
Bayesian Estimates

1 Background and Motivation

Suppose that

y1, y2, ..., yn iid f (y|θ)

and we wish to estimate θ.
Let T be an estimate for θ. How good is T ? The mean
square estimation error,

MSE (θ, T ) = Eθ

{
(T − θ)2

}
=

∫
(t− θ)2 f (y|θ) dy,

may be used to answer this question.
Notice that MSE (θ, T ) is a non-negative function of

θ, and T, . For the trivial estimate

T ≡ t0

we have

MSE (t0, t0) = 0.
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Therefore, it is not possible to find (except for trivial
cases) an optimal estimate T ∗ with the property

MSE (θ, T ∗) ≤MSE (θ, T ) , for all T and θ.

Possible approaches to circumvent this problem are:

1) Restrict the class of possible estimates by im-
posing some “reasonable” restriction such as

• Unbiasedness

Eθ (T ) = θ, for all θ

In this case

MSE (θ, T ) = Eθ

{
(T − θ)2

}
= V arθ (T )

and we search for the minimum variance unbiased
estimator (MUVE).

• Invariance

2) Operate out the value of θ. For example, average
θ out. That is, assume some “weighting” distribution
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over the parameter space, Θ, and consider

mse (T ) =

∫
Θ

MSE (θ, T )π (θ) dθ

In this case, the optimal estimate minimizes mse (T ),
that is:

T ∗ = arg min [mse (T )]

We can write:

mse (T ) =

∫
MSE (θ, T )π (θ) dθ

=

∫ [∫
(t− θ)2 f (y|θ) dy

]
π (θ) dθ

=

∫ ∫
(t− θ)2 f (y|θ)π (θ) dydθ

=

∫ ∫
(t− θ)2 h (θ|y)m (y) dθdy
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∫
(t− θ)2 h (θ|y) dθ =

∫
(θ − t)2 h () dθ

≥
∫

(θ − E [θ|y])2 h (θ|y) dθ

with equality if and only if h (θ|y) puts all its mass at
E [θ|y] .

Therefore, we solve the optimality problem by choos-
ing

T ∗ (y) = E [θ|y]

More precisely,

mse (E [θ|y]) ≤ mse (T ) , for all T

Step by step derivation of T ∗:

1. Chose an appropriate weighting density π (θ), called
“prior density”
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2. Write down the joint density for the data and the
parameter

h (y,θ) = f (y|θ) π (θ) (1)

3. Compute the marginal density of the data, by inte-
grating out the parameter in (1)

m (y) =

∫
Θ

h (y,θ) dθ

4. Compute the posterior density of the parameter given
the data

h (θ|y) =
h (y,θ)

m (y)
=

f (y|θ) π (θ)∫
f (y|θ) π (θ) dθ

which is called “posterior density”

5. Compute the mean of the posterior density

T ∗ = E [θ|y] =

∫
θf (y|θ)π (θ) dθ∫
f (y|θ) π (θ) dθ
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Example 1: Suppose that y1, y2, ..., yn are iid Bernoulli(p)
and we wish to estimate p.

Step 0. The likelihood

f (y|p) = p
∑
yi (1− p)n−

∑
yi

= ps (1− p)n−s , s =
∑

yi

Step 1. The prior density:

π (p) =
Γ (α + β)

Γ (α) Γ (β)
pα−1 (1− p)β−1

for some specific values of α > 0, and β > 0.

It can be verified that

Eπ (p) =
α

α + β
, V arπ (p) =

αβ

(α + β)2 (α + β + 1)
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Step 2. The joint density:

h (y,p) = f (y|p)πα,β (p) , (hyperparameters α, β)

p
∑
yi (1− p)n−

∑
yi Γ (α + β)

Γ (α) Γ (β)
pα−1 (1− p)β−1

=
Γ (α + β)

Γ (α) Γ (β)
ps (1− p)n−s pα−1 (1− p)β−1

=
Γ (α + β)

Γ (α) Γ (β)
ps+α−1 (1− p)n−s+β−1

where

s =
∑

yi.

Step 3. The marginal density:
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m (y) =

∫ ∞
−∞

h (y,p) dp

=
Γ (α + β)

Γ (α) Γ (β)

∫ 1

0

ps+α−1 (1− p)n−s+β−1 dp

=
Γ (α + β)

Γ (α) Γ (β)

Γ (s+ α) Γ (n− s+ β)

Γ (n+ α + β)

Step 4. The posterior density:

h (p|y) =
h (y,p)

m (y)

=
Γ (n+ α + β)

Γ (s+ α) Γ (n− s+ β)
ps+α−1 (1− p)n−s+β−1

which is a Beta(s+ α, n+ β − s)

Step 5. The posterior mean:
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We will use that if X ∼ Beta(a, b) then

E(X) = a/(a+ b).

T ∗n = E [p|y]

=
s+ α

(s+ α) + (n+ β − s)

=
s+ α

α + β + n

=

(
n

α + β + n

)
s

n
+

(
α + β

α + β + n

)
α

α + β

= wp̂+ (1− w)E (p)

Notice that

T ∗n → p̂ as n→∞.

On the other hand, if

α = τβ, β →∞
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then

T ∗n =

(
n

α + β + n

)
s

n
+

(
α + β

α + β + n

)
α

α + β

→ α

α + β
=

τβ

τβ + β
=

τ

τ + 1

Therefore, we can make

T ∗n ≈
τ

τ + 1

for any chosen value of τ.

Remark 1 The “non-informative” prior density corre-
sponds to the choice

α = β = 1

as in this case

π (p) = 1, for 0 < p < 1
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In this case the posterior density is given by

h (p|y) =
Γ (n+ 2)

Γ (s+ 1) Γ (n− s+ 1)
ps (1− p)n−s

which is a Beta(s+ 1, n− s+ 1) , with mean

s+ 1

n+ 2

That is, the sample proportion for modified sample which
has been increased by two observations, one being a “suc-
cess” and the other a “failure”. For example, if the
original sample is

n = 10, s = 1,

the MLE of p is

p̂ =
1

10
= 0.10

and the Bayesian estimate is has posterior mean

2

11
= 0.181 82.
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Example 2: Suppose that y1, y2, ..., yn are iid Exp (θ)
and we are interested in estimating the parameter θ.

Step 0. The likelihood:

f (y|θ) = θn exp

{
−θ

n∑
i=1

yi

}

= θne−θs, s =
n∑
i=1

yi

Step 1. The prior:

π (θ) = λ exp {−λθ} = Gamma (1, λ)

for some specific values of λ > 0.

It can be verified that

Eπ (θ) =
1

λ
, V arπ (θ) =

1

λ2
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Step 2. The joint density of y and θ:

h (y,θ) = f (y|θ)π (θ)

= θn exp

{
−θ

n∑
i=1

yi

}
λ exp {−λθ}

= θnλ exp

{
−θ

[
λ+

n∑
i=1

yi

]}

= θnλ exp {− [λ+ s] θ}

where

s =
n∑
i=1

yi.

Step 3. The marginal density:
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m (y) =

∫ ∞
−∞

h (y,θ) dθ

=
λ

[λ+ s]n+1 Γ (n+ 1)
[λ+ s]n+1

Γ (n+ 1)

∫ ∞
0

θn exp {− [λ+ s] θ} dθ

=
λ

[λ+ s]n+1 Γ (n+ 1)

Step 4. The posterior density:

h (θ|y) =
h (y,p)

m (y)

=
θnλ exp {− [λ+ s] θ}

λ
[λ+s]

n+1Γ (n+ 1)

=
[λ+ s]n+1

Γ (n+ 1)
θ(n+1)−1 exp {− [λ+ s] θ}
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which is a Gamma (n+ 1, λ+ s)

Step 5. The posterior mean:

T ∗n = E [θ|y]

=
n+ 1

λ+ s

=
1

λ
n+1 + n

n+1 ȳ

The effect of this prior distribution is to create a
modified sample by adding a single observation yn+1 =
λ. Moreover, notice that

T ∗n →
1

ȳ
as n→∞.
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