cy:

A permutations y in Cy is a neighbor of z if z and y differ at most on a pair of entries. For example,
let z=(1,2,3,4,5,6), then (1,2,3,6,5,4) is a neighbor of « but (1,2,3,5,6,4) is not.

The transition kernel in this approach is defined as follows

Lo if yeN ()

0 otherwise

where |N ()] is equal to the number of elements in N (x) .

A neighbor y of the current state « is randomly chosen (a list of such neighbors must be constructed)
together with an independent uniform random variable w in (0, 1).

The new state y is accepted if

_YIN@)| N (@)
/N ()| ~ [N ()|

Notice that if the new state y has fewer neighbors than the current state, then y is accepted with
probability one.

Approach 2: Let now C be the set of all the permutations of {1,2,...,n}, irrespective of whether
they satisfy (3) or not.

The neighbors N (x) of z€ C are now all the permutations y in C that differ from x in at most a pair
of entries.

It is clear now that

N (z)| = |N (y)| = , for all z,ye C.

The transition kernel in this approach is
q\y|x or all z,yc C.
n (7?, — 1) ’ ’

Moreover, the density of interest is

ﬁ if ye Gy

0 if yel\C

10

A neighbor y of the current state x is randomly chosen (a list of such neighbors is no longer needed)
together with an independent uniform random variable w in (0, 1).

The new state y is accepted if

1 if ye G

0 if ye C\Co

Notice that if the new state y is accepted with probability one if it belongs to Cp.

11

Some Remarks

Remark 1: the probability of making a transition from state & to state y is

and the probability p () of sticking to the state x is

p(z) = —/Wq<y|m>min{17f(y)q("””}dy

Hence, the transition kernel h (y|z) of {z(™} is

e (y) p ()
————

sticking to the current state

[() q(z|y)
f <m>q<y|m>} -

making a transition

h(y|z) =q(y|w)min{1,

where d5 (y) is the Dirac delta function, which satisfies the conditions

(i) dz(y)=0 almost everywhere, when z#y
(i) [dz(y)D(y)dy=D(x), for all continuous function D

Notice that in particular, taking D(x) =1, we get

/5m (y) dy=1.

12

Remark 2: the M 1 algorithm works. To see this we will show that the Markov chain {z (™}
has stationary density f (x).

For that, it suffices to show that f (x) satisfies the stationarity condition:
f (@) h(yle) = (y) b (zly) (4)
where h (y|z) is the transition kernel of {z(™}.

We can assume without loss of generality that £y because equation (4) is trivially satisfied when
x=y. Therefore d, (y) = 0 and

h(ylz) = q<y|m>min{1, W}

falzly), f(yaq(zly) < f(z)q(ylz)
f(®)q(ylz), f(y)q(zly) > f(z)q(ylz)

f(z)h(ylz) =

Notice that in the “equality case” f (y) ¢ (z|y) = f (z) ¢ (y|x) and therefore there is no inconsistency
in the equations above.

13

Reversing the roles of ¢ and y we have

f@)q(yle), f(z)q(ylz) < f(y)q(zly)

f(y) h(zly) = {
f@Walzly), f(z)q(ylz) > f(y)a(zly)

{ f@)q(ylz), f(y)q(zly) > f(z)q(ylz)
falzly), fya(zly) < f(z)q(ylz)

{ falzly), f(y)a(zly) < f(z)q(ylz)
f(@)a(ylz), f(y)a(zly) > f(z)q(ylz)

= [(@) h(ylz).

14

Remark 3: Notice that in order to implement the Metropolis-Hasting algorithm we only need the
ratio

f(z
f(y)

~—

and not the density values f () and f (y) themselves. For example, we could have

f(z) = ag (=)

with g () known but « possibly unknown. In such case,

f(z) Kg(=)
fly) Kg(y)
_9(@)
g(y)

can be calculated using the known values of g (z) and ¢ (y).

15

Example. Consider the data

vi| 233][5]4]6
n; | 20 | 24 | 18 | 25 | 12 | 14

Suppose that the y; are independent binomial random variables with parameters (n;,p;) where the n;
are the number of trials and the p; satisfy

0<pr <pa<--<pg<l (5)

Consider the Bayesian estimation of the p; using a constant prior on the vectors (pi,p2, ..., Dg)
that satisfy (5).

1. Derive the posterior distribution of (py,p2, ..., ps) given (y1,y2, ..., Ys) , up to a multiplicative con-
stant.

2. Explain how you can use the Gibbs sampler to generate a Markov Chain with stationary distribution
equal to the posterior distribution of (p1,p2,...,ps) given (y1,ya, ..., Ys) -

3. Apply the procedure described in part 2 to the given data.

Solution
1. Likelihood

6
f 1,92, y6lp1, P2, s p6) = [0V (1 —pi)™ ™"
=1

2. Prior

L, if 0<pi<ps<---<ps<l
T (p1, P2, -, P6) X { 0 otherwise

3. Joint distribution for the data and the parameters

f (yl7y2a -y Y6,P1, D2, -5 P6

) [Mpy (A —p)™ ™", if 0<pi<pa<---<psg<l
0 otherwise

16

Therefore, the posterior is

f (p17p27 "'7p6‘y17y2a "'ay6> X f <y17y27 - Y6,P1, P2, "'apﬁ)

X [Ipf" (1—p)" ", it pr<p2< - <ps
0 otherwise

4. To apply the Gibbs sampler we must derive the full conditional distributions for each p;, that is,
the conditional distribution of p; given p(_;y, and y, with

b1 p2 D1
_ Pi—1 . _ Di _ Di

P = P;+1 » 1=2345 Py = Dit1 PEOT g
Pe Pe Ps

To facilitate the notations set po =0 and p; =1, so we can write

O0=po<p1 <p2 < <pi_1<piy1<--<psg<pr=1

For 1 <i <6,

f(ply)

f(pily. p—p)) =)

y H?:l pih (1 _pi)m—yl
f(ply,)

provided p;—1 < p; < Di+1,

and

f (pily,p(—i)) =0, otherwise.

17

Moreover,

Pi+1
ﬂmwwx/ £ (ply) dp:

Pi—1

Yj 1— A\ Y5 Pt Yi 1— m—yld .
X p;’ (1=p;) pi" (1= pi) pi

j#i Pi-1

So, for pg < p1 <p2 <+ < pi—1 < pip1 < <pp <pr,and pi_1 < p; < Pig1

15, P (1—p;) ¥

f (pily, p—i)) x — = . ‘ _
I1; ip?] (L—p)™ %) [P pli (1 — py)™ Y dp;
Jj# Pis

pih (1 _pi)ni_yi

X Pit1 , Yi i —Yi
Lo pl (L —=pi)™ Y dp

=7 (pily, P(—)) y Pic1 < pi < Pit1

Therefore, f (pi|y, p(_i)) is a Beta (y; + 1,n; — y; + 1), conditional on the event
B ={pi-1 <pi <pit1}-
5. The key issue now is to generate random variables p; from
Beta (y; + 1,n; —y; + 1),

conditional on the event
B ={pi-1 <pi <pit1}-
This is rather simple: we keep generating random variables
z; ~ Beta (y; + 1,m; —y; + 1)
until we get one value that satisfies the condition
Pi—1 < z; < Pit1-
Then set
bi = z.

18

HERSHHHAFHHBHHHBRFH R AR HHRRFH R AR B R R HHRS
This is an R function to performs the MCMC calculations

mh=function(n,y,N0=0,N) {

NN=N+NO
res=matrix(0,NN,6)
res[1,]=sort(y/n)

for(i in 2:NN){

for(j in 1:6){

if(§ == 1){
yy=rbeta(l,shapel=y[jl+1,shape2=n[j]l-y[jl+1)
while(yy >=res[i-1,2]){yy=rbeta(l,shapel=y[jl+1,shape2=n[jl-y[jl+1)3}
res[i,jl=yy
}

else { if(j == 6){
yy=rbeta(l,shapel=y[jl+1,shape2=n[jl-y[j]1+1)
while(yy <=res[i,5]){yy=rbeta(l,shapel=y[jl+1,shape2=n[jl-y[jI+1)}
res[i,jl=yy

else {
yy=rbeta(l,shapel=y[jl+1,shape2=n[jl-y[j]1+1)
while(yy <= res[i,j-1] || yy >= res[i-1,j+1]){yy=rbeta(l,shapel=y[jl+1,shape2=n[jl-y[jl+1)}
res[i,jl=yy
}
}
}

#print(c(i,res[i,]))

}
return(res[(NO+1) :NN,])
}

y=c(2,3,3,5,4,6)
n=c(20,24,18,25,12,14)

res=mh(n,y,N=1000,N0=50)
boxplot(res,bycol=T)

19

