Bayesian Estimates

1 Background and Motivation

Suppose that

Y1, Y25 -y Yo 13d  f (y|6)

and we wish to estimate 6.
Let T" be an estimate for 8. How good is T'? The mean
square estimation error,

MSE(©.7) = E{(T -0/} = [ (¢~ 07 wlo) .

may be used to answer this question.
Notice that MSE (0,T) is a non-negative function of
0, and T', . For the trivial estimate

we have



Therefore, it is not possible to find (except for trivial
cases) an optimal estimate T with the property

MSE (0, T*) < MSE (0,T), for all T and 6.

Possible approaches to circumvent this problem are:

1) Restrict the class of possible estimates by im-
posing some ‘“reasonable” restriction such as

« Unbiasedness
Ey(T) =0, forall 6
In this case
MSE (0,T) = E, {(T - 9)2} — Vary (T)

and we search for the minimum variance unbiased
estimator (MUVE).

« Invariance

2) Operate out the value of 0. For example, average
6 out. That is, assume some “weighting” distribution



over the parameter space, ©, and consider
mse (T) = / MSE (6,T) 7 (6) df
O

In this case, the optimal estimate minimizes mse (T,
that is:

T* = argmin [mse (T')]

We can write:

mse (T) = / MSE (6,T) = (8) do

:/[/(t—9)2f(yl9)dy  (0) do
// (t—0) f (y|0) = () dydo
// (t — 01 (Bly) m (y) dédy



/(t—e)Qh(eyy)dez/(e—t)Qh()de
> [0~ Elo) h6ly) @

with equality if and only if A (f]y) puts all its mass at
Elbly].

Therefore, we solve the optimality problem by choos-
ing

" (y) = E[0]y]

More precisely,

mse (E [Oly]) < mse(T), forall T

Step by step derivation of T™:

1. Chose an appropriate weighting density 7 (), called
“prior density”



. Write down the joint density for the data and the
parameter

h(y.0) = f(ylo)=(0) (1)

. Compute the marginal density of the data, by inte-
grating out the parameter in (1)

. Compute the posterior density of the parameter given
the data

_ ny,v)
MO =) T T 107 (6) df

which is called “posterior density”

. Compute the mean of the posterior density

_JOf(y|0) = (6)db

L= =Tyl - (0) o




Example 1: Suppose that y1, o, ..., Y, are iid Bernoulli(p)
and we wish to estimate p.

Step 0. The likelihood

f(ylp) =p=¥ (1 —p) =

=p(1-p)"", s=> v

Step 1. The prior density:

7 (p) = s et Pl et g gy

for some specific values of a > 0, and § > 0.

It can be verified that

- ar = op
Er(p) = Var: (p) @1 A et B )




Step 2. The joint density:

h(y.,p) = f(ylp)mas(p), (hyperparameters o, f3)

S (1 _ n—ZyiF(O‘JUB) a—1/q9 _ \B-1
p=%(1—p) NOINE) (1-p)

 T(a+p)

= WPS (1—p)" " p* " (1- p)ﬂ_l

_ P(O{—f— 6) sta—1

STy

where

Step 3. The marginal density:



_ I (Oé + 6) ! sta—1 o o\n—st+p-1
~ Sy, 1

T(atB) Tlsta)Tn—s+p)
I'(a)T(B) I'(n+a+ )

Step 4. The posterior density:

hiply) =

F(TL—FOJ-FB) s+a—1 n—s+p—1
F(s+oz)F(n—s+ﬁ)p+ (1-p)

which is a Beta(s +a,n+ 8 — s)

Step 5. The posterior mean:



We will use that if X ~ Beta(a,b) then

Notice that

T8 —p as n— oo.

On the other hand, if

a=710, [f— 0



then

. n s a+ a
In= (a+5+n>n+(@—l—ﬁ+n>a+ﬁ

a T T
a+p TB+B T4+1

%

Therefore, we can make

-
T =~
"or+1

for any chosen value of 7.

Remark 1 The “non-informative” prior density corre-
sponds to the choice

a=p=1

as in this case

m(p)=1, for 0<p<1
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In this case the posterior density is given by

I'(n+2)

F(s+1)F(n—s+1)pS(1_p)n_8

h(ply) =

which is a Beta(s + 1,n — s+ 1), with mean

s+ 1
n + 2

That is, the sample proportion for modified sample which
has been increased by two observations, one being a “suc-
cess” and the other a “failure”.  For example, if the
original sample 1s

n =10, s=1,
the MLE of p is

5 1 =0.10

P=1077

and the Bayesian estimate is has posterior mean

2 = 0.181 82
11 '
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Example 2: Suppose that y1,ya, ..., y, are iid Exp (0)
and we are interested in estimating the parameter 6.

Step 0. The likelihood:

f(yl0) = 6" exp {929}

Step 1. The prior:
7w (0) = Aexp {—A0} = Gamma (1, \)
for some specific values of \ > 0.

It can be verified that
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Step 2. The joint density of y and 6:

h(y,0) = f(y]0) = (0)

= 0" exp {9 Zyz} Aexp {—\0}
i=1

= 0" \exp {—9

)\-i-zn:yi]}
=0"Xexp{—[\+ 5|6}

where

n
1=1

Step 3. The marginal density:
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+1)%/0000”6Xp{—[)\+8]9}d9

holy) = 2
_ 0" Aexp {—[A+s]6}
WF (n+1)

o [>\ + S]n+1 9(n—|—l)—

S T(n+1)

texp {— [\ + 5] 0}
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which is a Gamma (n + 1, A\ + s)

Step 5. The posterior mean:

T, = Efy]

n

_n+1
A+

The effect of this prior distribution is to create a
modified sample by adding a single observation y,, 1 =
A. Moreover, notice that
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